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Abstract

Purpose: Wave-CAIPI is a novel acquisition approach that enables highly-accelerated 3D 

imaging. This paper investigates the combination of Wave-CAIPI with LORAKS-based 

reconstruction (Wave-LORAKS) to enable even further acceleration.

Methods: LORAKS is a constrained image reconstruction framework that can impose spatial 

support, smooth phase, sparsity, and/or parallel imaging constraints. LORAKS requires minimal 

prior information, and instead uses the low-rank subspace structure of the raw data to 

automatically learn which constraints to impose and how to impose them.

Previous LORAKS implementations addressed 2D image reconstruction problems. In this work, 

several recent advances in structured low-rank matrix recovery were combined to enable large-

scale 3D Wave-LORAKS reconstruction with improved quality and computational efficiency.

Wave-LORAKS was investigated by retrospective subsampling of two fully-sampled Wave-

encoded 3D MPRAGE datasets, and comparisons were made against existing Wave reconstruction 

approaches.

Results: Results show that Wave-LORAKS can yield higher reconstruction quality with 16×-

accelerated data than is obtained by traditional Wave-CAIPI with 9×-accerated data.

Conclusion: There are strong synergies between Wave encoding and LORAKS, which enables 

Wave-LORAKS to achieve higher acceleration and more flexible sampling compared to Wave-

CAIPI.
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INTRODUCTION

Obtaining high-quality MR images in a short period of time is difficult because of practical 

tradeoffs between data acquisition speed, signal-to-noise ratio (SNR), and spatial resolution. 

As a result, improving the speed of an MRI scan has been one of the major goals of the 

research community since the very early days of the field. There have been three principal 

approaches to increasing the acquisition speed of a high-quality conventional MR image: (i) 

improved hardware (e.g., higher magnetic field strengths, high-efficiency receiver coils, etc.) 

and optimized sequence parameters (flip angles, repetition times, etc.) to maximize SNR 

while achieving desired image constrast; (ii) improved methods for rapidly encoding spatial 

information (e.g., efficient Cartesian and non-Cartesian k-space trajectories, spatial encoding 

using multiple receiver coils simultaneously, etc.); and (iii) improved image reconstruction 

methods that allow extraction of high-quality information from sparsely-sampled and/or 

noisy data. These three approaches are often synergistic, and can yield massive further speed 

improvements when they are combined together in appropriate ways.

This work explores the potential synergies that can be obtained when a recent promising 

spatial encoding approach, i.e., Wave-CAIPI (1–4), is combined with a recent promising 

image reconstruction approach, i.e., LORAKS (5–8). These approaches have each separately 

been demonstrated to enable highly accelerated imaging, but have not been previously used 

together. As will be shown, our results suggest that their combination (which we call Wave-

LORAKS) can enable substantial further acceleration of high-resolution 3D MRI beyond 

what has previously been possible.

While the combination of Wave-CAIPI with LORAKS is straightforward in principle, a 

substantial challenge is that Wave-CAIPI data requires reconstruction of large-scale 3D 

datasets, which necessitates computational efficiency. On the other hand, existing LORAKS 

implementations have been designed for smaller scale 2D reconstruction problems and have 

not prioritized computational efficiency (9). To overcome computational issues, this paper 

reports several modifications to existing LORAKS implementations that substantially reduce 

the computational requirements for Wave-LORAKS. While these modifications are 

straightforward based on previous literature, their combination is necessary to enable our 

current investigation of Wave-LORAKS.

One ingredient of our new implementation is the previous autocalibrated LORAKS approach 

(10), which uses autocalibration data to pre-estimate the nullspace of the LORAKS matrix 

prior to reconstruction. This prior knowledge can be used to simplify image reconstruction, 

reducing a complicated nonconvex optimization problem to a much-easier linear least 

squares problem. The idea of simplifying optimization by pre-estimating subspaces from 

autocalibration data has a long history in low-rank MRI reconstruction for both convolution-

structured (11,12) and unstructured (13–15) low-rank matrices. While autocalibrated 

LORAKS (10) is inspired by all of these previous methods, it is a direct generalization of 

and most closely resembles the previous PRUNO approach (12). Similar autocalibration 

ideas have also been used in several subsequent publications (16–18). Another ingredient of 

our new implementation is the use of fast Fourier transforms (FFTs) for implementing 

matrix-vector multiplications with high-dimensional structured low-rank matrices, as 
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originally proposed by Ongie and Jacob (19). We have recently made both of these 

ingredients available to the community through a new public open-source LORAKS 

software release (20).

A preliminary account of portions of this work was previously presented in Ref. (21).

THEORY

This section provides a detailed review of the relevant previous literature (to give appropriate 

context and rationale for our reconstruction setup), and also describes the implementation 

choices we have made for the specific version of Wave-LORAKS investigated in this work.

Wave-CAIPI

Wave-CAIPI is a recent data acquisition technique that enables parallel imaging at high 

acceleration factors with minimal g-factor penalty (1–4). Like 2D CAIPIRINHA (22), 

Wave-CAIPI for volumetric 3D imaging chooses its phase encoding positions to lie on a 2D 

lattice in k-space, while the readout gradient is used to encode the third dimension. Lattice 

sampling of k-space leads to periodic aliasing on a reciprocal lattice in the image domain, 

and careful design of this aliasing pattern can help to reduce the resulting parallel imaging g-

factor in an accelerated acquisition (22).

