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Speech perception studies typically rely on trained research assistants to score orthographic listener

transcripts for words correctly identified. While the accuracy of the human scoring protocol has

been validated with strong intra- and inter-rater reliability, the process of hand-scoring the tran-

scripts is time-consuming and resource intensive. Here, an open-source computer-based tool for

automated scoring of listener transcripts is built (Autoscore) and validated on three different

human-scored data sets. Results show that not only is Autoscore highly accurate, achieving approx-

imately 99% accuracy, but extremely efficient. Thus, Autoscore affords a practical research tool,

with clinical application, for scoring listener intelligibility of speech.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5087276
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I. INTRODUCTION

Studies that examine speech perception in adverse con-

ditions (i.e., disordered speech, accented speech, speech in

noise), frequently rely on an objective measure of percent

words correct to generate data regarding intelligibility of the

acoustic signal (e.g., Bilger et al., 1984; Liss et al., 2000).

To obtain these data, listener participants are often presented

with audio files of spoken stimuli (target words or phrases)

and asked to orthographically transcribe what they think is

being said or, in some cases (particularly with older listeners,

e.g., McAuliffe et al., 2013), repeat what they think is being

said aloud with study personnel orthographically transcrib-

ing the responses. Researchers then employ trained labora-

tory research assistants (or complete the task themselves) to

hand score these orthographic listener transcripts for the

number of words correctly identified, according to a set of

previously determined rules regarding what is acceptable to

be counted as correct. A measure of percent words correct,

or speech intelligibility, can then be calculated by dividing

the number of words scored as correct by the total number of

words possible (Yorkston and Beukelman, 1980).

The process of scoring orthographic listener transcripts for

words correct by hand appears to be largely accurate. While not

all studies report on reliability, those that have demonstrated a

high inter-rater agreement (e.g., Stilp et al., 2010; Hustad, 2006;

Huyck, 2018). There are, therefore, no substantial concerns

about the accuracy of the current scoring approach. However,

the process of scoring the transcripts by hand is notoriously

time-consuming. In a recent study by Borrie and colleagues

(2017a), the data set consisted of 160 listener transcripts, with

each transcript consisting of 315 words. Scoring of words correct

for each individual transcript took, on average, 15 min, so the

total time for one rater to score the complete data set approxi-

mated 40 h. A second rater analyzed 20% of randomly selected

transcripts for a measure of inter-rater reliability. Adding this

time to the workload, the total time for scoring the data set for

this study, including reliability checks, approximated 50 h.

A small handful of speech perception studies have

reported the use of in-house computer software to automati-

cally score listener transcripts for words correct (e.g.,

Allison and Hustad, 2014; Wild et al., 2018). However, there

are no well-documented, open-source software packages that

can automatically score listener transcripts for this objective

intelligibility measure. Furthermore, and importantly, there is

a paucity of studies documenting the efficiency and accuracy

of in-house automated methods for scoring words correct. The

purpose of the current study was to build and evaluate an

open-source computer-based application, Autoscore, which

automates the scoring of orthographic listener transcripts for

an objective measure of words correct. If this automated tool

is to have practical application, it must not only be efficient,

reducing time to score data sets, but also very accurate. Here,

we apply Autoscore to three established human-scored data

sets, each with different scoring rules, and evaluate its perfor-

mance relative to the performance of human scores in terms

of efficiency and accuracy.

A. Autoscore

The Autoscore tool is built on open-source software

through the R statistical environment (R Core Team, 2018),a)Electronic mail: stephanie.borrie@usu.edu
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using a variety of packages to build the specific algorithms

(Bache and Wickham, 2014; Barrett and Brignone, 2017;

Cs�ardi, 2017; Feinerer et al., 2008; Henry and Wickham,

2018; M€uller and Wickham, 2018; Wickham, 2018;

Wickham et al., 2018; Wickham and Henry, 2018). The tool

is accessible via two media:

(1) An online version that uses the Shiny web tool that

allows the user to interact with the R code via a point-

and-click interface (see Fig. 1), and

(2) via the R statistical environment as a package for

researchers with experience in coding.

