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SUMMARY

Knowledge of immune cell phenotypes in the tumor microenvironment is essential for 

understanding mechanisms of cancer progression and immunotherapy response. We profiled 

45,000 immune cells from eight breast carcinomas, as well as matched normal breast tissue, blood, 

and lymph node, using single-cell RNA-seq. We developed a preprocessing pipeline, SEQC, and a 

Bayesian clustering and normalization method, Biscuit, to address computational challenges 

inherent to single-cell data. Despite significant similarity between normal and tumor tissue-

resident immune cells, we observed continuous phenotypic expansions specific to the tumor 

microenvironment. Analysis of paired single-cell RNA and T cell receptor (TCR) sequencing data 

from 27,000 additional T cells revealed the combinatorial impact of TCR utilization on phenotypic 

diversity. Our results support a model of continuous activation in T cells and do not comport with 

the macrophage polarization model in cancer, with important implications for characterizing 

tumor-infiltrating immune cells.

Graphical Abstract

In brief

Single cell analysis of breast tumor immune environment coupled with computational analysis 

yields an immune map of breast cancer that points to continuous T cell activation and 

differentiation states.
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INTRODUCTION

Recent evidence suggests that cells of the immune system serve an essential accessory 

function in non-lymphoid normal tissues and in tumors (Fan and Rudensky, 2016). Naïve, 

effector, and memory T lymphocytes, as well as chronically stimulated dysfunctional T 

lymphocytes, are considered the principal T cell differentiation states. Co-stimulatory 

receptors, such as CD28, ICOS, OX40, CD40L, and CD137, markedly enhance TCR-

dependent T cell activation, whereas increasing levels of co-inhibitory receptors CTLA-4, 

PD-1, TIGIT, LAG3, TIM-3, and CD160 are characteristic of progressive T cell dysfunction 

and loss of self-renewal potential (exhaustion). The success of cancer immunotherapy based 

on CTLA-4 or PD-1 blockade has been attributed to prevention or reversal of intratumoral T 

cell exhaustion (Pauken and Wherry, 2015). Regulatory T (Treg) cells, expressing high 

amounts of the transcription factor Foxp3, curtail activity of effector T cells and other 

immune cell types under physiologic conditions and are found in markedly increased 

numbers in solid organ tumors (Josefowicz et al., 2012; Tanaka and Sakaguchi, 2017). This 

dedicated lineage of suppressive cells is thought to play a prominent role in cancer 

progression, and Treg cell targeting is considered a potentially promising strategy for tumor 

immunotherapy. Likewise, two principal functional states are standardly recognized in 

tumor-associated macrophages: pro-inflammatory M1 macrophages, which are thought to 

oppose tumor progression, and tissue reparative M2 macrophages, which promote tumor 

growth and metastasis (Mantovani and Locati, 2013).

Although immunotherapy treatments targeting CTLA-4 and PD-1 have been successful in 

treating melanoma, lung cancer, and kidney cancer (Topalian et al., 2015), meaningful 

clinical responses have only been observed in a subset of patients and cancer types. The 

observed variation in treatment efficacy has been connected to heterogeneity in the immune 

cell composition of individual tumors. Similarly, in breast cancer significant heterogeneity in 

immune composition is observed across tumor subtypes as well as patients (Dushyanthen et 

al., 2015). These observations raise the question of whether immune cell states differ in 

normal and tumor tissue, and whether they represent a limited number of discrete 

differentiation or activation intermediates. Alternatively, these cell states may occupy a 

single contiguous spectrum shaped by the tumor microenvironment.

Recent studies of human immune cells in lung adenocarcinoma and clear cell renal cell 

carcinoma using mass cytometry (Chevrier et al., 2017; Lavin et al., 2017) and bulk RNA-

seq analysis of tumor-resident immune cells (Senbabaoglu et al., 2016) have provided broad 

characterization of the composition of main immune cell subsets. Further studies employing 

single-cell RNA-seq analysis have begun to explore finer definitions of immune cell subsets 

in tumors (Tirosh et al., 2016; Zheng et al., 2017), but their scale has been limited.

Thus, we sought to undertake a large-scale, high-dimensional analysis of cells of 

hematopoietic origin in human breast tumors of various types, as well as paired normal 

breast tissue, peripheral blood, and a lymph node. Our analyses revealed significantly 

increased heterogeneity of intratumoral cells of both lymphoid and myeloid cell lineages, 

occupying markedly expanded phenotypic space in comparison to normal breast tissue. This 

heterogeneity was highlighted by combinatorial expression of genes reflecting responses to 
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various environmental stimuli, and in the case of T cells was shaped by TCR specificity. The 

observed continuum of T cell states argues strongly against the classical notion of few 

discrete states of differentiation or activation shaping the tumor microenvironment.

RESULTS

Single-cell RNA-seq of breast carcinoma resident immune cells

To generate a deep transcriptional map of the immune cell states in human breast cancer, we 

constructed an atlas comprising 47,016 CD45+ cells collected from 8 primary breast 

carcinomas from treatment naïve patients including estrogen receptor (ER+) and 

progesterone receptor (PR+) positive, human epidermal growth factor receptor 2 amplified 

(Her2+), and triple negative (TNBC) cancers. To assess the common effects of the tumor 

microenvironment across breast cancer subtypes on immune cell phenotypes, we also 

analyzed CD45+ cells from matched normal breast tissue, peripheral blood, and lymph node 

obtained from fresh surgical specimens. The corresponding FACS-purified CD45+ cell 

populations were subjected to single-cell RNA sequencing (scRNA-seq) using the inDrop 

platform (Figure 1A, B, S1A, STAR Methods) (Klein et al., 2015; Zilionis et al., 2017). We 

developed a pipeline, SEQC (Figure S1B, S8), for processing the data, providing increased 

sensitivity and selectivity in its resulting single-cell profiles (Table S1, STAR Methods).