However, distinct from 2D CAIPIRINHA (in which the readout follows a straight-line path 

through k-space), Wave-CAIPI employs a 3D corkscrew-shaped non-Cartesian readout 

trajectory. The choice to use this kind of readout was inspired by the earlier bunched phase 

encoding approach (23), and has the effect of spreading aliasing across all 3 spatial 

dimensions. This makes more efficient use of the additional spatial encoding provided by 3D 

coil sensitivity profiles, and leads to even further reduction in the parallel imaging g-factor.

The reduced g-factor means that Wave-CAIPI has major implications for highly-accelerated 

MRI. For example, Polak et al. (4) have demonstrated 9× accelerated high-resolution 

MPRAGE imaging1 with an average g-factor of only 1.06 at 3T. This enables an acquisition 

lasting only 72 seconds, which is a substantial improvement over a fully-sampled acquisition 

which would take nearly 11 minutes to acquire.

Similar to traditional SENSE parallel imaging reconstruction (25, 26), most of the previous 

Wave-CAIPI implementations (1–4) perform image reconstruction using a least-squares 

formulation:

m = arg min
m ∈ ℂN

‖Em − w‖2
2, [1]

1The MPRAGE sequence (24) is an inversion-prepared sequence that uses a gradient echo readout train. This sequence is often used in 
modern neuroscience studies because it can provide a high-quality high-resolution 3D T1weighted image with excellent contrast 
between gray and white matter in the brain.
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where m ∈ ℂN is the vector of voxel values for the unknown 3D image to be estimated, 

E ∈ ℂM × N represents the data acquisition model (including the effects of sensitivity 

encoding and non-Cartesian Fourier encoding), and w ∈ ℂM is the vector of measured data 

samples collected from all receiver coils. Due to system imperfections in the MRI scanner 

(e.g., gradient imperfections that perturb the nominal k-space trajectory), it has proven 

useful to use a simple autocalibrated point-spread function model when constructing the E 
matrix instead of trusting the acquisition to be faithful to the nominal k-space trajectory 

(3,4).

Beyond these least-squares reconstruction approaches, Wave-CAIPI has also previously 

been combined with an existing advanced reconstruction approach that uses 𝓁1-

regularization to promote transform-domain sparsity (27, 28). Because the use of 𝓁1-

regularization was inspired by compressed sensing (CS) (29), this approach to Wave 

reconstruction is known as CS-Wave (27, 28). The version of CS-Wave we will compare 

against later in this paper is formulated as (28)

m = arg min
m ∈ ℂN

‖Em − w‖2
2 + λTV(m), [2]

where TV (·) represents the standard 3D total variation (TV) regularization penalty that 

encourages the reconstructed image to have sparse edges, and λ is a user-selected 

regularization parameter. CS-Wave enables higher acceleration factors than Wave-CAIPI. 

Instead of using the strict lattice sampling pattern used in Wave-CAIPI, CS-Wave is 

generally used with a partially random phase encoding pattern (27, 28).

LORAKS and Wave-LORAKS

For the sake of simplicity and clarity, our description will focus solely on the theoretical 

justifications, mathematical notation, and problem formulation conventions from our 

previous LORAKS work (5–8). However, we should note that some of the capabilities and 

features we describe for LORAKS are also shared by related methods that use similar 

concepts and methodology (16,30,31).

LORAKS is a powerful and flexible constrained reconstruction framework that can integrate 

classical image support constraints, smooth phase constraints, sparsity constraints, and 

parallel imaging constraints into a single unified subspace constraint. The basic foundation 

of LORAKS is that, if one or more of the aforementioned constraints is applicable to a given 

image, then the fully-sampled Fourier data of that image should be linearly predictable.

Linear-prediction relationships are nothing new in the constrained MR image reconstruction 

literature. For example, linear prediction has been exploited in some of the earliest 

constrained reconstruction papers in the field (11, 32), and is the cornerstone of modern 

widely-used image reconstruction methods like GRAPPA (33) and SPIRiT (34). However, 

it’s been known for a long time that linear predictability is intimately related to the existence 

of structured low-rank matrices (11). This fact opens new doors for MR image 
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reconstruction, especially when combined with the explosion of recent theory and methods 

that demonstrate the possibility of reconstructing low-rank matrices from sparsely sampled 

data (35). LORAKS is one such MR image reconstruction method, which uses the principles 

of linear predictability to construct low-rank matrices, while simultaneously using the 

principles of structured low-rank matrix recovery to infer missing data.

Compared to classical linear-prediction methods, LORAKS has been shown to have several 

notable features:

• While linear-prediction relationships can exist in the data for various reasons 

(e.g., support, phase, sparsity, parallel imaging, etc.), using LORAKS does not 

require specific prior knowledge about which of these constraints are applicable. 

Instead, LORAKS attempts to learn all of the relevant local linear-prediction 

relationships that may exist in k-space (regardless of their source). LORAKS 

imposes all of these learned relationships simultaneously, while remaining 

agnostic to the original source of these relationships. This allows LORAKS to be 

flexible and adaptable enough to work across a range of different image 

reconstruction scenarios without the need for substantial adaptations in the 

problem formulation.

• The use of low-rank matrix completion means that LORAKS is compatible with 

a wide range of sampling patterns, both conventional and unconventional. For 

example, previous work has demonstrated that LORAKS can successfully 

reconstruct images from “silly” sampling patterns that have been selected for 

aesthetic purposes (e.g., based on the logo of our institution (7,8)). While we 

don’t recommend the use of “silly” sampling, these new capabilities offer 

exciting new opportunities for improving the design of k-space sampling 

patterns.

