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Thermodynamic properties of liquid water as well as hexago-
nal (Ih) and cubic (Ic) ice are predicted based on density func-
tional theory at the hybrid-functional level, rigorously taking into
account quantum nuclear motion, anharmonic fluctuations, and
proton disorder. This is made possible by combining advanced
free-energy methods and state-of-the-art machine-learning tech-
niques. The ab initio description leads to structural properties
in excellent agreement with experiments and reliable estimates
of the melting points of light and heavy water. We observe
that nuclear-quantum effects contribute a crucial 0.2 meV/H2O
to the stability of ice Ih, making it more stable than ice Ic. Our
computational approach is general and transferable, providing a
comprehensive framework for quantitative predictions of ab ini-
tio thermodynamic properties using machine-learning potentials
as an intermediate step.

ab initio thermodynamics | machine-learning potential | water |
density functional theory | nuclear quantum effects

L iquid water and ice are ubiquitous on Earth, and their ther-
modynamic properties have important consequences in the

climate system (1), the ocean, biological cells (2), refrigeration,
and transportation systems. The solid phase that is stable at
ambient pressure is ice Ih, whose hexagonal crystal structure
is reflected in the sixfold symmetry of snowflakes. The cubic
form, Ic, is a metastable ice phase whose relative stability with
respect to ice Ih plays a central role in ice cloud formation in the
Earth’s atmosphere (3–5) but is extremely difficult to measure
experimentally (1).

Despite the simple chemical formula, H2O, theoretical pre-
dictions of the thermodynamic properties of liquid water and ice
are extremely challenging. This is because of (i) the shortcom-
ings of common water models including conventional force fields
(6) and (semi-)local density functional theory (DFT) approaches
(7–9), (ii) proton disorder in ice, and (iii) the importance of
nuclear quantum effects (NQEs) (10). In particular, calculating
the chemical potential difference ∆µIh→Ic =µIc−µIh between Ic
and Ih, which characterizes the relative stability, is extremely
challenging because the zero-point configurational entropies
(11), proton disorder (12), and harmonic vibrational energies of
ice Ih and Ic (13) differ by <1 meV/H2O, so that anharmonic
quantum nuclear fluctuations play a decisive role.

Water and ice have been described with varying success by
invoking approximations of differing severity, including simple
electrostatic dipole models for the energetics of proton order-
ing (14), force-field-based path-integral molecular dynamics
(PIMD) studies (15–18), first-principles quasiharmonic (QHA)
(17, 19), and vibrational self-consistent field (VSCF) (13, 20)
studies which provide an approximate upper bound for ∆µIh→Ic.
These have greatly advanced our understanding of the nature
of liquid water and ice, but also highlight the harsh trade-offs
between the accuracy of the description of the potential energy
surface (PES) governing nuclear motion and the associated cost
of sampling relevant atomistic configurations.

In this study, we make theoretical predictions of thermo-
dynamic properties of ice and liquid water at a hybrid DFT
level of theory, taking into account NQEs, proton disorder, and
anharmonicity. This is made possible by exploiting advances in

machine-learning (ML) techniques to avoid the prohibitively
large computational expenses otherwise incurred by extensively
sampling phase space by using first-principles methods. In par-
ticular, we use sophisticated thermodynamic integration (TI)
techniques to accurately and rigorously compute the chemical
potential difference between ice Ic and Ih and between ice Ih
and liquid water.

First-Principles Thermodynamics
As the underlying electronic structure description, we use the
hybrid revPBE0 (21–23) functional with a Grimme D3 dis-
persion correction (24, 25), which has been demonstrated to
accurately predict the structure, dynamics, and spectroscopy of
liquid water in molecular dynamics (MD) and PIMD simula-
tions (26). revPBE0-D3 predicts a difference in lattice energy
between the most stable proton-ordered forms of ice Ic and
Ih of U Ic−U Ih =−0.3 meV/H2O (see SI Appendix for further
details), which is consistent with diffusion Monte Carlo predic-
tions of U Ic−U Ih =−0.4± 2.9 meV/H2O (12) and two differ-
ent random-phase approximation predictions of−0.2 meV/H2O
and 0.7 meV/H2O (27).