We first verified that major immune cell types were identifiable in each patient using 

PhenoGraph clustering (Levine et al., 2015). We annotated clusters using genome-wide 

correlations between cluster mean expression and previously characterized transcriptional 

profiles of sorted immune cell subsets (Jeffrey et al., 2006; Novershtern et al., 2011), as well 

as their canonical markers (STAR Methods). We were able to identify the majority of 

expected immune cell types, including monocytes, macrophages, dendritic cells (DC), T 

cells, B cells, mast cells, and neutrophils (Figure 1C, S1C). Thus, we were able to capture a 

comprehensive representation of the immune ecosystem from each individual tumor.

In agreement with recent studies (Chevrier et al., 2017; Lavin et al., 2017), we found a large 

degree of variation in the immune composition of each tumor (Figure 1D). For example, the 

myeloid and T cell fractions constituted 4–55% and 21%–96%, respectively. We also 

observed inter-patient variation in metabolic signatures, including hypoxia (Figure 1E). It is 

notable that while all patients expressed a similar average degree of genes in a hypoxia 

signature, expression differed at the level of individual genes in the signature. Similar 

variation was observed in fatty acid metabolism, glycolysis, and phosphorylation (Figure 

S1E–G).

Integration of data across multiple tumors

To enable a systematic comparison across patients, we merged the data from all tumors. 

However, we observed that cells from the same patient were often more similar than cells of 

the same lineage across patients (Figure 2A). This was likely due both to batch effects and 

standard normalization procedures that conflate biological signal and technical differences. 

We also observed an increase in the number of molecules captured from activated cells, 

likely due to an increase in total RNA abundance upon activation (Singer et al., 2016). In 
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addition, our analyses showed an activation gradient in CD8 T cells in tumors, most 

pronounced in a TNBC tumor (BC3), in agreement with previous reports (Figure 2B) 

(Dushyanthen et al., 2015). To remove technical effects while retaining convolved biological 

variation, we clustered the combined data using a scaled and improved version of Biscuit, a 

hierarchical Bayesian model that infers clusters while simultaneously normalizing and 

imputing, allowing us to correct for cell- and batch-intrinsic variation (Prabhakaran et al., 

2016) (Figure S8; STAR Methods).

After applying Biscuit to the data from all tumors we found T cell, macrophage, monocyte, 

B cell, and NK cell clusters (Figure 2C). We used an entropy-based measure to quantify the 

mixing of samples (STAR Methods): while cells were most similar within individual 

samples using standard normalization, this was corrected after Biscuit normalization, with 

significantly improved mixing of cells across patients (U=1.7721e+09, p=0, Figure 2A, D). 

Using this approach, we successfully retained information on immune cell activation while 

stabilizing differences in library size, and uncovered a rich and robust structure in imputed 

data, suggesting diversity in immune cell subtypes (Figure 2A, C).

Breast tumor immune cell atlas reveals substantial diversity of cell states

To construct a global atlas of immune cells we merged data across all tissues and patients, 

revealing a diverse set of 83 clusters (Figure 2E, F; S2A, B). The large number of clusters 

prompted us to test their robustness using cross-validation (STAR Methods), showing robust 

cluster assignments (Figure S2C). Most clusters were shared across multiple patients, with 

only 10 being patient-specific (Figure 2G; STAR Methods). We used entropy to quantify 

patient specificity and found that the clusters varied widely in their degree of patient mixing 

(Figure S2D).

To assign each cluster to a cell type, we compared cluster mean expression to sorted bulk 

datasets (Figure 2E, F) and identified 38 T cell, 27 myeloid lineage, 9 B cell, and 9 NK cell 

clusters (Table S2). These annotations were confirmed and honed using the expression of 

canonical markers (Figure 2H). Of the T cell clusters, we identified 15 CD8+ and 21 CD4+ 

clusters, which were split into 9 naive, 7 central memory, 15 effector memory, and 5 Treg 

clusters. The myeloid clusters divided into 3 macrophage, 3 mast cell, 4 neutrophil, 3 

dendritic cell, 1 plasmacytoid dendritic cell, and 13 monocytic clusters. Finally, we 

identified 3 CD56− NK cell clusters, and 6 CD56+ NK cell clusters, 2 of which are likely 

NKT cells (Figure 2I, J).

Broad cell types (e.g. 15 effector memory T cell clusters) are defined by a small set of 

surface markers (Figure 2F, H). To further differentiate these clusters, we used their genome-

wide profiles. Biscuit identifies clusters based on both mean expression and covariance 

patterns (i.e. co-expression of genes). These parameters helped identify differentially 

expressed genes that characterized multiple subpopulations within major cell types (Table 

S2, S3). Moreover, we observed a prominent effect of covariance in defining the T cell 

clusters by measuring pairwise cluster similarity with and without the effect of mean 

expression (Figure S2E, F); large differences between most clusters remained even after 

mean gene expression was equalized. Thus, our approach robustly identified distinct cell 

states that were shared across multiple tumor microenvironments. As T and myeloid cells 
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represented the most abundant cell subsets, and are considered the most clinically impactful, 

we focused subsequent in-depth analyses on these major cell types.

Tissue environment impacts the diversity of immune phenotypic states

To quantify the extent to which variation in immune phenotypes is driven by their tissue of 

residence we used t-SNE (Amir el et al., 2013; van der Maaten and Hinton, 2008) to 

visualize phenotypic overlap between tissues, which showed that T cells in blood and lymph 

node exhibited dissimilar phenotypes compared with T cells in breast tissue (Figure 3A, B). 