Both systems use the same algorithms and will provide

identical results. Herein, we emphasize the online tool as it

is most accessible to users in the field.

The online tool is flexible to the needs of the user. This

is particularly important given that no absolute standardiza-

tion of the scoring rules for words correct has been adopted

currently, even in the subdisciplines of speech perception

research [see Hustad (2006) for a discussion in perception of

dysarthric speech]. Table I highlights the various scoring

rules that Autoscore can apply to the orthographic listener

transcripts. These rules are stratified by whether they adjust

the spelling that is considered correct (e.g., double letters,

root words) or grammar particulars of the word (e.g., past-

tense, plurals).

The online version of Autoscore does not save any data

provided to it. Rather, it runs the analyses on a server, pro-

vides the output on the screen with options to download the

data, and then once the user closes the browser, the server

deletes the data used in that analysis. Further, Autoscore

does not log the user’s IP address. The only data stored is a

log of the use of Autoscore which simply details the date

and time of use.

B. Using Autoscore

To use the online version of Autoscore, the user can

navigate to http://autoscore. usu.edu.1 On the website,

instructions for its use are described in detail via three steps.

To highlight its use, we will walk through each step.

Step 1. The first step in using Autoscore is deciding the

scoring rules that will be applied to the transcripts (see Table

I for a list of scoring rules currently available). None of the

rules are active by default; therefore, rules must be selected

to be used. It is also in this initial step that a user can, option-

ally, update the default acceptable spell file (currently con-

tains over 300 words; Acceptable Spell Rule) with any

additional acceptable spellings (i.e., homophones, common

misspellings) of target stimuli that should be scored as cor-

rect (Acceptable Spell Ruleþ). Thus, the default acceptable

spell list is a CVS file that users can download, update, and

upload to the application.

Step 2. Once the rules are selected, the next step is

uploading the orthographic listener transcripts, CSV file(s)

containing both the target and response words or phrases.

Notably, multiple files can be uploaded simultaneously but

should be formatted the same to reduce risk of errors. To

FIG. 1. (Color online) The interface of the online application.
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format them, there is only a single need for the program to

run—an “id” column (containing a listener identifier), a

“target” column (containing the target words or phrases),

and a “response” column (containing the listener’s

responses). Optionally, a “human” column (containing the

prior scoring of human raters) can also be included. This

human scoring column can be used for comparison between

human- and computer-scored values. These columns can be

in any order as long as they are labeled in the first row of the

data sheet and labeled as described here. Note, column

labels, target words, and response words are not upper/lower

case dependent. With the data in this format, additional col-

umns (i.e., columns indicating experimental conditions or

subgroups) are completely acceptable and will not interfere

with the analyses. If the user uploads multiple files, the out-

put will end up as a combined data set with all information

from all the files in the single output file. Thus, the need for

the id column.

Step 3. Once the file(s) is(are) uploaded, Autoscore will

then start the computations. If there are many files or each

file is large, the tool will let you know that it is working on

the computations and will output once it is finished. The out-

put will be printed in an interactive table at the bottom of the

screen. This table can be sorted by the individual columns

for quick checks. Additionally, various ways to download

the file will be shown at the top of the table (i.e., CSV,

Excel).

II. METHOD

To perform a primary validation of Autoscore, we eval-

uated two data sets collected by the authors and previously

scored by human raters using lab-specified scoring rules.

Specifically, we assessed the efficiency (the time taken for

scoring) and the accuracy (the amount of correct scoring as

validated by two independent research assistants blind to

whether the score was produced by a human or automation)

of Autoscore as compared to the human scoring. For the

evaluation of Autoscore, we applied the same rules, or as

close as possible (see data set details below), used by the

original raters to score transcripts for words correct across

two data sets. To perform a secondary validation of

Autoscore, we evaluated its accuracy on an independent data

set published by Stilp and colleagues (2010).

