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We study the kinetics of crystal growth and melting of two types
of colloidal crystals: body-centered cubic (BCC) crystals and face-
centered cubic (FCC) crystals. A dielectrophoretic “electric bottle”
confines colloids, enabling precise control of the motion of the
interface. We track the particle motion, and by introducing a
structural order parameter, we measure the jump frequencies
of particles to and from the crystal and determine from these
the free-energy difference between the phases and the interface
mobility. We find that the interface is rough in both BCC and
FCC cases. Moreover, the jump frequencies correspond to those
expected from the random walk of the particles, which trans-
lates to collision-limited growth in metallic systems. The mobility
of the BCC interface is greater than that of the FCC interface. In
addition, contrary to the prediction of some early computer simu-
lations, we show that there is no significant asymmetry between
the mobilities for crystallization and melting.
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Crystallization (solidification) and melting are among the
most studied phenomena for both fundamental and techno-

logical reasons. Although there is an impressive body of macro-
scopic and thermodynamic data on these phenomena, direct
observation of the transformations at the atomic level remains
elusive, because the presence of two condensed phases inhibits
any probe of individual atomic movements at the interface. One
of the questions that could be addressed by such observations,
for example, is that of the ultimate growth velocity. It has been
proposed (1), based on measurements of velocity vs. undercool-
ing (2), that the attachment rate of liquid atoms to a growing
pure metallic crystal is collision limited (i.e., close to the inter-
atomic vibration frequency). In that case, the ultimate growth
velocity would approach the velocity of sound. Should the growth
be, in part, diffusion limited (i.e., involve major switches of near-
est neighbors), the ultimate velocity would be much lower. The
answer to this question is of interest, for example, in evaluat-
ing the possibility of forming pure metallic glasses (3). Computer
simulations have shed some light on this (4, 5), but a direct inves-
tigation on the atomic level is still lacking. Another question
that would benefit from direct investigation is the possibility of
the mobility for melting being different from that for crystal-
lization, which has been claimed in some simulations (6, 7) and
dismissed by later ones (8). There is, however, a way to probe
the melting and crystallization behavior on an actual physical
system: dense colloidal suspensions form liquid and crystalline
phases that are structurally identical to the simple atomic ones,
such as metals, but the size (∼ 1 µm) and slowness of the par-
ticles allow them to be tracked individually in the confocal
microscope.

Results
Colloidal suspensions and atomic systems exhibit similar phases,
in which, for colloids, the particle concentration is a key param-
eter in the phase behavior (9). The growth of colloidal crystals
from their liquid has been studied under conditions of nucleation
(10) or sedimentation (11), but a detailed study of the crystalliza-
tion and melting kinetics requires closer control of the interface

position. A powerful tool to this end is the control of the particle
density through dielectrophoresis. Sullivan and coworkers (12,
13) demonstrated how dielectrophoresis can be used to manipu-
late particles in a confined system in a device that they labeled an
“electric bottle.” This technique provides better control of con-
centration than other body forces, such as gravity or temperature
gradients (14, 15).

The electric bottle, shown in Fig. 1A with details in SI
Appendix, is a capacitor that contains the colloidal suspension as
a dielectric spacer. In an electric field, particles with a dielectric
constant εp in a medium with a dielectric constant εm acquire an
induced dipole moment ~p. Dielectrophoresis occurs, because the
electric field gradient∇E , shown in Fig. 1B, exerts a force on the
induced dipole moment FDEP = (~p ·∇)~E =−Vpεeff ε0∇E2/2,
with εeff = 3βεm/(1−βφ)2, β= (εp − εm)/(εp + 2εm), and φ
the volume fraction of the particles (12, 16, 17). In a sealed
electric bottle system, the system reaches equilibrium when all
dielectric forces are balanced by the osmotic pressure forces
from the density gradients. This corresponds to the chemical
potential, including both electrical and chemical contributions,
being uniform throughout the system (18).