While T and myeloid lineage cells exhibited considerable overlap between tumor and 

normal tissue samples, we observed increased phenotypic heterogeneity and expansion of 

cell populations in the tumor (Figure 3B). Naive T cells were strongly enriched in three 

blood-specific clusters (χ2, p=3e-80), while B cells were more prevalent in the lymph node 

than in other tissues (χ2, p=0.0) (Figure 3C). A subset of T cell clusters was present in both 

tumor and normal tissue, but cytotoxic T cell clusters were more abundant in tumor (χ2, 

p=3e-25), as were Treg clusters (p=5e-91). Moreover, some myeloid clusters were shared 

between normal and tumor tissue, whereas clusters of more activated macrophages were 

specific to tumor (tumor-associated macrophages, or TAMs) (χ2, p=0.0). These findings 

highlight that tissue of residence is a significant determinant of immune phenotype, and that 

biomarkers based on blood immune cells may not necessarily reflect immune cell 

composition in tumor.

Immune cells undergo phenotypic expansion in the tumor microenvironment

We observed a large number of normal breast tissue resident immune cell states, including 

13 myeloid and 19 T cell clusters that were not observed in circulation or in the secondary 

lymphoid tissue. Furthermore, the set of clusters found in normal breast tissue cells 

represented a subset of those observed in the tumors; 14 myeloid and 17 T cell clusters were 

only found in tumor, doubling the number of observed clusters relative to normal tissue. In 

distinction, there were no clusters specific to normal tissue.

This increased diversity of cell states was driven by a significant increase in the variance of 

gene expression in tumor compared to normal tissue (Figure 3D). We found that the genes 

with the largest increase in variance were enriched in signaling pathways activated in the 

tumor environment, including type I (IFNα) and II interferons (IFNγ), TNFα, TGFβ, 

IL6/JAK/STAT signaling, and hypoxia (STAR Methods) (Figure 3E; S3A, B; Table S5).

To further explore this increase in variance, we defined a metric for the “phenotypic volume” 

occupied by cells. Specifically, this metric uses the covariance in gene expression to measure 

the volume spanned by independent phenotypes (STAR Methods). Using this metric, we 

compared the phenotypic volume occupied by each cell type in normal vs. tumor tissue. 

Assessment of the change in volume showed a significant increase in the phenotypic volume 

of all major cell types, including T cells, myeloid cells, and NK cells (U-test, p = 0), in the 

tumor compared to normal mammary gland tissue (Figure 3F). Precisely, the fold change in 

volume was 7.39e4 in T cells, 1.18e14 in myeloid cells, and 6.08e4 in NK cells, indicating a 

massive increase in phenotypic volume in tumor compared to normal tissue. These data 

suggest that increased heterogeneity of cell states and marked phenotypic expansions found 
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within the tumor were likely due to more diverse local microenvironments within the tumor, 

which differ in the extent of inflammation, hypoxia, expression of ligands for activating and 

inhibitory receptors, and nutrient supply (Finger and Giaccia, 2010; Jimenez-Sanchez et al., 

2017).

Intratumoral T cells reside on continuous components of variation

We used diffusion maps (Coifman et al., 2005; Haghverdi et al., 2015) to characterize the 

most significant sources of the observed phenotypic variation. This analysis was done 

separately for T and myeloid cells to avoid biases from cell type-specific capture rates 

(Figure S1D). While some T cell components distinguished discrete clusters, the majority of 

components defined gradual trends of variation (Figure 4A, S4A). The top 3 informative 

components correlated, respectively, with signatures for activation, terminal differentiation, 

and hypoxia (Figure 4B–D; Figure S4B–F; STAR Methods).

The most informative component of variation, labeled “activation”, is highly correlated with 

gene signatures of T cell activation and progressive differentiation, along with IFNγ 
signaling (p=0.0) (STAR Methods). The mean expression of the activation signature steadily 

increases along the component (Figure 4B), with a concomitant gradual increase in 

expression of specific activation-related genes (Figure 4C). Intratumoral T cell populations, 

including Treg and effector memory T cells, are enriched at the activated end of the 

component (t-test p=0.0, Figure 4A, D), while naïve peripheral blood T cells congregate at 

the least activated terminus, consistent with their quiescent state (t-test p=0.0, Figure 4D). 

Though the mean expression levels of clusters vary gradually along the component, there is 

a wide range of activation states within each cluster (Figure 4D). Genes most correlated with 

the component are known to increase upon activation and progressive differentiation, 

including cytolytic effector molecules granzymes A and K (GZMA and GZMK), pro-

inflammatory cytokines (IL-32), cytokine receptor subunits (IL2RB), chemokines (CCL4, 

CCL5), and their receptors (CXCR4, CCR5) (Figure 4C).

The next most informative component of variation was labeled “terminal differentiation” 

(Figure 4E); the genes most correlated with it include co-stimulatory molecules (CD2, 

GITR, OX40, and 4–1BB) as well as co-inhibitory receptors (CTLA-4 and TIGIT) (Figure 

S4B). This set also included FOXP3, IL2RA, and ENTPD1 (CD39), genes characteristic of 

Treg cells (Josefowicz et al., 2012). There is a moderate degree of overlap in the genes most 

correlated with the activation and terminal differentiation components, consistent with 

previous single-cell studies (Tirosh et al., 2016) (Figure 4A, C; S4B). However, there are 

also important differences, including the markers of exhaustion listed above, and the order of 

clusters differs along the two components (Figure 4F). Indeed, some clusters—notably 

lymph node T cells (e.g. cluster 16)—express higher levels of activation than terminal 

differentiation (t-test p=0.0; Figure S4B–D), consistent with T cell exhaustion/terminal 

differentiation being prominent in non-lymphoid tissues.