Since thorough sampling of the phase space of water at the
revPBE0-D3 level of theory is prohibitively expensive, we sam-
ple the phase space using a surrogate ML PES, UML. We then
exploit the fact that the Gibbs free energy of the surrogate sys-
tems, GML, can be promoted to the revPBE0-D3 level of theory
by using free-energy perturbation
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G(p,T )−GML(p,T ) =−kBT ln

〈
exp

[
−U −UML

kBT

]〉
p,T ,HML

,

[1]

where 〈. . .〉p,T ,HML
denotes the ensemble average for the system

sampled at temperature T and pressure p using the surrogate
Hamiltonian HML. Evaluation of Eq. 1 is rendered particularly
affordable and robust by the high fidelity of our surrogate ML
PES, which substantially exceeds that obtained from empirical
force fields or local DFT calculations, which were previously
used as implicit surrogates (28, 29). Eq. 1 is the central for-
mula of our approach: It not only enables accurate and effi-
cient free-energy estimation at the ab initio level by delegating
phase-space sampling to cheap surrogate models, but also pro-
vides a general way for benchmarking and calibrating the ML
potentials.

Neural Network Potential for Water
We constructed a flexible and fully dissociable neural network
(NN) potential for bulk liquid water and ice following the frame-
work of Behler and Parrinello (30–32) using the RuNNer code
(33), which was trained on the basis of revPBE0-D3 energies and
forces for 1,593 diverse reference structures of 64 molecules of
liquid water computed by using the CP2K package (34). Fur-
ther details regarding the DFT calculations, comparison with the
energies computed by using VASP (35), and the training and val-
idation of the NN potential can be found in SI Appendix. We
have released this NN potential along with its training set (SI
Appendix, Datasets S1 and S2).

The revPBE0-D3-based NN potential describes the density
(Fig. 1) and structural properties of water (Fig. 2) in very good
agreement with experiments. Fig. 1 shows density isobars com-
puted for ice Ic, ice Ih, and liquid water considering both the
case of classical and quantum-mechanical nuclei. Fig. 1 high-
lights that (i) the predicted densities of liquid water and ice Ih
and Ic agree with experiment to within 3%; (ii) the predicted
thermal expansion coefficients show excellent agreement with
experimental data; and (iii) the temperature of maximum den-
sity for liquid water matches the experimental value of 3.98 ◦C.
It also shows that NQEs lead to an increase of ∼1% in the den-
sity of the three phases of water. This anomalous increase for the
ice Ih phase has been observed in previous QHA calculations
by using a number of different DFT functionals (17). Experi-

Fig. 1. Classical (CL) and quantum (Q) density isobars for ice Ic, ice Ih, and
liquid water (L) at P = 1 bar computed via (PI)MD simulations using the NN
potential. The predicted densities of ice Ic and Ih almost overlap both at the
quantum and the classical level. The experimental results for undercooled
water are taken from ref. 36.

Fig. 2. Oxygen–oxygen, oxygen–hydrogen, and hydrogen–hydrogen RDFs
at 300 K and experimental density computed via (PI)MD simulations in the
constant number of particles, volume, and temperature (NVT) ensemble using
the NN potential. The experimental O–O RDF was obtained from ref. 37, and
the experimental O–H and H–H RDFs were taken from refs. 38 and 39.

mentally, the suppression of NQEs can be partially achieved by
deuteration, and it has been observed that the molar volume of
D2O is 0.4% (40) larger compared with H2O for liquid water at
the ambient temperature and ∼0.3% larger for hexagonal ice at
250 K (41).