• We have frequently observed that LORAKS-based reconstruction outperforms 

sparsity-based CS reconstruction (5–8). We also note that LORAKS is just 

regularization, and can be synergistically combined with other regularization 

penalties for further improvements in image reconstruction quality, although this 

generally comes at the expense of increased computational burden.

• While LORAKS is compatible with calibrationless acquisition, it can also easily 

be used with calibration information when it is available (10,18,36) for even 

further improvements in reconstruction quality and computational efficiency.

While many different flavors of LORAKS have been proposed over the past several years, 

the version we investigate for Wave-LORAKS makes use of prior information about the coil 

sensitivity maps (36), which leads to the following problem formulation:

m = arg min
m ∈ ℂN

‖Em − w‖2
2 + λJ(𝒫(m)), [3]
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where the operator 𝒫( ⋅ ) : ℂN ℂQ × S takes an image as input and constructs a structured 

matrix (typically with Hankel and/or Toeplitz structure) out of the Nyquist-sampled k-space 

data corresponding to this input, and J( ⋅ ) : ℂQ × S ℝ is a cost function that penalizes 

matrices with large rank. As before, λ denotes a regularization parameter.

There are several additional choices that must be made to fully specify the Wave-LORAKS 

approach. The following subsections describe the specific choices that we made, as well as 

the rationale we used to make decisions when we had multiple alternatives to choose from. 

As described below, the Wave-LORAKS choices we made are largely based on approaches 

and insights that have already been described in previous work, although the specific 

combination we have used in this work is distinct from previous approaches. Due to space 

limitations, our description of existing work is largely presented conceptually at a high-level, 

and we refer interested readers to the corresponding references for additional details.

Choice of LORAKS Matrix

There are several different possible ways of choosing the structured matrix construction 

operator 𝒫( ⋅ ) in Eq. [3]. For single-channel data, early LORAKS work described three 

different construction methods, which were called the C, G, and S matrix constructions 

(5,9). The C matrix is a simple convolution-structured matrix that can be used to impose 

image-domain support constraints and can be viewed as a single-channel version of the 

matrix appearing in PRUNO/SAKE/ESPIRiT (12,30,37), while the G and S matrices have 

more complicated structure that allows them to impose both support and smooth phase 

constraints simultaneously (5,9). In multi-channel datasets, parallel imaging constraints can 

be additionally included by stacking the single-coil C, G, or S matrices for each coil next to 

one another in a larger matrix (6,12,30,37). Other matrix constructions are also possible that 

impose sparsity constraints (7,11,16,31).

In our experience, the parallel imaging version of the S matrix (imposing support, smooth 

phase, and parallel imaging constraints simultaneously) consistently leads to the best image 

reconstruction performance in most cases (5–8), and would be a natural choice to use for 

Wave-CAIPI. However, a computationally efficient version of S-based LORAKS was not 

available at the time we originally performed the research reported in this paper.2 Since 

computational efficiency is important for large-scale 3D Wave-LORAKS, we focus in this 

work on the parallel imaging version of the C matrix, which is substantially easier to 

manipulate. While the C matrix is normally incapable of incorporating smooth phase 

constraints, it is possible to use phase constraints with the C matrix by using the concept of 

virtual conjugate coils (8,38,39). In our experience, combining the C matrix with virtual 

conjugate coils does not lead to substantially worse image reconstruction error values than 

using the S matrix (8,20).

Similar to previous work (8, 38, 39), our use of virtual conjugate coils is motivated by the 

complex conjugation property of the Fourier transform. Let s𝓁(x) denote the spatially-

varying coil sensitivity for the 𝓁th channel and m(x) represents the desired image, and let 

2We have subsequently worked out the details of computationally efficient S-based LORAKS (20).
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G𝓁(k) denote the Fourier transform of s𝓁(x)m(x). The conjugation property of the Fourier 

transform implies that if we construct virtual conjugate coil data D𝓁(k) according to 

D𝓁(k) ≜ G𝓁( − k) where the bar denotes complex conjugation, then this virtual coil data will 

be equal to the Fourier transform of s𝓁(x)m(x), which can be rewritten in terms of the 

standard SENSE model as s𝓁(x)m(x) for some “virtual” coil sensitivity profile s𝓁(x) defined 

by

s𝓁(x) = s𝓁(x) exp( − i2∠m(x)), [4]

where ∠ m(x) is the phase of m(x). Constructing virtual conjugate coils in this way allows 

us to double the effective number of channels we’ve measured data from (increasing the 

amount of spatial encoding and the amount of information content that can potentially be 

extracted from the data), while also facilitating the use of smooth phase constraints (which 

classically lead to linearprediction relationships between opposite sides of k-space) 

(8,38,39).

Let 𝒫C( ⋅ ) denote the operator that constructs the standard C-matrix from single-channel 

Nyquist-sampled k-space data (5). Also assume that we measure data from L coils, and that 

multiplying an image m with the sensitivity map from the 𝓁th coil can be represented by the 

matrix-vector multiplication R𝓁m, where R𝓁 ∈ ℂN × N is a diagonal matrix with diagonal 

entries equal to the sensitivity map values for each voxel. Additionally, let F ∈ ℂN × N denote 

the Cartesian Nyquist-sampled Fourier transform operator. Combining parallel imaging and 

virtual coil ideas (6,8,12,30,37–39), the 𝒫( ⋅ ) operator we use for Wave-LORAKS in Eq. [3] 

is defined by concatenating C-matrices corresponding to different real and virtual coils 

according to

𝒫(m) = C1, C2, …, CL, D1, D2, …, DL , [5]

where

C𝓁 ≜ 𝒫C FR𝓁m [6]

is the C matrix for the 𝓁th real coil, and

D𝓁 ≜ 𝒫C F R𝓁m [7]

is the C matrix for the corresponding virtual conjugate coil.
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Due to its structure, the matrix constructed according to Eq. [5] is expected to have nullspace 

vectors associated with support constraints, smooth phase constraints, and parallel imaging 

constraints.