Interestingly, visualizing the T cell activation and terminal differentiation components 

together revealed remarkable continuity, in essence representing a single continuous 

trajectory (Figure 4A, S4D). Thus, T cells reside along a broad continuum of activation, 

suggesting that their conventional classification into relatively few discrete activation or 
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differentiation subtypes may grossly oversimplify the phenotypic complexity of T cell 

populations resident in tissues.

Intratumoral T cell clusters are characterized by diverse patterns of environmental 
signatures.

Noting that the strongest components of variation do not fullly explain cluster distinctness, 

we sought to understand the variation in the observed clusters. While clusters were arranged 

in a continuous fashion along the activation component, each cluster appeared distinct when 

accounting for a combination of signatures associated with responses to diverse 

environmental stimuli. Our data show that CD4 effector and central memory clusters (Figure 

5A) exhibit variable levels of gene expression involved in type I and II interferon response 

(F-test, p=1e-54 and 0.008 respectively), hypoxia (F-test, p=4e-64), and anergy (F-test 

p=4e-69). Moreover, CD8 effector and central memory clusters (Figure 5B) varied in 

expression levels of activation (F-test p=2e-114), and proinflammatory (F-test p=1e-39) and 

cytolytic effector pathway-related genes (F-test p=6e-32). These findings suggest that tumor-

resident T cells might be exposed to varying degrees of inflammation, hypoxia, and nutrient 

deprivation. While many of these responses (e.g. activation or hypoxia) individually 

represent phenotypic continuums, their combinations may result in more discrete states 

(STAR Methods).

In contrast to effector T cells, the majority of Treg clusters featured similar patterns for anti-

inflammatory, exhaustion, hypoxia, and metabolism gene sets (Figure 5C). To identify 

features distinguishing the Treg clusters, we examined the Biscuit parameters differentiating 

them. We found that beyond mean expression levels, covariance parameters varied 

significantly between clusters. Specifically, two marker genes can exhibit similar mean 

expression in two different clusters (e.g. highly expressed in both), while the clusters show 

opposite signs in covariance between these genes. This occurs due to the genes typically 

being co-expressed in the same cells in one cluster (i.e. positive covariance), but expressed 

in a mutually exclusive manner in the other cluster (i.e. negative covariance) (Figure 5D). It 

is noteworthy that clusters were inferred based on the expression of over 14,000 genes; 

hence, negative covariance between two specific genes does not necessarily imply the 

existence of sub-clusters.

For example, our analysis showed that the prototypical co-inhibitory gene CTLA-4 exhibited 

rich covariance patterns with other mechanistically related genes (Figure 5E–G; S5A, B). 

CTLA-4 co-varied strongly with TIGIT and co-stimulatory receptor GITR in Treg clusters 

46, 56, and 87; with CD27 in clusters 46 and 80; and with co-stimulatory receptor ICOS 

only in cluster 80 (Figure 5F,G). Covariance patterns between checkpoint receptors 

generally varied across Treg clusters (Figure 5G), and other important immune genes 

exhibited modular covariance structures, suggesting co-regulation and potential involvement 

in similar functional modalities (Figure 5H). Since varied proportions of Treg clusters were 

observed in individual patient samples, the differences in gene co-expression were also 

present at the patient level, and the majority of patients did not have all 5 subtypes of Treg 

cells (Figure 5I). We observed similar patterns for GITR and CTLA-4 in three additional 

breast tumors profiled using CyTOF mass cytometry (Table S2): two Treg clusters 
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resembled clusters 82 and 46 in terms of covariance and differentially expressed genes 

(Figure S5C; STAR). We also observed differences in covariation patterns across activated T 

cell clusters (Figure S5D). Thus, co-variation of genes has a role in defining T cell clusters, 

in particular Treg clusters (Figure 5G, H, SF2).

Paired single-cell RNA and TCR sequencing reveals the range of activation states of 
individual T cell clonotypes

One plausible explanation for the observed continuity of intratumoral T cell activation is 

exposure to diverse microenvironments. A non-mutually exclusive hypothesis is that the 

wide range of signal strengths afforded by a diverse repertoire of TCRs can result in a 

continuous spectrum of T cell activation, obscuring the transitional states. Supporting the 

latter possibility, a recent study showed that cognate tumor neo-antigen recognition by TCR 

transgenic monoclonal T cells results in an orderly progression of activated T cells through a 

reversible dysfunctional intermediate state towards an irreversible dysfunctional terminal 

state (Philip et al., 2017).

To gain deeper insight into whether TCR repertoire diversity contributes to the observed 

spectrum of T cell activation, as well as overall phenotypic diversity, we performed single-

cell RNA-seq and paired VDJ sequencing of over 27,000 sorted CD3+ T cells from three 

additional breast cancer tumors (labeled BC9–11; Figure S6A, STAR Methods). This data 

allowed direct mapping of gene expression to TCR utilization by the same individual cells.

The transcriptomic data further provided the ability to test the generalizability of the inferred 

clusters to three new patients profiled with a different single cell platform. This analysis 

revealed that T cell clusters, identified using Biscuit on the pooled dataset generated using 

the 10× platform, exhibited near one-to-one mapping to the T cell clusters inferred from the 

inDrop dataset (Figure 6A, B; S6B).

This analysis also reproduced a continuous gradient along the T cell activation trajectory 

(Figure S6C), similar to that seen in Figure 4D. To evaluate the degree to which TCR 

diversity explains this continuity, we mapped the activation state of each clonotype 

separately using the paired data (Figure 6C; S6D). This revealed that a subset of the 

clonotypes exhibit distinct average activation levels. Further, we observed that the 

distribution of activation states found within any given clonotype is significantly constrained 

(i.e. has a lower entropy than random subsamples with size equal to that of the clonotype; p 

= 0, STAR Methods). This provides evidence that TCR diversity partially explains the 

observed continuity of T cell activation.