The colloidal suspension consists of 1.8-µm diameter
poly(methyl methacrylate) (PMMA) particles sterically stabi-
lized with poly(hydroxystearic acid) brushes. The particles are
suspended in a nonpolar solvent that is a mixture of 60 vol/vol %
decahydronaphtalene (cis-decalin) and 40 vol/vol % tetra-
chloroethylene. We chose this solvent to closely match both the
refractive index of the particles (to minimize scattering in confo-
cal microscopy) and their density (to avoid sedimentation). The
interaction between the particles is repulsive as a result of the
addition of dioctyl sodium sulfosuccinate (AOT) (SI Appendix).
By adjusting the AOT concentration, the particles can be made
to crystallize in the face-centered cubic (FCC) or body-centered
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Fig. 1. Spatial distribution of particles in an electric bottle. (A) Schematic
drawing of the electric bottle. (B) Calculated electric field profile at the
center plane at 60 V (dashed line) and 80 V (solid line). (C and D) Parti-
cle concentration profile at dielectrophoretic equilibrium. (red, crystalline;
black, liquid; squares, 60 V; triangles, 80 V; dashed line, original density).
(C) The 15 mM AOT suspension forms BCC crystals. (D) The 5 mM AOT sus-
pension forms FCC crystals. (E and F) Confocal images of a crystal–liquid
interface taken at the center of the cell. (E) BCC with (110) parallel to the
electrode and the BCC–liquid interface perpendicular to the [113] direction.
(F) FCC with (111) parallel to the electrode and the FCC–liquid interface
perpendicular to the [541] direction.

cubic (BCC) phase (19, 20). The PMMA colloidal particles are
more polarizable (εp ≈ 2.6) than the suspending medium (εm ≈
2.3); hence, they move toward stronger electric fields.

The spatial distributions of particles in 15 and 5 mM AOT sus-
pensions are shown in Fig. 1 C and D, respectively (SI Appendix,
Fig. S1). We took 3D confocal image stacks at 100-µm inter-
vals across the entire width of the cell. The number density was
measured by counting the number of particles obtained from the
particle-locating image analysis (21). The initial uniform number
densities of the 15 and 5 mM suspensions are η0 = 0.032 µm−3

and η0 = 0.050 µm−3, respectively. The density increases in the
high-electric field region during dielectrophoretic compression,
resulting in the formation of crystals: BCC crystals in the 15 mM
suspension at η = 0.036 µm−3 and FCC crystals in the 5 mM sus-
pension at η = 0.054 µm−3. In the latter, crystallization occurs
at a volume fraction of φ = 0.165, much lower than the φ =
0.494 in the case of hard spheres. This illustrates the effect of
the longer-range potential (22). The equilibrated crystal–liquid
interfaces of the BCC and FCC are shown in Fig. 1 E and F,
respectively.

To study the kinetics of the interface motion during crystalliza-
tion or melting, the cell was first equilibrated at voltage, resulting
in a stationary interface. The voltage was then switched off, which
resulted in melting; after 10 min, the voltage was switched on
again, which reversed the interface motion and let us observe
crystallization. Images 100 ×50× 40 µm3 (512 ×512× 161 pix-
els) in size were taken every 4 s near the middle of the cell to
exclude possible effects of the glass surface,∗ and the individ-

*In the reconstructed 3D images, the positional resolution is 0.03 µm in the x and y
directions and 0.1 µm in the z direction along the optical axis of the microscope.

ual particles were tracked in time and space. Dielectrophoretic
compression initiates crystal growth under the electrodes, and
melting starts when we switch off the electric field and the sys-
tem relaxes back to the original fluid phase. The orientations
of the BCC and FCC crystals are given in Fig. 1 E and F.
Movies S1 and S2 show the motion of these interfaces during
crystal growth; 3D reconstructions of the crystalline and liquid
phases are shown in Fig. 2 A–C. We identify the crystal and
liquid phases by assigning an order parameter φi to each par-
ticle. The bond orientation order parameter φi of particle i is
defined by the orientation of its nearest neighbor bonds. Here,
we use the number of inline nearest neighbor particle pairs [i.e.,
bonds that make angles of 180◦± 19◦ (cosθ = −1± 0.055) (23)].
The order parameter in a perfect BCC crystal is seven (14
neighbors: 8 nearest and 6 next nearest), and it is six for a
perfect FCC (12 nearest neighbors). We classify particles with
φi−BCC > 3.5, φi−FCC > 3 as crystalline, and all others as liq-
uid. The successive images in Fig. 2 A–C show how a BCC crystal
grows during dielectrophoretic compression until equilibrium is
reached.