A. Data set 1

Data set 1 was from a study on perceptual processing of

neurologically degraded speech looking at the relationship

between rhythm perception abilities and the ability to deci-

pher the dysarthric speech (Borrie et al., 2017b). The data set

consisted of 50 listener transcripts (listeners used a computer

to type out what they thought the speaker was saying), each

consisting of 80 phrases, for a total of 4000 phrases tran-

scribed overall. The phrases were semantically anomalous, all

six syllables, and ranging from 3 to 5 words in length. All

words in each phrase were scored. A standard scoring proce-

dure, developed by Liss and colleagues (1998) for studies on

listener processing of dysarthric speech was used for hand

scoring the orthographic transcripts. According to this proto-

col, raters were instructed to score words as correct if they

matched the intended target precisely, or differed only by

tense “ed” or plural “s” without adding another syllable (e.g.,

assume/assumed is counted correct but amend/amended is

not). Substitutions between “a” and “the” were also regarded

as correct, as were homophones and obvious misspellings.

Words were counted as correct regardless of what order they

were repeated in.2 One trained rater scored all 50 transcripts.

Twenty percent of the transcripts were then randomly selected

and reanalysed by the original rater (intra-rater) and a second

trained rater (inter-rater) to obtain reliability estimates for

scoring of words correct. Discrepancies revealed high intra-

and inter-rater agreement, with Pearson correlation r scores of

TABLE I. The optional scoring rules that researchers can use to adjust the types of response words that Autoscore counts as matches to the target words.

Scoring Rule Function

Spelling Rules

Acceptable Spell Rule Response word counted correct if it is a homophone or common misspelling of the target word, accord-

ing to a preloaded default acceptable spelling list (contains over 300 common acceptable spellings).

Acceptable Spell Ruleþ User can download the default acceptable spelling list, add/remove items, and upload for automation.

Response word counted correct if is on the acceptable spelling list.

Double Letter Rule Response word counted correct if it omitted a double letter within a word (e.g., “atack” matches

“attack”) or added an unnecessary double letter (e.g., “occassion” matches “occasion”)

Root Word Rule Response word counted correct if the target word (e.g., “day”’) is embedded at either the beginning

(e.g., “daybreak”) or end (e.g., “monday”) of the target word

Grammar Rules

Tense Rule Response word counted correct if it differs from the target word by the addition or omission of “d” or

“ed” (e.g., “assumed” matches “assume” and “jump” matches “jumped”)

Tenseþ Rule Response word counted correct if differs by the target word by the addition (not omission) of “d” or

“ed” (e.g., “jumped” matches “jump” but “jump” does not match “jumped”)

Plural Rule Response word counted correct if it differs from the target word by the addition or omission of “s” or

“es” (e.g., “cats” matches “cat” and “echo” matches “echoes”)

Pluralþ Rule Response word counted correct if differs from the target word by the addition (not omission) of “s” or

“es” of the target word (e.g., “cats” matches “cat” but “cat” does not match “cats”)

A/The Rule Substitutions of “a” and “the” are scored as matches
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0.98. Total time scoring the full data set, including scoring for

reliability, was approximately 20 h.

B. Data set 2

Data set 2 was from a study of speech perception in

noise looking at the effect of listener and talker sex on

speech intelligibility (Yoho et al., 2018). The data set

included responses from 50 listeners who each heard 100

sentences, for a total of 5000 sentences heard overall. The

sentences were from the Harvard IEEE speech corpus

(IEEE, 1969), where each sentence contains five key words3

to be scored. In this study, the listener repeated back as

much of each sentence as they could, and the experimenter

typed out what the listener repeated. The procedure for scor-

ing the orthographic transcripts consisted of the following

rules: the words were counted as correct if they were

repeated back precisely, or if the listener added the tense

“ed” or the plural “s.” Tense and plural omissions were not

scored as correct. Words were also counted as correct if a

syllable was added to the word but not if a syllable was omit-

ted without changing the pronunciation of the word (e.g.,

batman/bat is correct but assert/assertion is not).

Homophones and obvious misspellings were also counted as

correct. Words were counted as correct regardless of what

order they were repeated in. Two trained raters scored all

transcripts to ensure inter-rater reliability of scoring. An

analysis of inter-rater reliability indicated that the two scor-

ers agreed 98% of the time. Total time scoring the full data

set, including checking for agreement, was approximately

30 h.