Nevertheless, a surprisingly wide range of activation states is present in each individual 

clonotype (Figure 6C; S6E). To be precise, 52%, 48%, and 32% of the variation in activation 

states across all cells can be explained by clonotype identities in BC9, BC10, and BC11, 

respectively (one-way ANOVA p<0.001, STAR Methods). Moreover, the average pairwise 

variation between the top 20 most frequent clonotypes is 54%, 46%, and 29% of the average 

variation within a clonotype in BC9, BC10, and BC11, respectively (F-test p<0.001, STAR 

Methods). These results together suggest that TCR diversity is not the exclusive driver of the 

continuity of T cell activation, implying the contribution of other factors.
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T cell states are shaped by distinct TCR usage

While we observed that the primary components explaining variation across immune cells, 

such as activation, exhibited continuity, T cell clusters were separable on the basis of their 

differential expression of signatures associated with responses to environmental stimuli 

(Figure S2B, 5A, B). A similar trend was observed for tumor-resident T cells profiled using 

10× technology (Figure 6D). Interestingly, when analyzed jointly with TCR clonotypes, we 

observed that each cluster was in fact comprised of different combinatorial subsets of the 

clonotypes (Figure 6E). This observation provides further support for the distinctiveness of 

clusters, in part shaped by their TCR repertoires.

Furthermore, each clonotype was present only in a small number of related clusters that 

were significantly more similar phenotypically than randomly selected clusters (p<0.01 

STAR Methods), and hence occupied a confined region in the t-SNE projection (Figures 6F, 

S6F). In some cases, clusters that shared a clonotype exhibited similar levels of activation 

(Figure 6E), whereas in other cases such clusters were similar in signatures relating to 

environmental stimuli. For example in tumor BC9, clonotype 9 is present in clusters T11 and 

T12, which have very similar expression levels across nearly all of the environmental 

signatures (Figure 6D, E), and clonotype 20 is present in clusters high in anergy and 

gluconeogenesis (Table S6).

The variable TCR clonotype composition of individual T cell clusters, together with their 

differential expression of key gene expression signatures, thus suggest that phenotypic states 

are likely shaped by a combination of antigenic TCR stimulation and environmental stimuli.

Activation and differentiation explain variation of intratumoral myeloid cells

Although myeloid cells are key components of the tumor microenvironment, their 

heterogeneity and its impact on tumor progression remains insufficiently characterized 

(Engblom et al., 2016). A broad survey of the monocytic clusters found in BC1–8 suggested 

unexplored substructure within these major cell types (Figure 7A). As with the T cells, we 

employed diffusion maps to assess this heterogeneity, excluding neutrophils and mast cells, 

as they formed much more distinct clusters (Figure 7B). This analysis revealed four major 

branches that displayed more distinct cell states than did the T cells (Figure S7A). The first 

branch almost entirely comprised intratumoral macrophages (TAMs) from three clusters (23, 

25, and 28) (Figure 7B–F). The next two components capture a more gradual trajectory from 

blood monocytes to intratumoral monocytes (Figure 7B–D; S7B–D); an additional 

component with two discrete states distinguishes plasmacytoid DC (pDC) from the other 

monocytic cell clusters (Figure 7B, E; S7B, C, E).

Focusing on the first branch, top correlated genes included APOE, CD68, TREM2, and 

CHIT1 (Figure S7B). This likely reflects differentiation and activation of either recruited or 

tissue-resident macrophages. Additionally, expression of genes associated with 

“alternatively activated” (M2) macrophages, including scavenger receptor MARCO, pro-

angiogenic receptor NRP2, and inhibitory molecule B7-H3 (CD276), increased along this 

branch (Figure S7B). Concomitantly, immunostimulatory genes associated with “classically 

activated” (M1) macrophages, including chemokine CCL3 (MIP-1a), increased along the 
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branch. All three of the TAM populations, particularly clusters 23 and 28, were among the 

monocytic clusters with the highest expression of the canonical M2 signature, but were 

likewise high in the M1 signature (Figure S7E). Quite strikingly, we found that M1 and M2 

gene signatures positively correlated in the myeloid populations (Figure 7G), in line with 

recent findings in other tumor types (Muller et al., 2017). These findings support the idea 

that macrophage activation in the tumor microenvironment does not comport with the 

polarization model, either as discrete states or along a spectrum of alternative polarization 

trajectories.

Similar to the T cells, covariance parameters were key in differentiating the three TAM 

populations, though they shared most of their differentially expressed genes (Table S3). One 

example was co-expression of two M2-type markers, MARCO and B7-H3. While the TAM 

clusters all expressed high levels of both genes, they co-varied positively in clusters 23 and 

25, but negatively in 28 (p = 0, p = 5e-06, p = 0, respectively; Figure 7H–J; S7F, G). The 

differing covariance patterns were also significant in raw un-normalized data (Figure S7F, 

STAR Methods) and thus not an artifact of modeling. These results highlight the importance 

of co-expression patterns in defining myeloid cell states.

DISCUSSION

Despite major advances in cancer immunotherapy, our ability to understand mechanisms of 

action or predict efficacy is confounded by the heterogeneous composition of immune cells 

within tumors. Using unbiased single-cell RNA-seq analysis, we constructed an immune 

atlas in breast carcinomas, combining immune cells isolated from normal and cancerous 

breast tissue, as well as peripheral blood and the lymph node. This atlas revealed vast 

diversity in immune cells of both the adaptive and innate immune systems, with the biggest 

change linked to the tissue of residence. Interestingly, immune cell subpopulations in normal 

tissue were observed to be a subset of those found in tumor tissue.