The tracking of the particles allows us to determine the rates
at which particles attach to or detach from the crystal inter-
face, which can be denoted by jump frequencies, k+ and k−,
both in and out of equilibrium. To identify the attaching and
detaching particles, we adopt an additional parameter Zi , the
number of crystal neighbors (24). The number of crystal parti-
cles that surround a particle, Zi , depends on the region (crystal,
interface, or liquid) to which it belongs. When a particle jumps
to attach to or detach from the interface, its number of crys-
tal bonds changes. Liquid particles (φi−BCC ≤ 3.5, φi−FCC ≤ 3)
with a large number of crystalline neighbors (3 ≤Zi−BCC ≤ 6,
2 ≤Zi−FCC ≤ 4) are considered “interfacial” particles, and the
remaining ones (Zi−BCC ≤ 2, Zi−FCC ≤ 1) are considered “liq-
uid.” A change from liquid to interfacial at successive measuring
times signifies attachment, and conversely, a change from inter-
facial to liquid signifies detachment. If a particle remains at the
interface and keeps its identity as interfacial, it is identified as an
interface particle. Fig. 2D visualizes the attachment and detach-
ment sites at equilibrium. As the figure shows, attachment and
detachment occur randomly at a rough interface without facet
formation.

The jump frequencies (k+, k−) are obtained by counting the
total number of attachment and detachment events in a time
interval of 4 s and dividing by the time and the number of

Fig. 2. Growth of a BCC crystal from the liquid. (A–C) Reconstructed
images of the crystallization process, where yellow particles are crystalline
and blue particles are liquid. (D) Identification over one imaging inter-
val of 4 s of attachment (red) and detachment (blue) sites at the crystal
boundary with the liquid. The interface particles have been removed
for clarity.
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Table 1. Average rates of attachment and detachment at
the interfaces

Jump rate, s−1 · site−1
interface BCC FCC

Equilibrium
k+ 0.1025± 0.0014 0.0731± 0.0010
k− 0.1026± 0.0014 0.0731± 0.0010

Growth
k+ 0.0885± 0.0013 0.0679± 0.0010
k− 0.0859± 0.0013 0.0645± 0.0010

Melting
k+ 0.0893± 0.0013 0.0696± 0.0010
k− 0.0932± 0.0013 0.0732± 0.0010

potential jump sites Nsite at the interface.† We estimate the lat-
ter as Nsite =Al/Vp , where Vp is the average volume of the
particles in the crystal (equal to the average Voronoi cells in
SI Appendix, Table S1), A = 1,200 µm2 is the cross-sectional
interface area, and l =V

1/3
p is the particle dimension along the

growth direction. The imaging interval of 4 s is sufficiently short
for each observation of a jump to represent a single event. The
results are listed in Table 1. At equilibrium, the attachment and
detachment rates are equal (k+ = k−), while for crystallization,
k+ > k−, and for melting, k−> k+. The average jump distances
λj for attachment and detachment at equilibrium were mea-
sured to be 0.83 ± 0.01 and 0.76 ± 0.01 µm for BCC and FCC,
respectively. Note that these jump distances λj are significantly
shorter than the interparticle spacings (SI Appendix, Table S2).
In other words, a small adjustment λj in the position of the parti-
cle changes its nature between crystalline and liquid and thereby,
moves the interface locally by a much larger distance l =V

1/3
p .