C. Independent data set

The independent data set was from a study of speech

perception of temporally distorted sentences across a wide

range of simulated speaking rates (Stilp et al., 2010). The

data set included a total of 12 195 sentences heard across

129 listeners. The sentences were from the Hearing In Noise

Test corpus (Nilsson et al., 1994). Three raters

independently scored the typed responses according to

guidelines listed in the published appendix.

D. Primary evaluation

To afford a broad evaluation of the accuracy and fea-

tures of Autoscore, in-house data sets were processed by

Autoscore according to multiple levels of rule application:

(i) applying standard automated rules (basic-level), (ii)

applying standard automated rules and the default acceptable

spelling list (Acceptable Spell Rule; mid-level), and (iii)

applying standard automated rules and employing the user

option to download the default acceptable spelling list and

add additional acceptable spellings (Acceptable Spell

Ruleþ; full-level; only data set 2 was evaluated at this level,

given the more subjective nature of the human scoring

rules). The standard automated rules for data set 1 included

the Double Letter rule, Tense Rule, Plural rule, and T/A rule.

The standard automated rules for data set 2 included the

Root Word Rule, Tenseþ Rule, and the Pluralþ Rule (see

Table I for rule definitions).

Two trained research assistants, different from the origi-

nal human rater, then coded all cases where there were dis-

crepancies between human rater and Autoscore, identifying

which of the two approaches produced the correct score for

each target word. The research assistants also classified each

discrepancy between human scorer and Autoscore for error

type, according to the following six error categories: (1)

Unmarked Correct Word (UW); (2) Marked Wrong Word

(MW); (3) Obvious Misspelling (OM); (4) Automated Error

(AE); (5) Root Word Error (RW); (6) Tense Error (TE); (7)

Plural Error (PE); and (8) The/A Error (TA). Explanations

and examples of the error types can be found in Table II.

E. Secondary evaluation

The secondary evaluation of the accuracy of Autoscore

was carried out on an independent data set, namely Stilp

et al. (2010). The independent data set was processed by

using a mid-level analysis. The standard automated rules for

processing this data set included the Double Letter rule,

TABLE II. Types of errors made when scoring orthographic transcripts for words correct.

Error type Description

UW When Autoscore or Human does not score a response word as correct, even though it is (e.g., no point for response

“pen” when target is “pen”)

MW When Autoscore or Human score a response word that does not match the target (e.g., a point for response “man” when

target is “mean”)

OM When Autoscore or Human does not score a response word that is an OM of the target (e.g., no point for response

“believe” when target is “believe”)

AE When Autoscore makes an error because of the automation process (e.g., a point for “see” when the target is “seed”

because of the Tense Rule)

RW When Autoscore or Human does not score a response word that differs from the target by the addition of an extra sylla-

ble (e.g., no point for response “enjoy” when target is “joy”)

TE When Autoscore or Human does or does not score a response word that differs from the target by “d” or “ed” (e.g., no

point for response “assumed” when target is “assume”)

PE When Autoscore or Human does or does not score a response word that differs from the target by “s” or “es” (e.g., no

point for response “trains” when target is “train”)

TA When Autoscore or Human does or does not score “the” and “a” as a match (e.g., no point for response “the” when tar-

get is “a”)
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Tense Rule, Plural rule, T/A rule, and the default acceptable

spelling list.

III. RESULTS

A. Efficiency

Autoscore consistently scored the data sets for words

correct faster on a scale of hours to seconds. For example,

for the mid-level analysis, Autoscore took 30 s, on average,

to score each of the data sets, approximately 2500 times

faster than human scorers. All Autoscore benchmarks were

performed on a 3.4 GHz Intel Core i5 processor with 8 GB

of RAM.