Furthermore, the diversity of cell states, as quantified with our metric for “phenotypic 

volume”, significantly expanded in breast tumors as compared to normal breast tissue. Three 

components - T cell activation, terminal differentiation, and hypoxic response – most 

contributed to this phenotypic expansion. The activation component argues against a view of 

activated T cells rapidly traversing through sparse transitional cell states towards a few 

predominant, discrete, and stable states, including Treg, effector, memory, and exhausted T 

cells. This continuous view of T cell differentiation comports with recent work 

demonstrating that key gene signatures in CNS-autoantigen-specific Th17 cells exhibit a 

continuous spectrum of cellular states, which help discern nonpathogenic and pathogenic 

modalities of this effector T cell type (Gaublomme et al., 2015).

TCR diversity accounts in part for the continuous spectrum of T cell activation, though a 

wide range of activation states is also found within each TCR clonotype. This continuity 

may also be attributable to asynchrony in polyclonal T cell activation or heterogeneity in the 

types of antigen-presenting cells, their activation status, and their anatomical distribution.
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When analyzed in conjunction with TCR utilization, we found T cell populations to be 

associated with unique combinations of TCR clonotypes. These TCR usage patterns, 

together with unique combinatorial expression of gene programs associated with 

environmental exposures, jointly define the discrete states of intratumoral T cells. This 

suggests two models to explain the tight association between T cell clonotype and 

transcriptional phenotype. One, TCR signaling is a strong driver of downstream 

transcriptional signaling, and may be sufficient to account for the restricted range of 

phenotypes observed within each clonotype (Figure 7E, S7D). This model has recently been 

proposed specifically in the case of Treg cells (Zenmour et al., 2018). Alternatively, diverse 

TCR specificities may contribute to the spatial distribution of T cells on account of the 

distribution of their cognate antigens and, therefore, facilitate their exposure to the 

aforementioned distinct environments (“mini-niches”). Recent work using multiregional 

genomic sequencing of tumors has revealed a high degree of tumoral subclonality diverging 

between spatial regions (Sun et al., 2017), including in breast cancer (Yates et al., 2015). In 

support of this notion, our inferred subsets showed variable levels of transcripts linked to 

responses to environmental stimuli. The quality and quantity of antigen presentation is 

likewise known to vary over time, as tumors respond to selective pressure by downregulating 

expression of both MHC and individual neoantigens (Verdegaal et al., 2016).

Complex co-expression patterns also contributed to defining T cell states. Five Treg subsets 

exhibited similar mean gene expression for canonical markers, but exhibited drastic 

differences in gene covariance patterns. Particularly noteworthy was co-expression of 

checkpoint receptor genes (CTLA-4, TIGIT, and GITR and other co-receptors) in some Treg 

subpopulations as compared to mutually exclusive expression of the same genes in other 

Treg clusters, suggesting that these populations may occupy different functional niches. 

Cells co-expressing CTLA-4 and TIGIT have been demonstrated to selectively inhibit pro-

inflammatory Th1 and Th17 responses but not Th2 responses, promoting tissue remodeling 

(Joller et al., 2014). We also observed considerably different proportions of Treg clusters 

across patients, suggesting that multidimensional profiling might be necessary to personalize 

future combination therapies.

Our analyses appear to offer a more nuanced view of tumor and normal tissue-resident 

myeloid lineage cells in comparison to T cells, in terms of continuity vs. separation of cell 

states. Unlike T cells, which primarily displayed continuous activation transitions, we 

observed sharper state delineations in myeloid populations. This difference between T cells 

and myeloid cells was likely due to a less appreciated developmentally established myeloid 

cell heterogeneity, whose understanding has only begun to emerge (Perdiguero and 

Geissmann, 2016). However, our analyses also showed common features to those in T cells, 

including gene expression covariance identifying cell clusters and an expansion of immune 

phenotypic space in breast tumor as compared to normal breast tissue.

In macrophages, we found both M1 and M2 associated genes frequently expressed in the 

same cells and positively correlated with one another along the same activation trajectory. 

These results challenge not only the customary model of macrophage polarization wherein 

M1 and M2 activation states exist as mutually exclusive discrete states, but also a refined 

model wherein macrophages reside along a spectrum between the two states. In fact, our 
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data goes further than models that admit for the co-existence of M1 and M2 states (Martinez 

and Gordon, 2014), demonstrating a positive correlation between the two. Our findings 

solidify and reinforce previously reported bulk analyses of tumor-associated macrophages in 

mouse models of oncogene-driven breast cancer, and mass cytometry analyses of myeloid 

cells in lung and kidney cancer (Chevrier et al., 2017; Franklin et al., 2014; Lavin et al., 

2017). Notably, we also observed more patient-specific variation in myeloid lineage cells 

than in T cells.

Our characterization of the immune cell subsets inhabiting primary solid tumor and the 

corresponding normal tissue, and their heterogeneity within and between patients, revealed 

continuity of differentiation states and expansions of a “phenotypic space” as principal 

features of the two main cellular targets of cancer immunotherapy - T cells and myeloid 

cells. In T cells these features were in large part shaped by TCR-induced activation and 

TCR-dependent environmental exposures. These observations, along with the resulting 

extensive immune single-cell RNA- and TCR-seq datasets and comprehensive analytical 

platform, will facilitate better understanding of potential mechanisms behind immune cell 

contributions to promoting and opposing tumor progression.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

Lead Contact Dana Pe’er (peerd@mskcc.org).