A 2D projection of the trajectory of a single particle near the
interface in equilibrium is shown in Fig. 3. It shows the particle
first jumping back and forth between crystal and liquid, making
a quasirandom walk. After the particle attaches itself to the crys-
tal, it is trapped for a time. The changing positions of BCC– and
FCC–liquid interfaces during growth and melting are shown in
Fig. 4. The interface velocities v = ∆xinterface/t were determined
by measuring the total length of the crystal xc directly on the cell
once every 8 s. The resulting “macroscopic” velocities are listed
in Fig. 4. The “microscopic” interface velocities are obtained
from the measured net jump rates. When liquid particles join
the crystal, each attaching particle adds a volume Vp to crystal.
When ∆Njump =N+−N− particles join, the interface moves by
l∆Njump/Nsite with l =Vp

1/3. The microscopic interface veloc-
ity is then

l∆Njump

Nsite∆t
= l(k+− k−). [1]

Using the values of the jump rates, from Table 1, we obtain
microscopic velocities: vgrowth = 0.0081 ± 0.0056 µm/s and
vmelting = −0.0120 ± 0.0058 µm/s for the BCC interface and
vgrowth = 0.0089 ± 0.0037 µm/s and vmelting = −0.0099 ±
0.0039 µm/s for the FCC interface. The close agreement between
the macroscopic and microscopic interface velocities validates
the choices that we made in defining the order parameters
and the attachment/detachment criteria. To check if the mag-
nitude of the electric field has any effect on the jump fre-
quencies and growth velocities, we established that identical
results could be obtained at 60 and 80 V (SI Appendix, Figs. S2
and S3).

†Potential sites are those where the arrival or departure of a particle would turn it into
a crystalline or a liquid one, respectively.

The jump frequency k of an atom in a singly activated pro-
cess can be written as k = Γexp(−∆G∗/kBT ), in which Γ is an
attempt frequency and ∆G∗ is an activation energy. In some
cases, such as pure metals or noble gases, the mechanism is
thought to be collision limited, which corresponds to the absence
of an activation barrier ∆G∗≈ 0 and hence, k = Γ. Evidence
for this type of growth includes measurements of the growth
speed as a function of temperature (1, 25, 26). To establish
the attempt frequency Γ in our experiments, we investigated
the Brownian motion of the particles in the crystal, interface,
and liquid at equilibrium. We determined the mean square dis-
placements (MSDs) of the particles, which are plotted as a
function of time in Fig. 5. The MSD of the crystal particles sat-
urates at 〈∆r2〉BCC = 0.72 and 〈∆r2〉FCC = 0.44 µm2 due to
confinement by their lattice cages, while particles at the interface
and in the liquid have diffusive motion, which is evident from
the linearly increasing MSD. That the MSD of interfacial par-
ticles is less than that in the liquid is the result of their partial
constraint by the crystal. A least squares linear fit to the liquid
data gives diffusion coefficients Dliquid = 〈∆r2〉/6t of 0.0264 ±
0.0010 and 0.0239 ± 0.0011 µm2/s for BCC and FCC, respec-
tively. The attempt frequency, Γ, is the inverse of the average
time that it takes a particle to travel the jump distance, λj . The
attempt frequency for Brownian motion in three dimensions is
Γ3D = 6Dliquid/λ

2
j , which using the average measured values for

λj mentioned above, gives 0.23 ± 0.01 and 0.25 ± 0.01 s−1 for
BCC and FCC, respectively; these values are factors of two and
three, respectively, greater than the jump frequencies for attach-
ment and detachment listed in Table 1. Given that the attach-
ment and detachment jumps have a pronounced directionality

Fig. 3. A 2D projection of the trajectory of a particle near the BCC–liquid
interface at equilibrium. (A) The color gradient of the pixels encodes points
along a particle trajectory (red star, starting point; blue star, end point). The
average position of the crystal–liquid interface is shown by the dotted line;
the crystalline and liquid areas are yellow and blue, respectively. (B) A map
of the particle identity (yellow, liquid; orange, interface; red, crystalline)
along its trajectory.
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Fig. 4. Change in interface position during crystallization and melting.4,
crystal growth when the voltage is stepped from 0 to 80 V;5, crystal melt-
ing when the voltage is stepped from 80 to 0 V. (A) BCC–liquid interface
(vgrowth = 0.0087 ± 0.0006 µm/s, vmelting = −0.0118 ± 0.0013 µm/s). (B)
FCC–liquid interface (vgrowth = 0.0084 ± 0.0004 µm/s, vmelting = −0.0099 ±
0.0005 µm/s).