Use of Autocalibration

LORAKS approaches that have been used with calibrationless sampling have generally used 

nonlinear/nonconvex penalty functions J(·) (5,6), since this enables the linear-prediction 

relationships to be learned automatically during the optimization procedure. However, 

substantial computational accelerations are possible if densely-sampled autocalibration 

(ACS) data is available, since this data can be used to pre-learn the linear-prediction 

relationships for the specific image of interest (10). The specific variation of this idea that 

we describe below for Wave-LORAKS is a direct adaptation of the previous autocalibrated 

LORAKS approach (10). In particular, we choose J(·) in Eq. [3] to be a simple 

autocalibrated linear least-squares penalty (10,12), which leads to:

m = arg min
m ∈ ℂN

‖Em − w‖2
2 + λ‖𝒫(m)N‖F

2 , [8]

where ∥ ⋅ ∥F denotes the standard Frobenius norm, and the columns of the matrix N ∈ ℂS × T

are estimates of the approximate nullspace vectors of the matrix 𝒫(m). By construction, Eq. 

[8] encourages the rows of the matrix 𝒫(m) to be orthogonal to a T-dimensional subspace 

defined by N.

If we have a subregion of k-space that is sampled at the Nyquist-rate on a Cartesian grid 

(i.e., ACS data), then we can estimate N by forming a structured LORAKS matrix from the 

zero-padded ACS data (10,12,37). In particular, the LORAKS matrix formed from zero-

padded ACS data will contain a fully-sampled submatrix (because the ACS data is fully 

sampled), and we choose the columns of N to be an orthonormal basis (obtained using the 

singular value decomposition) for the approximate nullspace of this submatrix. Since the 

submatrix will generally be only approximately low-rank, the dimension T of the 

approximate nullspace is a parameter that should be selected by the user. The matrix N 
obtained in this way implicitly encodes the linear-prediction relationships that are observable 

in the ACS measurements (10).

For Wave-LORAKS, the need to acquire conventional ACS data (i.e., Cartesian data 

sampled at the Nyquist rate) would substantially reduce experimental efficiency. To avoid 

this problem, we instead generate synthetic ACS data by performing an initial unregularized 

SENSE reconstruction using Eq. [1], and then simulating Cartesian Nyquist-sampled k-

space data for each coil using the SENSE forward model. We estimate coil sensitivity 

profiles for this initial SENSE reconstruction by applying ESPIRiT (37) (with automatic 

masking of the sensitivity profiles based on the image support) to data measured with a rapid 

low-resolution prescan that takes about 2 seconds to acquire. Since the SENSE 

reconstruction will be most accurate in densely-sampled regions of k-space, we only 

generate synthetic ACS data for low-frequency regions of k-space (i.e., the region of k-space 
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that has the highest SNR and is sampled most densely by the sampling patterns we’ve 

considered).

Fast Optimization

The optimization problem we wish to solve in Eq. [8] has the form of a simple linear least-

squares problem,3 and we use the conjugate gradient algorithm (40) to solve it. This is an 

efficient iterative algorithm that is also commonly used for solving unregularized SENSE 

(26) and Wave-CAIPI reconstruction problems (1).

These kinds of iterative algorithms become especially efficient when there are fast 

algorithms for implementing matrix-vector multiplication. It has already been established (1) 

that there are efficient ways to implement matrix-vector multiplication with the E matrix 

(based on convolution with a point-spread function model of the acquisition, which can be 

implemented using the fast Fourier transform (FFT) for computational efficiency). However, 

one of the challenges associated with implementing the LORAKS reconstruction is that the 

matrix 𝒫(m) can be many times larger than the original image m. This is particularly 

problematic for large-scale problems like those we consider in this work. For example, for 

one of the 3D Wave-CAIPI datasets we consider later in this paper (i.e., Dataset 1), the 

vector w occupies around 17 GB (in single precision, and without coil compression), while 

the corresponding LORAKS matrix can require up to 1300 GB or more of memory, which 

can be difficult for modern computers to accommodate. In addition to these memory issues, 

our previous LORAKS implementation (9) of the C matrix operator 𝒫C( ⋅ ) is sufficiently 

fast for smaller-scale 2D problems, but is relatively slow at building the large matrices 

associated with 3D problems.

However, it has recently been observed (19) that the convolutional structure of this kind of 

matrix allows computations involving 𝒫C( ⋅ ) to be performed using simple convolution 

operations (which can also be implemented efficiently using the FFT), without the need for 

explicitly forming the large-size LORAKS matrix. The structured low-rank matrix used in 

Ref. (19) has nearly identical structure to the LORAKS C matrix, with the primary 

difference being the shape of the neighborhood system used to form the structured low-rank 

matrix. In particular, LORAKS generally uses circular neighborhoods to ensure isotropic 

resolution characteristics (5), while Ref. (19) uses rectangular neighborhoods similar to the 

rectangular kernel shapes used by methods like GRAPPA (33) and SPIRiT (34). Since this 

difference in the neighborhood system does not change the form of the computation and 

because we are using the C matrix in this work, it becomes possible for us to use the exact 

same FFT-based approach described previously (19) in our implementation of Wave-

LORAKS. A more detailed description and an example software implementation of this 

FFT-based approach is available from Ref. (20). It should be noted that this FFT-based 

approach is based on certain approximations (19). However, both the results of Ref. (19) and 

3Note that the complex conjugation operation used in Eq. [7] is not linear with respect to complex vectors in CN, but is linear with 
respect to an equivalent representation that concatenates the real and imaginary parts into a real vector in R2N. Similar to (5), we use 
this real-valued representation to allow a linear least-squares interpretation.
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our past experience (20) suggest that these approximations have a nearly negligible effect on 

image reconstruction quality for the type of imaging scenario considered in this paper.