METHOD DETAILS

Sample Collection—Tissues were collected from women undergoing surgery for primary 

breast cancer. Normal tissue was obtained from contralateral prophylactic mastectomies of 

the same cancer patients, and peripheral blood mononuclear cells (PBMCs) were obtained 

from patients prior to their surgical procedures. All samples were obtained after informed 

consent and approval from the Institutional Review Board (IRB) at Memorial Sloan 

Kettering Cancer Center. Clinical information and metadata for the samples are provided in 

Figures S1A, S6A. Samples were chosen from diverse subtypes, as we aimed to identify 

common changes in immune phenotypes in cancerous tissue as compared to normal tissue 

and blood or lymph node, rather than delineate differences across breast cancer subtypes.

CD45+ cells from tumor and normal tissues were isolated by mincing the freshly obtained 

surgical specimens into 1 mm cubic pieces, followed by enzymatic digestion using Liberase 

TL (Sigma) for 20 min at 37°C. The d igested tissues were then passed through a 100M 

filter and washed twice with PBS prior to surface staining. Immune cells were stained at 

1×10^6 cells per ml for 20 min with anti-CD45 and DAPI for live-dead discrimination 

following Fc receptor blockade (BioLegend). Viable immune cells (CD45+DAPI−) were 

sorted on a FACSARIA sorter (BD Biosciences). Post-sort purity was routinely > 95% for 

the sorted populations.
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Each sample was then divided into 10,000 cell aliquots and at least 2 technical replicates 

were processed through the complete experimental protocol (see below), with the exception 

that technical replicates were often processed on the same sequencing lane.

Library Preparation for inDrop—We employed inDrop (Klein et al., 2015; Zilionis et 

al., 2017), a droplet-based single cell RNA sequencing technology. inDrop was selected over 

alternative technologies because it makes use of closely packed deformable hydrogel beads, 

ensuring that 75–90% of the input cells are paired with a unique barcode. This efficiency 

allowed deep sampling of many immune cells from individual patients, even in cases where 

immune infiltration was relatively low. As a result, we were able to compare triple-negative 

breast cancer (TNBC) samples with Her2+ and ER+ samples, which in some cases had as 

few as 50,000 tumor-infiltrating immune cells.

Isolated, FACS-sorted CD45+ cells were suspended in ice-cold 1× PBS supplemented with 

16% (v/v) Optiprep and 0.05% (w/v) BSA, and encapsulated into 1.5 nL droplets together 

with custom-made DNA barcoding hydrogel beads and RT/lysis reagents. The microfluidics 

chip was operated at a throughput of ~30,000 cells per hour, and over 75% of cells entering 

microfluidics chips were co-encapsulated with one DNA barcoding hydrogel bead. The 

frequency of cell doublets (droplets having two cells) was low (~0.59%) due to highly 

diluted cell suspensions used for encapsulation, corresponding to approximately 1 cell for 

every 12th droplet. In general, single-cell RNA-Seq library preparation was carried out 

following the protocol reported recently (Klein et al., 2015) with some modifications as 

described below.

RNA-Seq library preparation for 10× Genomics single-cell 5’ and VDJ 
sequencing—The scRNA-Seq libraries were prepared following the protocol provided by 

the 10× genomics Chromium Single Cell Immune Profiling Solution. Briefly, approximately 

12,000 FACS-sorted CD3+ immune cells (90–95% viability) were encapsulated into droplets 

at a concentration of 700 cells/uL, which results into expected mRNA barcoding of ~7,000 

single-cells with a multiplet rate 5.4%. After the RT step, droplets were broken and 

barcoded-cDNA was purified with DynaBeads, followed by 14-cycles of PCR-amplification 

(98°C for 45s; [98°C for 20s, 67°C for 30s, 72°C for 1 min] × 14; 72°C for 1 min). The 

resulting amplified-cDNA was sufficient to construct 5` gene expression libraries and T cell 

receptor enriched libraries. The cDNA of single-cell transcriptomes (50 ng) was fragmented, 

double-size selected with SPRI beads (avg. size 450 bp), and sequenced on Illumina 

NextSeq platform (High Output V2 Kit, 150 cycles). The cDNA encoding the TCR library 

(10 ng) was amplified with 10 cycles of PCR (98°C for 45s; [98°C for 20s, 67°C for 30s, 

72°C for 1 min] × 10; 72°C for 1 min) followed by an additional 10 cycles of PCR (98°C for 

45s; [98°C for 20s, 67°C for 30s, 72°C for 1 min] × 10; 72°C for 1 min) using DNA primers 

provided in the kit. After library construction, VDJ region-enriched libraries were size 

selected with SPRI beads (avg. size 600 bp) and sequenced on an Illumina HiSeq 2500 

instrument.

Construction of new barcode sets for inDrop—GC content has a known impact on 

PCR efficiency: high or low fractions of G and C nucleotides reduce sequence amplification 

efficiency. We analyzed data produced with an earlier version of DNA barcodes (Klein et al., 
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2015; Zilionis et al., 2017) and observed that barcodes with balanced GC content achieved 

higher molecule number (Figure S8A). We reasoned that balancing GC content across our 

barcodes would decrease variance across our libraries, thus increasing the average number of 

mRNA molecules observed per cell. Further, we observed that the original barcode 

sequences had a minimum Hamming distance of 2. This is adequate to identify but not to 

correct single-base errors. We redesigned a library so that all barcodes had balanced GC 

content, with Hamming distance of >= 3, such that all single base errors are correctable, and 

with an average Hamming distance between pairs of barcodes of 13.3. This was done by 

performing a constrained optimization over barcodes of various lengths obtained from 

Edittag (refer to Key Resources Table). As a result, the vast majority of barcode errors are 

correctable and, as our results showed, the single-cell RNA-Seq libraries generated with new 

DNA barcoding hydrogel beads produced an overall increase in molecules/million 

sequencing reads of 5.3%.