(SI Appendix, Figs. S4–S6) and therefore, cover only a frac-
tion of the full 3D solid angle, we can say that the particles
move freely by Brownian across the phase boundary. Such
barrier-free motion corresponds to collision-limited growth in
atomic systems.

The motion of the phase boundary is then the result of a biased
1D random walk driven by the difference in free energy, ∆G ,
between the two phases. An analysis of the jump frequencies in
a biased random walk (see Appendix) gives an expression for this
free-energy difference:

∆G = 2kBT
k+− k−

k+ + k−
. [2]

The results are listed in Table 2.
A key phenomenological quantity in the kinetics of phase

transformations is the mobility, M , which is the ratio of the inter-
face velocity, v , to the gradient of the free energy, ∇G : M =
v/∇G . The interface velocity is related to the jump frequen-
cies by Eq. 1: v = l(k+− k−) with l =V

1/3
p . The free-energy

gradient is established over a distance λjx , the average compo-
nent of the jumps normal to the interface (here taken to be x ),
so that ∇G = ∆G/λjx . Specific values of λjx for the two struc-
tures are 0.43 ± 0.01 and 0.39 ± 0.01 µm for BCC and FCC,
respectively. Using the above expression for ∆G , the mobility
becomes

M =
lλjx

kBT

(
k+ + k−

2

)
. [3]

The results are shown in Table 3. The mobilities of the BCC–
liquid interface are greater than those of the FCC–liquid inter-
face in qualitative agreement with computer simulations on Fe,
for which interfaces of the melt with both types of crystals can
be created with the same potential (8). Furthermore, in contrast
to earlier simulations (6, 7) and in agreement with more recent

Fig. 5. MSD as a function of time for particles in the crystal (©), interface
(5), and liquid (4). (A) BCC. (B) FCC.

ones (8), we find no significant asymmetry in mobility between
melting and crystallization for either FCC or BCC.

Discussion
We observe that the interfaces are not faceted but rough. This
holds for interfaces in equilibrium as well as during melting and
crystallization. This roughness is dynamic, and the analysis of the
fluctuations in the position of an interface at equilibrium allows
determination of the interfacial stiffness (18). Furthermore, each
site of this rough interface is a potential site for attachment and
detachment of particles. In the solidification literature, this is
expressed by the site factor being unity (27).

The rates of the attachment and detachment jumps corre-
spond to those expected from the Brownian motion of the
particles in the liquid. In other words, the time that it takes
for a particle to reach its position in the other phase corre-
sponds to the minimum time expected from its random walk.
This translates to the atomic scale as collision-limited or barrier-
free growth: the frequency of attachment or detachment is the
highest that it can be (i.e., the local atomic vibration frequency).
This corresponds to a maximum solidification velocity at high
driving force where the reverse flux is suppressed, equal to the
speed of sound.

The barrier-free growth observed in our experiments supports
the pure collision–control model that was found to apply to
fast dendrite growth of pure nickel (1) and solidification after
pulsed laser melting of pure gold (25). We do not find evi-
dence for an additional diffusion barrier, such as the one intro-
duced in the modeling of pulsed laser melting experiments on
silver (26).

Since the particles move freely across the phase boundary by
Brownian motion, displacement of the boundary corresponds
to a biased random walk where the bias is the result of the
difference in free energy between the two phases, which in
turn, results from the density gradient created in the electric
bottle. This free-energy difference can be obtained from the
difference between the forward and backward jump rates (Eq.
2). This method, based on the structural identification of the
phase identity of the particles, may prove useful for analyzing
the result of other experiments or simulations. The only col-
loid crystallization experiments in which free-energy differences
were deduced from the growth rate were made on soft poly(N-
isopropylacrylamide) particles in a temperature gradient (28).
Their value (0.41 kBT per particle) was an order of magnitude
greater than ours (Table 2), which is most likely the result of a
different interaction potential and a much higher packing frac-
tion in that experiment. We do believe, however, that our method
of determining the free-energy difference from a direct anal-
ysis of structure-based jump rates is more accurate than their
application of the simple Wilson–Frenkel growth law (29, 30).