METHODS

Two in vivo human brain Wave-encoded MPRAGE datasets were acquired using a Siemens 

3T Connectom scanner with a 32 channel headcoil. Both datasets were acquired 

“unaccelerated,” with phase encoding positions placed on a fully-sampled Cartesian grid at 

the Nyquist rate. Due to the use of Wave encoding, these datasets were oversampled along 

the readout dimension. Dataset 1 was acquired assuming a nominal image matrix size of 240 

× 240 × 192 voxels (with 1 mm3 isotropic resolution). This data was acquired with 6× 

oversampling along the readout, corresponding to a k-space matrix (readout × phase encode 

1 × phase encode 2 × coil) size of 1440 × 240 × 192 × 32. Additional acquisition parameters 

include: readout duration 5.04 ms, maximum slew rate 180 mT/m/s, maximum gradient 

amplitude 9.6 mT/m, 15 sinusoidal Wave cycles, flip angle 9° and TR/TE/TI = 

2500/3.52/1100 ms. Dataset 2 was acquired assuming an image matrix size of 256 × 256 × 

192 voxels (again with with 1 mm3 isotropic resolution). This data was acquired with 3× 

oversampling along the readout, corresponding to a k-space matrix size of 768 × 256 × 192 

× 32. Additional acquisition parameters include: readout duration 5.07 ms, maximum slew 

rate 175 mT/m/s, maximum gradient amplitude 9.4 mT/m, 15 sinusoidal Wave cycles, flip 

angle 8°, and TR/TE/TI = 2500/3.48/1100 ms. To reduce later computational complexity, the 

original 32 channels were coil compressed down to 16 virtual channels. Even with this coil 

compression, the datasets are still both very large. Specifically, the coil-compressed single-

precision raw data for Datasets 1 and 2 respecitively occupies 7.8 GB and 4.2 GB of 

memory. Basic Wave-CAIPI reconstructions of the fully-sampled Datasets 1 and 2 are 

shown in Fig. 1.

These two fully-sampled Wave datasets were used to define gold standard reference images, 

and were also retrospectively undersampled to allow evaluation and comparison of different 

acceleration techniques. Retrospective undersampling was only performed along the two 

phase encoding dimensions, while the readout dimension was always fully sampled.

One of the potential advantages of Wave-LORAKS is that LORAKS is compatible with a 

wide variety of different sampling strategies. However, since we do not know what the 

optimal undersampling strategy should be in this case, we performed an initial study of 

different k-space undersampling strategies with 12× acceleration. We specifically compared 

the following:

• CAIPI sampling. This is a standard approach in which k-space is sampled on a 

uniform lattice, and was used in earlier Wave-CAIPI work (4).

• Variable density (VD) random sampling. K-space was randomly undersampled 

using a Poisson disc sampling distribution (41). The central 72 × 72 region of 

Dataset 1 and the central 74 × 74 region of Dataset 2 was sampled at a 4× higher 

sampling density than the other portions of k-space to account for the fact that 

low-frequencies generally contain a substantially higher amount of information 
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content than high frequencies. This is a standard approach for compressed 

sensing, and was used in earlier CS-Wave work (27,28).

• VD CAIPI sampling. This approach is similar to CAIPI, except that the central 

72 × 72 region of Dataset 1 and the central 74 × 74 region of Dataset 2 was 

sampled at a 4× higher sampling density than the other portions of k-space. Both 

the central and high frequency regions of k-space were sampled using a uniform 

lattice (CAIPI) pattern.

• Hybrid sampling. This approach can be viewed as a hybridization of VD 

random sampling and VD CAIPI sampling. Specifically, we used lattice (CAIPI) 

sampling for the central 72 × 72 region of Dataset 1 and the central 74 × 74 

region of Dataset 2, and used random Poisson disc undersampling in high 

frequency regions.

• Checkerboard sampling. This is an unconventional form of partial Fourier 

acquisition that was introduced in Ref. (6). Like conventional partial Fourier 

approaches, one side of k-space is sampled densely while the opposite side of k-

space is sampled more sparsely. However, unlike conventional partial Fourier 

acquisition, the denser and sparser regions are distributed on both sides of k-

space in an alternating checkerboard pattern, with random Poisson disc sampling 

within each checkerboard square. As with VD CAIPI and Hybrid sampling, we 

used denser lattice (CAIPI) sampling for the central 72 × 72 region of Dataset 1 

and the central 74 × 74 region of Dataset 2.

• Partial Fourier sampling. In this case, we combined VD CAIPI with a more 

conventional partial Fourier acquisition approach. Specifically, we started with a 

VD CAIPI pattern, and then removed samples from the edge of one side of k-

space. To maintain the same acceleration factor as VD CAIPI, we increased the 

size of the central densely-sampled region of k-space to 96 × 96 for both 

datasets.

Due to the difference in matrix size for Datasets 1 and 2, we retrospectively undersampled 

these datasets using different sampling pattern realizations, as illustrated in Fig. 2 and 

Supporting Information Fig. S1. For reference, images showing the 3D aliasing patterns 

corresponding to each of these different sampling patterns are shown in Fig. 3 and 

Supporting Information Fig. S2.