Fig. 2, Top, shows that NQEs have a slight destructuring
effect on the oxygen–oxygen (O–O) radial distribution func-
tion (RDF), bringing it in excellent agreement with experi-
ments from X-ray diffraction measurements (37), as also seen
in the ab initio (PI)MD calculations with revPBE0-D3 (26).
This destructuring has been observed in simulations using other
DFT functionals (42) as well as empirical water models (43, 44)
and was rationalized as a result of competing quantum effects
(16, 45). Fig. 2, Middle and Bottom, further shows that NQEs
cause a significant broadening of the oxygen–hydrogen (O–H)
and hydrogen–hydrogen (H–H) RDFs, especially around their
respective first peaks, which plays a predominant role in ensur-
ing the match between the simulations and experiment. It is
worth noting that the agreement between the NN and the exper-
imental RDFs in Fig. 2 is significantly better compared with
most benchmarked empirical water models and DFT functionals
(46, 47).

Promoting ML Potential to DFT
Despite the excellent performance of the NN potential, the fit-
ting strategy, the finite cutoff radii applied to the description
of atomic environments, and possible “holes” in the training set
(48) inevitably lead to small residual errors compared with the
underlying first-principles reference. To assess their significance,
we have trained a collection of NN potentials using different
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Fig. 3. The difference in the chemical potential ∆µNN≡µ−µNN between
revPBE0-D3 and NN-based MD simulations at P = 1 bar. Standard errors
of the mean are indicated by the error bars. The violet (green) crosses
indicate the results from 16 different 64-molecule proton-orderings of
Ic (Ih). The violet (green) line shows the average ∆µNN across proton
orderings.

training sets and/or initial random seeds, which demonstrates
that predictions of the chemical potential difference between ice
Ic and Ih from two different NN potentials can be as large as
1 meV/H2O (SI Appendix, Fig. S4 for further detail). Promoting
the results to the DFT level eliminates these residual errors and
any dependence on the specific NN potential used. This allows
us to achieve submillielectronvolt accuracy in free energies (as
required to resolve the greater stability of ice Ih compared with
Ic) and to make unbiased properties predictions at the reference
ab initio level of theory in general.

The temperature-dependent DFT corrections to the NN
chemical potentials of different phases of water, ∆µNN ≡µ−
µNN = (G −GNN)/N , as obtained from free-energy perturba-
tions (Eq. 1) performed on 64-molecule systems, are shown in
Fig. 3. For each ice phase (Ic and Ih), 16 different proton-
disordered initial configurations with zero net polarization are
generated by using the Hydrogen-Disordered Ice Generator
(49). The SD of the potential energy for the 16 proton-disordered
ice Ic configurations is 0.3 meV/H2O (0.25 meV/H2O) by
using the NN potential (DFT), respectively. For ice Ih, it
is 0.4 meV/H2O (0.25 meV/H2O) by using the NN potential
(DFT). Starting from these different initial configurations is
crucial here, because (i) the proton order is effectively “frozen-
in” at the timescales available to simulation (50) and (ii) there
are significant differences between ∆µNN of different proton-
disordered states (Fig. 3). For liquid water, 1,000 single-point
revPBE0-D3 calculations for uncorrelated configurations gen-
erated from NN-based NPT simulations suffice to converge
the value of the calibration term ∆µL

NN to ∼0.2 meV/H2O.
For each proton-disordered ice structure, 200 such single-point
calculations are enough to converge ∆µIc

NN and ∆µIh
NN to

0.1 meV/H2O.

Results and Discussion
The Relative Stability of Hexagonal and Cubic Ice. We follow the
workflow in Materials and Methods (see Fig. 7 for illustration)
to evaluate the chemical potential difference ∆µIh→Ic at the
revPBE0-D3 level of theory, taking into account nuclear quan-
tum fluctuations. We first compute the classical absolute free
energies of the two ice phases at the NN level using the TI
methods described in ref. 51 and thereby the corresponding
chemical potential difference ∆µIh→Ic

cl,NN . The classical chemical
potential difference between ice Ih and Ic at the revPBE0-D3

level can then be evaluated as ∆µIh→Ic
cl = ∆µIh→Ic

cl,NN + ∆µIc
NN −

∆µIh
NN .