B. Accuracy: Primary evaluation

Accuracies for both human scorers and Autoscore were

high across both in-house data sets, where Autoscore, over-

all, slightly outperformed the human scorers for both data

sets (see Fig. 2). In the basic-level evaluation using just the

standard automated rules, Autoscore yielded accuracies of

97.9% and 97.1% for data sets 1 and 2, respectively. In the

mid-level evaluation in which the default acceptable spelling

list (Acceptable Spell Rule) was added to the standard auto-

mated rules, Autoscore accuracy increased to 99.5% and

98.5% for data sets 1 and 2, respectively. Finally, in the full-

level evaluation in which the Autoscore feature of down-

loading and adding lab- and/or corpus-specific suitable spell-

ings to the acceptable spelling list was added to the standard

automated rules (Acceptable Spell Ruleþ), Autoscore accu-

racy increased to 99.1% for data set 2. Human raters were

97.1% and 98.0% accurate for data sets 1 and 2, respectively.

Inter-rater reliability between the human raters and

Autoscore were very high, with Cronbach alphas of 0.99 for

both data sets.

Further, a chi-square analysis revealed that the ways in

which the human raters and Autoscore made mistakes dif-

fered significantly (v2¼ 312.82, degrees of freedom¼ 14,

p< 0.001). As reported in Table III, the vast majority of

human rater errors were either an UW (the human scorer did

not count a correct word), MW (the human rater marked a

word as correct when it did not match), and TA (the human

scorer did not match “the” and “a”). In contrast, the majority

of the errors committed by Autoscore were OM errors,

reflecting obvious spelling mistakes. The number of OM

errors decreased substantially when the default acceptable

spelling list was added to the analysis (mid-level) and further

decreased when the researcher-supplied, lab- and corpus-

specific suitable spellings were added to the list (full-level).

Beyond the OM errors, Autoscore produced a few AE (from

rule combining) and RW errors. Notably, Autoscore did not

produce any UW, MW, PE, or TA errors.

C. Accuracy: Secondary evaluation

Accuracies for both human raters and Autoscore (apply-

ing a mid-level analysis) were high for the independent data

set, achieving 98.3% and 95.3% correct, respectively. Error

analysis revealed that upward of 80% of errors made by

Autoscore on the independent data set were OMs. This sug-

gests that the addition of a researcher supplied suitable spell-

ings to the acceptable spelling list (allowing the application

of a full-level analysis) could increase accuracy of

Autoscore to approximately 99%. Thus, independent users

FIG. 2. (Color online) The error rates

of scoring orthographic listener tran-

scripts for a measure of words correct

for Autoscore and human scorers for

both in-house data sets.

396 J. Acoust. Soc. Am. 145 (1), January 2019 Borrie et al.



may consider it well worth their time up front to develop a

detailed list of acceptable misspellings (Acceptable Spell

Ruleþ) for improved Autoscore accuracy, particularly if the

speech target list will be used in multiple studies.

IV. DISCUSSION

We describe Autoscore, an open-source tool for scoring

orthographic listener transcripts for an objective measure of

speech intelligibility, words correct, and validate the tool in

terms of efficiency and accuracy of scoring. Evidence of tool

validation is observed in three key results. First, the time that

Autoscore takes to score the transcripts cannot be matched

by human raters. Autoscore is upward of 2500 times faster at

scoring study data sets than human scorers. Thus, Autoscore

greatly reduces the time taken to generate data, consequently

affording substantial savings on lab resources in terms of

human labor and compensation. Second, while the accuracy

of having human raters hand score orthographic transcripts

is not an issue, Autoscore achieved scoring accuracies as

high or higher in the two in-house data sets and could

achieve that for the independent data set if an acceptable

spelling list was provided. Third, the reliability estimates

between human raters and Autoscore were on par with the

inter-rater reliability estimates that have been previously

reported between human raters.

While accuracy between human and automated scoring

is comparable, analysis of error types revealed some note-

worthy differences in the way in which humans and

Autoscore made mistakes. Human raters made errors such as

UWs (i.e., no point given for a response that matches the tar-

get) and MWs (i.e., giving a point for a response that does

not match the target). Such errors may reflect some level of

decision-making fatigue, which is not surprising given the

laborious task of hand scoring large data sets. Autoscore, on

the other hand, made no errors of this nature. The most com-

mon errors committed by Autoscore were OM errors (i.e., no

point given for a response that is an OM of the target).