For each sampling pattern, reconstructions were performed using traditional Wave-CAIPI 

reconstruction (Eq. [1]), Wave-CS reconstruction using TV regularization (Eq. [2]), and our 

proposed Wave-LORAKS approach (Eq. [8]), with optimization performed in MATLAB on 

a desktop computer with an Intel Xeon E5–1620 3.7 GHz quad core CPU processor and 

96GB of RAM. Image quality was judged qualitatively and quantitatively. For quantitative 

comparisons, we computed the normalized root-mean-squared error (NRMSE) and the high 

frequency error norm (HFEN). The HFEN is based on computing the NRMSE of a high-

pass filtered version of the image (42), and provides more insight than NRMSE into how 

well the reconstruction has preserved the high frequency edges and textures of the image. 

Since we wanted to emphasize errors that occured within the brain parenchyma and do not 
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care about errors that occur outside the brain, we applied a brain mask (generated using 

BrainSuite (43)) to the reconstructed images prior to computing NRMSE and HFEN.

After this initial comparison of different sampling patterns, we also compared Wave-CAIPI, 

CS-Wave, and Wave-LORAKS at 16× acceleration. For simplicity, we only performed 

reconstructions using the “best” undersampling approach for Wave-LORAKS (as 

determined based on the results of the previous comparison at 12× acceleration), while 

Wave-CAIPI and CS-Wave reconstructions were performed with the sampling patterns 

proposed for them in previous literature (i.e., CAIPI sampling for Wave-CAIPI, and Hybrid 

sampling for CS-Wave).

To ensure a fair comparison, regularization parameters for CS-Wave were optimized 

independently for each sampling pattern to minimize NRMSE. On the other hand, 

reconstruction parameters for Wave-LORAKS were set relatively coarsely. Specifically, 

Wave-LORAKS was implemented with a LORAKS neighborhood radius of 4 and a matrix 

rank of 2000 for both datasets, and we used λ = 1 for Dataset 1 and λ = 0.5 for Dataset 2. 

These coarsely-selected Wave-LORAKS parameters were used uniformly across all 

sampling patterns, without adaptation to the unique characteristics of each dataset.

RESULTS

Figure 4 shows a zoomed-in version of a representative slice of the 3D reconstructions 

obtained from Dataset 1, while Figs. 5 and 6 respectively show maximum-intensity 

projection (MIP) images of the 3D error images for both datasets. The MIP was computed 

after applying the previously mentioned brain mask. As can be seen, the Wave-CAIPI 

reconstructions have the highest errors with respect to both NRMSE and HFEN, and have a 

“noisy” appearance as may be expected from an unregularized reconstruction of highly-

undersampled data. On the other hand CS-Wave and Wave-LORAKS both have substantially 

lower errors. Interestingly, Wave-LORAKS outperformed Wave-CAIPI and CS-Wave for 

almost all undersampling patterns. The one exception was that CS-Wave had a slightly 

smaller NRMSE for CAIPI sampling.

When we compare different sampling patterns for Wave-CAIPI, we observe that traditional 

Wave-CAIPI has the lowest NRMSE with traditional CAIPI undersampling, as might be 

expected based on the the excellent g-factor characteristics of CAIPI for traditional 

reconstruction approaches (22). However, surprisingly, we observe that Wave-CAIPI has the 

lowest HFEN with partial Fourier sampling. This result is surprising because Wave-CAIPI 

does not make use of phase constraints, and is not expected to be able to extrapolate the 

missing high-frequency information. Closer examination of this result suggests that Wave-

CAIPI actually does have substantial high-frequency errors as can be seen in Fig. 7. Our 

surprising HFEN results can be explained by the fact that the Laplacian of Gaussian filter 

used in the definition of the HFEN (42) is actually a bandpass filter that suppresses both 

low-frequencies and high-frequencies, while emphasing mid-range frequencies.

When we compare different sampling patterns for CS-Wave and Wave-LORAKS, we 

observe that Partial Fourier sampling yields the smallest NRMSE and HFEN values in both 
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cases. This result may be expected for Wave-LORAKS, because the good performance of 

LORAKS with partial Fourier acquisition is consistent with previous literature (5,6,36). 

However, this result is surprising for CS-Wave, which does not impose smooth phase 

constraints and is not expected to accurately extrapolate the missing side of k-space. Closer 

examination suggests that CS-Wave with partial Fourier sampling has substantial errors on 

the missing side of k-space (as seen in Fig. 7), but is still able to have lower overall NRMSE 

and HFEN values than CS-Wave with other sampling patterns because of smaller errors in 

the mid-frequency range. We suspect that CS-Wave is benefitting from the fact that Partial 

Fourier sampling has dense sampling over a larger region of central k-space than is used by 

the other sampling schemes. Surprisingly, Hybrid sampling (which we expected to 

demonstrate the best performance for CS-Wave based on previous literature) was slightly 

outperformed by CAIPI, VD CAIPI, and VD Random sampling with respect to NRMSE, 

and was slightly outperformed by VD Random and VD CAIPI sampling with respect to 

HFEN. However, in all of these cases, the performance of Hybrid sampling was not 

substantially worse than the alternative choices.

Figure 8 shows results with 16× acceleration, using CAIPI sampling for Wave-CAIPI, 

Hybrid sampling for CS-Wave, and Partial Fourier sampling for Wave-LORAKS. For 

reference, we also show Wave-CAIPI results with 9× accelerated CAIPI sampling, which is 

the acceleration rate and sampling strategy considered in previous Wave-CAIPI papers (1,4). 