Finally, we extract the mobility of the interface from the
structure-based jump rates. Based on microscopic reversibil-
ity, one expects the mobilities for crystallization and melting
to be the same. When they are not, this is due to the finite
size of the system where, for example, the crystal ledge nucle-
ation frequency at the interface may play a role (31). For
the rough interface in these experiments, however, microscopic
reversibility is expected and indeed, found for both the BCC

Table 2. Driving forces of crystal growth and melting for BCC
and FCC crystals

Driving force, ∆G
(kBT per particle) Growth Melting

BCC crystals 0.0298± 0.0206 −0.0428± 0.0198
FCC crystals 0.0514± 0.0212 −0.0504± 0.0196

Hwang et al. PNAS | January 22, 2019 | vol. 116 | no. 4 | 1183

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813885116/-/DCSupplemental


Table 3. Mobilities of the BCC and FCC crystal–liquid interface
during growth and melting

Interface mobility, M (107 m2/J · s) BCC crystals FCC crystals

Equilibrium 3.26± 0.04 1.91± 0.03
Growth 2.80± 0.04 1.64± 0.02
Melting 2.90± 0.04 1.83± 0.04

and the FCC interfaces. This is in line with the most recent
simulation results (8), which contradicted earlier findings of
asymmetry (6, 7).

These measurements provide a direct view of the particle-
level dynamics and behavior of crystallization and melting at a
crystal–fluid interface in a colloidal system. The observed behav-
ior provides an experimental test of computer simulations and
yields insight into the properties of atomic systems that are not
otherwise accessible experimentally.

Materials and Methods
The sample cell (Fig. 1A) consists of two coverslips (22 × 22 mm2) separated
by a spacer (∼200 µm). The top plate has three 1-mm-wide gold electrodes
separated by 1 mm. The bottom plate is a continuous indium tin-oxide elec-
trode. We apply an ac voltage across the electrodes at a frequency of 1 MHz.
The calculated electric field profiles in the center plane between the plates
at 60 and 80 V are shown in Fig. 1B.

Appendix: Driving force for the biased random walk (32)
A particle with a mass m has a Brownian velocity vB =λ/τ ,
where λ and τ are jump distance and time, respectively.
Application of the equipartition principle to one component
of the kinetic energy, kBT/2 =mv2

B/2, gives m = kBT/v
2
B =

kBTτ
2/λ2. The phase transformation is driven by a difference

in chemical potential, ∆G , caused by the concentration gradient
produced by the dielectrophoretic forces. The driving force is the
gradient of the chemical potential, Fx =∇G = ∆G/λ. The drift
velocity in response to the driving force is, according to Newton’s
third law,

vd =
Fx τ

2m
=

∆Gλ

2kBTτ
. [4]

In a 1D random walk, a particle makes l steps to the right
with a probability p in n trials and n − l steps to the left with a
probability q = 1− p so that 〈l〉=np and 〈n − l〉=nq . The aver-
age distance that the particle travels is the net number of steps
in the growth direction (suppose to the right): 〈x (n)〉= 〈l〉λ−
〈n − l〉λ. The drift velocity is then vd = 〈x (n)〉/τ with n = t/τ ,
which then gives vd = (p− q)λ/τ . Equating this to the drift
velocity in Eq. 4 then gives ∆Gλ/2kBTτ = (p− q)λ/τ . Thus,
we find

p− q =
∆G

2kBT
. [5]

The ratio of these probabilities is also the ratio of the jump
frequencies in the transformation:

p

q
=

k+

k−
=

1 + ∆G
2kB T

1− ∆G
2kB T

, [6]

which gives for the driving force

∆G = 2kBT
k+− k−

k+ + k−
. [7]
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