Beneficially, these OM errors were largely remedied by

using the Acceptable Spell Rule, whereby a default list of

homophones and misspellings of the target words was used

by Autoscore, increasing the accuracy by approximately

2.4% (mid-level evaluation). Further, by adding researcher

supplied suitable spellings to the acceptable spelling list for

data set 2 via the Acceptable Spell Ruleþ, accuracy further

increased by 0.4% (full-evaluation). Making use of the

Acceptable Spell Ruleþ for the independent data set would

certainly have resulted in meaningful benefits to scoring

accuracy of Autoscore. It is worth noting that the default list

of homophones and acceptable misspellings was developed

by the authors of this paper and thus is best suited to the tar-

gets encountered in the in-house data speech corpora, evi-

dent in higher mid-level accuracy scores relative to the

independent data set. Indeed, the default list was so well

suited to data set 1 that making any additions via the

Acceptable Spell Ruleþ was not necessary. Thus, whether

or not users should add additional spellings to the default list

will depend on the needs of the research lab and/or the

uniqueness of the speech corpus, possibly based on a quick

assessment of the responses.

A nuance of Autoscore is that it cannot perform some of

the more subjective evaluations that trained human raters are

able to make. This is apparent in the application of the Tense

and Plural Rule to the perception of dysarthric speech in

which, as noted for data set 1, these rules should only apply

when they do not change the syllabic structure of the target

word. Autoscore, of course, awards a point for the response

word if it differs by “e,” “ed,” “s,” “es,” regardless of

whether it adds or omits a syllable. Similarly, Autoscore

may over-score for the Root Word Rule in studies such as

data set 2, where that particular rule should only be success-

ful when the addition of a syllable does not alter the pronun-

ciation of the word. Another shortcoming of Autoscore is

that it can, at times, combine rules in odd ways, resulting in

the incorrect scoring of a response word (i.e., AEs). For

example, scoring the response word “cold” as correct for the

target word “cool.” In this instance, Autoscore applied both

the Double Letter and Tense Rule. Despite these nuances,

Autoscore performed at an accuracy level comparable to that

of trained human raters, suggesting that idiosyncrasies asso-

ciated with automated scoring may be noncritical to overall

study outcomes.

With multiple scoring rule options, Autoscore is highly

flexible, and thus is appropriate for many subdomains of

speech perception research, including but not limited to

TABLE III. Errors committed by Autoscore and the human scorers on the two in-house data sets. Percentages, in parentheses, are for the proportions of total

errors made.

Autoscore

Error type Basic Mid Fulla Human

UW 0 (0%) 0 (0%) 0 (0%) 87 (38.2%)

MW 0 (0%) 0 (0%) 9 (15.8%) 70 (30.7%)

OM 200 (84.7%) 57 (60%) 25 (43.9%) 5 (2.2%)

AE 16 (6.8%) 18 (18.9%) 5 (8.8%) 0 (0%)

RW 20 (8.5%) 20 (21.1%) 17 (29.8%) 8 (3.5%)

TE 0 (0%) 0 (0%) 1 (1.8%) 15 (6.6%)

PE 0 (0%) 0 (0%) 0 (0%) 2 (0.9%)

TA 0 (0%) 0 (0%) 0 (0%) 41 (18%)

Total Errors 236 of 107 944 words 95 of 107 944 words 57 of 75 000 words 228 of 107 944 words

aOnly data set 2 was used in the full-level evaluation of Autoscore.
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perception of dysarthric speech (e.g., Hustad et al., 2003;

Liss et al., 2002; McAuliffe et al., 2013), speech in noise

(e.g., Cooke et al., 2013; Luce and Pisoni, 1998; Van Engen

et al., 2014), accented speech (e.g., Bradlow and Bent, 2008;

Munro, 1998), noise-vocoded speech (e.g., Davis et al.,
2005; Guediche et al., 2016), or speech perception by the

hearing impaired (Healy et al., 2013; Tye-Murray et al.,
2007). Indeed, no accepted standard set of scoring rules

exists across studies in speech perception, yet such an ideal

may not be warranted. For example, given the propensity for

high-frequency hearing loss and resulting difficulty in identi-

fying high frequency phonemes (e.g., Hogan and Turner,

1998; Turner and Cummings, 1999), studies that examine

speech perception of listeners with impaired hearing may

prioritize the Plural -s Addition Rule, in which a response

word is scored as incorrect if it differs from the target word

by the omission of the phoneme “s” or “es,” but correct if it

adds these phonemes. Conversely, studies that examine per-

ception of dysarthric speech may not accept additions that

alter the syllabic structure of target word (e.g., Liss et al.,
2002; Borrie et al., 2012), given that such changes likely

reflect disordered productions of the acoustic signal.