We observe in this case that 16× accelerated Wave-LORAKS has substantial advantages 

relative to the other two 16× accelerated reconstructions. Perhaps surprisingly, the 16× 

accelerated Wave-LORAKS reconstruction even outperforms the 9× accelerated Wave-

CAIPI reconstruction with respect to the NRMSE and HFEN quantitative error metrics. This 

demonstrates that Wave-LORAKS can enable substantially more acceleration than Wave-

CAIPI without a corresponding loss of image quality. For additional reference, we also show 

results obtained using traditional 9× accelerated CAIPI and 16× accelerated SENSE-

LORAKS without Wave encoding. Since we did not acquire data without Wave encoding, 

this data was simulated based on the fully-sampled gold standard reference image. As can be 

seen, results are substantially worse when Wave encoding is not used. This confirms that 

Wave encoding is also an important ingredient of the Wave-LORAKS approach.

On our computer, the 16× accelerated reconstructions shown in Fig. 8 took about 45 minutes 

for Wave-CAIPI and about 5.5 hours for CS-Wave using an efficient implementation based 

on the alternating directions method of multipliers (28). For comparison, our fast Wave-

LORAKS implementation takes approximately 2.5 hours. Even though our implementation 

is still at the proof-of-principle stage and has not been fully optimized, we still observe a 

major speed advantage relative to CS-Wave. We believe that there are many opportunities for 

further improving reconstruction speed by using better hardware, more efficient 

programming languages, and smarter algorithms.

DISCUSSION

Wave-LORAKS has a few reconstruction parameters that need to be selected, and it is 

worthwhile to understand how sensitive the Wave-LORAKS reconstruction is to the choice 

of these parameters. Figure 9 examines how the NRMSE and HFEN error metrics change as 

Kim et al. Page 13

Magn Reson Med. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a function of the regularization parameter λ and the LORAKS matrix rank, in the context of 

reconstructing Dataset 1 from 12× accelerated VD CAIPI data. For reference, we also show 

the NRMSE and HFEN values obtained from traditional unregularized Wave-CAIPI. These 

plots demonstrate that Wave-LORAKS outperforms traditional Wave-CAIPI over a wide 

range of different λ and matrix rank values, with the results being slightly more sensitive to 

λ than they are to the choice of matrix rank. As a result, we infer that careful parameter 

tuning is not essential to the good performance of Wave-LORAKS, and that Wave-LORAKS 

is likely to provide benefits as long as parameters are set in a reasonable way. While we 

selected reconstruction parameters for Wave-LORAKS coarsely and manually in this work, 

an automatic data-adaptive parameter selection approach would also be a viable and 

potentially valuable strategy (44,45), although would be expected to incur substantial 

additional computational costs.

All of the results shown so far were based on a LORAKS neighborhood radius of 4. The 

neighborhood radius is a LORAKS parameter that is analogous to the k-space kernel size in 

GRAPPA and ESPIRiT (33,37). As has been discussed in previous papers (5,6), selection of 

this radius represents a balance between multiple factors. On the one hand, larger values of 

the radius mean that the low-rank model will be more flexible and better able to 

accommodate rapid spatial variations in the image support, phase, or parallel imaging 

constraints. On the other hand, this additional flexibility also means that the LORAKS 

model will have a larger number of degrees-of-freedom, and can be more prone to 

overfitting. At the same time, the size of the LORAKS matrices (and therefore, the amount 

of memory required if the matrices were formed explicitly) grows in proportion to the square 

of the neighborhood radius. This last fact may be the most important one to consider in 

scenarios where computational resources are limited. Table investigates the effects of 

different neighborhood radius choices for the same context considered in the previous 

paragraph. As can be observed, the NRMSE and HFEN both seem to reduce very slightly as 

we increase the neighborhood radius from 2 to 4, although this improvement in 

reconstruction quality is somewhat offset by very substantial increases in computation time. 

Interestingly, with a neighborhood radius of 2, the Wave-LORAKS reconstruction time of 

0.99 hours is not too much larger than that of the much simpler Wave-CAIPI reconstruction 

(0.75 hours), while the Wave-LORAKS reconstruction quality is substantially better (i.e., 

Wave-LORAKS gives an NRMSE of 0.108, while Wave-CAIPI gives an NRMSE of 0.137 

with the same data). Comparing memory usage, we observe that the use of FFT-based matrix 

multiplication substantially reduces the amount of memory required for LORAKS 

reconstruction compared to what would be required from our original implementation that 

explicitly constructs large-scale LORAKS matrices. However, it should also be noted that 

our FFT-based Wave-LORAKS implementation still requires more memory than Wave-

CAIPI.

We would hypothesize that the trend of reduced NRMSE with larger neighborhood radii will 

not continue indefinitely, and we would eventually start to see increased NRMSE for larger 

radius values. However, we have not explored this regime because of the increased 

computational complexity associated with larger neighborhood radius values.
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The results shown in this paper were based on retrospective undersampling of a “fully 

sampled” dataset that took roughly 10 minutes to acquire. Specifically, Dataset 1 took 10 

minutes to acquire while Dataset 2 took 10.67 minutes to acquire. The fact that we can 

achieve high quality reconstruction results with 16× undersampling suggests that a 

prospective Wave-LORAKS acquisition of this kind of data could be roughly 40 seconds 

long, which is a substantial improvement over the previous state-of-the-art. Future 

prospective implementations of Wave-LORAKS with the MPRAGE sequence will need to 

account for T1-blurring effects when designing the phase encode acquisition order, due to 

the fact that the MPRAGE sequence uses an echo train. However, accounting for these 

effects with highly-structured sampling (like the CAIPI-based Partial Fourier sampling 

pattern that worked the best with Wave-LORAKS) is more straightforward than it would be 

for the VD Random or Hybrid sampling patterns that are better suited for compressed 

sensing methods like CS-Wave.