Note that the speed and linear scaling of the NN potential
allow us to simulate ice systems containing as many as 768 water
molecules. Such system size is not only essential to represent
the wide spectrum of possible local arrangements realized in
proton-disordered ice, but also important for averaging over
different proton-disordered structures when correcting for the
chemical differences between the NN potential and revPBE0-
D3, as demonstrated by the spread of ∆µNN between different
structures in Fig. 3.

NQEs are taken into account by integrating the quantum cen-
troid virial kinetic energy 〈TCV 〉 with respect to the fictitious
“atomic” mass from the classical (i.e., infinite) mass to the physi-
cal masses of oxygen and hydrogen atoms (Materials and Methods
and see Fig. 6). We perform NN-based PIMD simulations within
the NPT ensemble and assess the impact of NQEs on the chem-
ical potential at the NN level using ∆µIh→Ic

NN −∆µIh→Ic
cl,NN . We note

that the NN potential is not “biased” toward Ic or Ih, as the NN
to revPBE0-D3 calibration terms ∆µIc

NN and ∆µIh
NN are similar

(Fig. 3), and that the difference in 〈TCV 〉 of difference water
phases is found to be very similar for three completely differ-
ent interatomic potentials (18). Combining all of these terms,
we finally arrive at the result ∆µIh→Ic = ∆µIh→Ic

cl + ∆µIh→Ic
NN −

∆µIh→Ic
cl,NN .

Fig. 4 shows that the NN predictions of ∆µIh→Ic and the
revPBE0-D3 results are statistically indistinguishable. At the
classical level, ∆µIh→Ic

cl is negative, especially at low temper-
atures. Consistent with the VSCF results of ref. 13, proton
disorder introduces substantial variations in the chemical poten-
tial of ice Ic and Ih. More importantly, nuclear quantum
fluctuations are crucial to stabilize ice Ih. At the quantum-
mechanical level ∆µIh→Ic is close to zero at 200–250 K and
increases to 0.2± 0.2 meV/H2O at 300 K, suggesting that ice
Ih is more stable after all. For comparison, at the classical
level, the monoatomic water model (52)—which omits hydro-
gen atoms—predicts a negligible difference [∆µIh→Ic(240 K ) =
0.032± 0.002 meV (53)], while the MB-pol force field (54),
which includes many-body terms fitted to the coupled-clusters
level of theory, predicts a small negative value (−0.4 meV/H2O)
(see SI Appendix for further details). Assuming that the heat
of transition from ice Ic to ice Ih is approximately con-
stant over the temperature range 200–300 K, the temperature

Fig. 4. Temperature dependence of the chemical potential difference
between ice Ih and Ic at 1 bar. The errors associated with the classical
and quantum-mechanical revPBE0-D3 values arise predominantly from the
differences in ∆µNN between different proton orderings.
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Fig. 5. Temperature dependence of the chemical potential difference
between liquid water and ice Ih at 1 bar. Blue crosses indicate ∆µL→Ih

cl,NN
from independent interface pinning simulations, and the blue dashed line
indicates the best fit of these results to the TI expression in Eq. 2. The
experimental values were calculated from the heat capacities reported
in ref. 57.

dependence of ∆µIh→Ic implies (using a TI with respect to T

analogous to Eq. 2) a transition enthalpy of H Ic−H Ih = 1.0±
0.5 meV/H2O, consistent with the wide experimental range
0.1− 1.7 meV/H2O (55).

The Relative Stability of Hexagonal Ice and Liquid Water. Now, we
compute the difference in chemical potential ∆µL→Ih =µIh −µL

between the proton-disordered ice Ih and liquid water. The
approach is, in analogy to the schematics in Fig. 7, to obtain
the NN chemical potential difference before promoting it to the
DFT level and adding NQEs.