Further, Autoscore was specifically built to serve as an

adaptable, open-source application, allowing users to pro-

gram additional scoring rules if desired.2 Helpfully, the

“human scoring” column in the data output allows users to

debug new rules by performing their own accuracy compari-

sons between Autoscore and human raters. Although

Autoscore was developed for the English language, it would

be relatively straightforward for a user to build on the core

functionality to add rules specific to other languages. The

Autoscore code can also be embedded in experiments to pro-

vide real-time feedback on listener performance during

speech perception tasks. For example, many studies employ

a measure of speech reception threshold, or SRT, as a sensi-

tive means of listener performance under various speech in

noise conditions (e.g., Festen and Plomp, 1990; Wang et al.,
2009). This measure requires adaptation of the signal-to-

noise ratio over the course of the experiment based on per-

formance, with an individual’s SRT being determined as the

signal-to-noise ratio required for them to achieve some pre-

determined level of intelligibility. Real-time scoring of

words correct could increase both accuracy and efficiency of

adapting stimuli parameters. Another application of the

Autoscore code is in studies that exploit perceptual learning

to train listeners to better understand degraded speech (i.e.,

dysarthric speech, e.g., Borrie et al., 2012; Borrie et al.,
2017a,b). Research in perceptual learning of dysarthric

speech has revealed large individual differences in the ability

to adapt to the degraded signal (Borrie et al., 2017b). Thus,

the addition of real-time feedback regarding learning pro-

gress would allow perceptual training programs to be adap-

tive, modulating the amount and type of training depending

on the progress of the learner.

Autoscore also offers a number of clinical applications

in fields such as speech pathology and audiology. For exam-

ple, speech-language pathologists frequently use ortho-

graphic transcription of the acoustic signal by listeners to

obtain measures of speech intelligibility (percentage

intelligibility) for clients with speech disorders such as dys-

arthria. This objective measure enables clinicians to quantify

an overall measure of the understandability of speech and is

often used as an index of severity (Strand and Yorkston,

1994) and to document treatment progress and effectiveness

(Yorkston et al., 1990). Audiologists also use a measure of

percentage intelligibility to assess and manage speech-in-

noise abilities of listeners with hearing loss (e.g., Killion

et al., 2001). Thus, a quick, reliable, and easy-to-use tool for

scoring orthographic transcripts of the acoustic speech signal

has implications beyond the needs of researchers.

In sum, we built an open-source tool for scoring ortho-

graphic listener transcripts of the acoustic signal for an

objective measure of speech intelligibility, words correct.

We validated the tool in its entirety on two unique data sets

from two different speech perception research labs, demon-

strating high levels of accuracy as well as a major advantage

in terms of efficiency over traditional hand-scoring carried

out by trained research assistants. We also validate the tool

on a unique data set from an independent research lab. To

our knowledge, an open-source tool for automated intelligi-

bility scoring, validated in terms of accuracy and efficiency,

does not exist. The flexible and simplistic nature of

Autoscore allows the tool to be used as is by researchers and

clinicians alike; and for those with programming experience,

modified as desired.
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1R package source code can be accessed at https://github.com/autoscore/

autoscore.
2Autoscore, in its current automatic application format, is not equipped to

score for word order. However, researchers with programming experience

will find some code in R package as a starting place for integrating a word

order rule to their own specific version of the program.
3If scoring of key words in a sentence is desired (e.g., he TOOK the MAN

to see the FOREST), only list key words in the target column (e.g., TOOK

MAN FOREST). In this way, even if listeners responses are full sentences,

Autoscore will only score for target words.
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