We observed in this work that Partial Fourier sampling appeared to be the best sampling 

scheme for Wave-LORAKS in the context of this application. However, it should be noted 

that we only considered a restricted class of sampling patterns, and did not perform an 

exhaustive evaluation of every imaginable sampling strategy. Exploring optimal sampling 

strategies remains an interesting topic for future research.

While this work focused on 3D Wave acquisition, we believe that it would be 

straightforward to apply the same ideas to simultaneous multislice (SMS) wave data (2). In 

particular, there already exists an SMS formulation for LORAKS (46) that can be easily 

adapted to this purpose.

Finally, we should mention that while we compared Wave-LORAKS against CS-Wave in 

this paper, it would also be possible to use LORAKS synergistically with other 

regularization constraints for even further improvements in reconstruction performance, at 

the cost of increased computational complexity. Specifically, because the LORAKS 

constraint is just regularization, it is easy to append additional regularization terms (e.g., TV 

or wavelet regularization) to the Wave-LORAKS objective function in Eq. [8]. Another 

potentially interesting extension would be the combination of Wave encoding and LORAKS 

in the context of multi-contrast imaging, since recent work has shown that LORAKS 

constraints can also be very beneficial when reconstructing multi-contrast datasets (17).

CONCLUSION

This work introduced and evaluated a new Wave-LORAKS approach for highly accelerated 

MRI. Our experimental results indicate that Wave-LORAKS is quite powerful relative to 

standard WaveCAIPI. Specifically, the Wave acquisition and LORAKS reconstruction 

combine synergistically, allowing even higher acceleration factors than Wave-CAIPI without 

a loss of image quality, while also enabling higher flexibility in the choice of sampling 

patterns. While the improved performance of Wave-LORAKS comes at the expense of some 

additional computational complexity, we believe that these computational costs can largely 

be mitigated using appropriate tuning of the LORAKS neighborhood radius combined with 

a more efficient numerical implementation.
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Figure 1. 
Gold standard magnitude and phase images for Dataset 1 (top row) and Dataset 2 (bottom 

row). Images are shown for three representative orthogonal views.
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Figure 2. 
Different 12× accelerated sampling patterns used with Dataset 1. (This figure contains high 

resolution detail that may not print clearly on certain printers. Readers may prefer to view 

the electronic version of this figure.)
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Figure 3. 
Images showing the 3D aliasing patterns corresponding to the sampling patterns from Fig. 2 

for Dataset 1. We show (top row) axial, (middle row) coronal, and (bottom row) sagittal 

views that are matched to the 3 orthogonal views shown in Fig. 1.
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Figure 4. 
Reconstructions of a representative sagittal slice from Dataset 1 using different 

reconstruction techniques and different 12× accelerated undersampling patterns. For easier 

visualization, we have zoomed-in on a region that shows a variety of important anatomical 

features that exhibit structure across a variety of different spatial scales, including the brain 

stem, cerebellum, corpus callosum, and portions of the occipital and parietal lobes.
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Figure 5. 
Maximum intensity projections of the 3D error images associated with reconstructions of 

Dataset 1 using different reconstruction techniques and different 12× accelerated 

undersampling patterns. The color scale has been normalized so that a value of 1 

corresponds to the maximum intensity of the image within the brain mask.
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Figure 6. 
Maximum intensity projections of the 3D error images associated with reconstructions of 

Dataset 2 using different reconstruction techniques and different 12× accelerated 

undersampling patterns. The color scale has been normalized so that a value of 1 

corresponds to the maximum intensity of the image within the brain mask.
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Figure 7. 
Reconstructed k-space data obtained by applying different reconstruction methods to a 

subsampled version of Dataset 1, using the 12× partial Fourier undersampling pattern from 

Fig. 2. Both Wave-CAIPI and CS-Wave demonstrate significant errors in the high-frequency 

region of one side of k-space. This side of k-space was not measured because of partial 

Fourier sampling.
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Figure 8. 
Maximum intensity projections of the 3D error images associated with reconstructions of 

Dataset 1 using 16× accelerated data. The color scale is normalized to match Fig. 5. (This 

figure contains high resolution detail that may not print clearly on certain printers. Readers 

may prefer to view the electronic version of this figure.)
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Figure 9. 
(top) NRMSE and (bottom) HFEN reconstruction error metrics as a function of the (left) 

regularization parameter λ and (right) LORAKS matrix rank, for reconstruction of Dataset 1 

with 12× accelerated VD CAIPI sampling.
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Table 1:

The effect of the LORAKS neighborhood radius on NRMSE, memory usage, and computation time for 

reconstruction of Dataset 1 with 12× accelerated VD CAIPI sampling. For reference, values corresponding to 

Wave-CAIPI reconstruction are also shown.

Wave-LORAKS Wave-CAIPI

Neighborhood Radius 2 3 4

NRMSE 0.108 0.102 0.098 0.137

HFEN 0.133 0.127 0.124 0.166

Compute Time (hours) 0.99 1.52 2.48 0.75

Memory Usage (FFT-based implementation) 80 GB 80 GB 80 GB 33 GB

Matrix size (original implementation) 90 GB 320 GB 650 GB
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