We first compute ∆µL→Ih
cl,NN using the interface-pinning method

(56) in classical MD simulations with the NN potential. We
then fit ∆µL→Ih

cl,NN from independent simulations at different
temperatures to the TI expression

∆µL→Ih
cl,NN (T ) =−kBT

∫ T

Tm

〈
H Ih

cl,NN

〉
P,T
−
〈
H L

cl,NN

〉
P,T

kBT 2
dT ,

[2]

where Hcl,NN is the enthalpy of the classical system described by
the NN potential, whose value has been computed from separate
NPT simulations (SI Appendix, Fig. S3). Afterward, the calibra-
tion terms for chemical potentials ∆µL

NN and ∆µIh
NN (Fig. 3) are

added to obtain the revPBE0-D3 predictions for the classical sys-
tems. Finally, NQEs in H2O water and D2O water are considered
by performing a series of PIMD simulations at different fictitious
masses using the NN potential.

Table 1. Predictions of the melting point (Tm) and the heat of
fusion (Hf )

Model Tm, K Hf , meV/H2O

NN-classical 279.6 (4) 67.8 (2)
DFT-classical 275 (2) 58 (2)
DFT-H2O 267 (2) 52 (3)
DFT-D2O 275 (2) 58 (2)
Experiment-H2O 273.15 62.3
Experiment-D2O 276.97 64.5

The value in parentheses indicates the statistical uncertainty in the
last digit.

Fig. 5 shows ∆µL→Ih predicted at different levels of the-
ory along with experimental data for H2O (57). A compar-
ison between the melting points Tm and the heat of fusion
Hf =H L(Tm)−H Ih(Tm) of different models is provided in
Table 1. For revPBE0-D3 H2O water with NQEs, the pre-
dicted Tm has only ∼2% of error compared with experiment,
and the values of ∆µL→Ih are well within 15% of experi-
mental values at moderate undercoolings of < 20 K below
Tm. Hf is underestimated by using revPBE0-D3 and including
NQEs, which may be due to the artifacts of the revPBE0-D3
functional or the limitations of representing proton disorders
in natural ice, even when using state-of-the-art methods (49).
Overall, the predictions here constitute a substantial improve-
ment over most commonly used empirical water models (6). For
instance, TIP4P models underestimate Hf by 20–30% (58).

NQEs lower the melting point of H2O by∼8 K compared with
classical water. The difference in Tm between the D2O and H2O
is predicted to be 8± 2 K, consistent with the result obtained
by using the q-TIP4P/F water model (15) and in rough agree-
ment with experiment (3.82 K) (40). Curiously, the Tm of D2O
is about the same as the classical water. To elucidate the reason,
we plot the integral when performing TI from physical masses
(mH for H) to classical masses (∞) in Fig. 6. It can be seen that
NQEs initially, from mH to∼6mH, stabilize water relative to ice.
Then, from 6mH to ∞, they stabilize ice. When performing TI
from the atomic mass of deuterium to the classical mass, NQEs
thus largely cancel out. This reversal of NQEs at different atomic
masses has been observed before for q-TIP4P/F water (15) and
for stacked polyglutamine (59) and has been interpreted as a
manifestation of competing quantum effects.

Fig. 6. The integral from the classical limit to the full quantum treatment
(Eq. 3), for the case of ice Ic and Ih (Upper) and ice Ih and liquid water
(Lower).
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Fig. 7. A schematic of the TI workflow, which starts from a harmonic ref-
erence crystal, uses a NN description as an intermediate step, and finally
arrives at the underlying ab initio level. The chemical potentials indicated
here are related to the absolute Gibbs free energy of the systems by
µ≡G/N.

Conclusions
We show that a revPBE0-D3 description of the electronic struc-
ture predicts properties for ice Ih, ice Ic, and liquid water that
are in excellent quantitative agreement with experiment. This
is made possible by using a ML potential as an intermediate
surrogate model and by using advanced free-energy techniques.
We not only rigorously compute but also quantitatively analyze
the individual contributions from NQEs, proton disorder, and
anharmonicity.

This study demonstrates that it is possible to achieve a sub-
millielectronvolt level of statistical accuracy in predicting the
thermodynamic properties of a complex system such as water at
a hybrid DFT level of theory. The idea of using ML potentials
as sampling devices significantly broadens the applicability and
prowess of electronic-structure approaches, making it affordable
to use them in the accurate computations of free energies and
other thermodynamic properties. The overall framework and the
free-energy methods described here provide a general, accurate,
and robust way for first-principles predictions of thermodynamic
properties of a plethora of physical systems, such as pharmaceu-
tical compounds, hydrogen storage materials, hydrocarbons, and
metallic alloys.

Materials and Methods
Simulation Details. The density isobar in Fig. 1 is computed by using both
classical MD and PIMD simulations in the NPT ensemble for ice Ic, ice Ih,
and liquid water systems of 64 molecules. We confirm that the equilibrium
density computed with 64 water molecules in classical MD simulations is
consistent with the values obtained for systems with ∼2,000 molecules. All
MD simulations and PIMD simulations that use 56 beads are performed by

using the i-PI code (60) in conjunction with LAMMPS (61) with a NN potential
implementation (62, 63).

Interface Pinning. The interface pinning simulations (56) are performed
by using the PLUMED code (64) on an ice–liquid system containing 5,760
molecules at temperatures ranging from 250 to 300 K and pressure 1 bar,
using the NN potential.

Accounting for NQEs. NQEs on the chemical potential difference between
ice Ic and ice Ih at 200, 250, 273, and 300 K are taken into account by inte-
grating the quantum centroid virial kinetic energy 〈TCV〉 with respect to the
fictitious atomic mass m̃ from the classical mass (i.e., infinity) to the physical
masses of oxygen and hydrogen atoms (18, 65–67)—that is,

∆µ
Ih→Ic
NN −∆µ

Ih→Ic
cl,NN =

∫ ∞

m
dm̃

〈
T Ic

CV (m̃)
〉
−

〈
T Ih

CV (m̃)
〉

m̃
, [3]

where m are the physical masses of the elements. In practice, a change of
variable y =

√
m/m̃ is applied to reduce the discretization error in the eval-

uation of the integral (65), and the integrand is evaluated by using PIMD
simulations for y = 1/4, 1/2

√
2, 1/2, 1/

√
2, 1—that is,

∆µ
Ih→Ic
NN −∆µ

Ih→Ic
cl,NN = 2

∫ 1

0

〈
T Ic

CV (1/y2)
〉
−

〈
T Ih

CV (1/y2)
〉

y
dy. [4]

To evaluate this integral, we perform a PIMD simulation that uses 56 beads
at the NPT ensemble for systems containing 64 molecules. For the case of ice
Ih and liquid water, the treatment is similar.

Workflow for Computing ∆µIh→Ic. Here, we describe the workflow for com-
puting absolute Gibbs free energy and thereby the chemical potential of
an ice system. The first step is a TI from a harmonic reference to a classi-
cal ice system (A→ B in Fig. 7). We closely follow the methods described
in ref. 51: First integrate from a Debye crystal to classical ice at 25 K in
the NVT ensemble, then transition to the NPT ensemble, and, finally, eval-
uate the temperature dependence of the Gibbs free energy by using MD
simulations in the NPT ensemble at temperatures between 25 and 300 K.
Subsequently, to reach the ab initio description of classical ice from the NN
description (B→D in Fig. 7), the correction term ∆µNN (Fig. 3) computed by
using the free energy perturbation expression in Eq. 1 is included. Finally,
to describe ab initio ice with quantum-mechanical nuclei (D→ E in Fig. 7),
NQEs are included by integrating from the infinite atomic mass to the phys-
ical masses (Eq. 3). As an alternative strategy, one can also follow the TI
route A→ B→ C→ E, but this requires reweighting the whole ring-polymer
system in PIMD simulations by using Eq. 1, which is more costly.

Datasets. The NN potential for water based on revPBE0-D3, the training
set for the potential, and all necessary simulation input files are included
in SI Appendix and are available at https://archive.materialscloud.org/2018.
0020/v1.
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