The custom-made hydrogel beads carrying new DNA barcode sets were synthesized using 

the Agilent Bravo Automated Liquid Handling Platform following the previously described 

protocol (Klein et al., 2015; Zilionis et al., 2017). Before loading the DNA barcoding beads 

into the chip, they were washed twice in 1× SuperScript-III RT buffer and lysis reagent (1% 

(v/v) Igepal-CA630). In contrast to the approach in Zilionis et al., the Illumina PE Read 1 

sequence was placed on the RT primer; thus the full-length primer sequence was as follows:

/5Acryd/PC/

CGATGACGTAATACGACTCACTATAGGGATACCACCATGGCTCTTTCCCTACACGA

CGCTCTTCCGATCT[12345678901]GAGTGATTGCTTGTGACGCCTT[12345678]NNN

NNNNNTTTTTTTTTTTTTTTTTTTV,

where 5Acryd is an acrydite moiety, PC is a photo-cleavable spacer, the letters in bold 

indicate T7 RNA promoter sequence, and underlined letters indicate the site for Illumina PE 

Read 1 Sequencing primer. The numbers indicate cell barcodes, which were specifically 

designed for this experiment to have 50% GC content and Hamming distance of >= 3 

between each pair of barcodes. Fluorescent in situ hybridization (FISH) analysis confirmed 

that hydrogel beads carried ~10^8 covalently-attached and photo-releasable barcoding DNA 

primers.

Increasing the throughput—To increase the cell isolation throughput we used a cell 

barcoding chip (v2) (Droplet Genomics) and flow rates for cell suspension at 250 μl/hr, for 

RT/lysis mix at 250 μl/hr, and for barcoded hydrogel beads at 75 μl/hr. The flow rate for 

droplet stabilization oil was 550 μl/hr. Such flow parameters generated approximately 

40,000 droplets an hour. After loading all components (cells, beads and RT/lysis reagents) 

into droplets, the final composition of a reaction under which cDNA synthesis was carried 

out was 155 mM KCl, 50 mM NaCl, 11 mM MgCl2, 135 mM Tris-HCl [pH 8.0], 0.5 mM 

KH2PO4, 0.85 mM Na2HPO4, 0.35 % (v/v) Igepal-CA630, 0.02 % (v/v) BSA, 4.4% (v/v) 

Optiprep, 2.4 mM DTT, 0.5 mM dNTPs, 1.3 U/ml RNAsIN Plus, and 11.4 U/ml 

SuperScript-III RT enzyme. After emulsion collection on ice the tube was exposed to 350 

nm UV-light to photo-release DNA barcoding primers attached to the hydrogel beads. The 

RT reaction was initiated by transferring the tube to 65°C for 1 min followed by a 1-hour 
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incubation at 50°C and 15 min at 75°C. Post-RT droplets were chemically broken to release 

barcoded cDNA, which was then purified and amplified as described previously (Klein et 

al., 2015; Zilionis et al., 2017). At the final step, libraries were amplified using trimmed PE 

Read 1 primer (PE1):

5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA

and indexing PE Read 2 primer (PE2):

5’-

CAAGCAGAAGACGGCATACGAGAT[index]GTGACTGGAGTTCAGACGTGTGCTCT

TCCGATCT,

where [index] encoded one of the following sequences: CGTGAT, ACATCG, GCCTAA, 

TGGTCA, CACTGT or ATTGGC).

Multiplexing of PCR libraries allowed for the pooling of different samples onto one lane of 

Illumina HiSeq2500 flow cell when desired.

Sequencing and fastq quality control—Data were sequenced on Illumina HiSeq 2500 

instruments using paired-end sequencing (PE1 54 bp and PE2 66 bp). Each replicate was 

sequenced on one half of a HiSeq lane, at an initial depth of approximately 100 million 

reads. scRNA-seq produces lower-complexity libraries than bulk sequencing techniques, 

which can infrequently lead to reduced base quality. Because each patient sample is 

precious, and because it is difficult to compare libraries with different average molecule 

counts, we verified the quality of each sequencing library with FastQC (refer to Key 

Resources Table), a software package that estimates the number of un-callable and low 

quality bases. Libraries that displayed significant (>25%) low quality bases were re-

sequenced to maximize inter-sample comparability. See Supplementary Table S1 for sample 

sequencing depths.

CyTOF sample preparation & data collection—CyTOF data was collected from three 

tumors (BC12–14) with the following metadata:

Patient ID Size Metastases Grade ER PR Her2 Postmenopausal Age Subtype BRCA

BC12 1.2 n/a 1 99 95 - + 83 Ductal Unknown

BC13 0.9 neg 1 99 75 - - 51 Ductal Unknown

BC14 2.7 pos 2 60 98 - - 46 Ductal Unknown

Custom conjugated antibodies were generated using MaxPar X8 antibody labeling kits 

(Fluidigm) exactly according to protocol. Tumor single-cell suspensions were quickly 

thawed and washed in PBS + FBS, then stained with 0.5mM Cisplatin for 5 min at room 

temperature. Reactions were quenched by adding Cell Staining Media (Fluidigm) containing 

EDTA. Cells were resuspended in FC-block (BioLegend) on ice for 20 minutes and washed. 

Cells were then stained with anti-CCR4 on ice for 30 minutes and washed in CSM. Samples 

Azizi et al. Page 16

Cell. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were resuspended in Fix I Buffer (Fluidigm) for 10 minutes at room temp., then centrifuged 

and resuspended in Barcode Perm Buffer (Fluidigm). Appropriate palladium barcodes 

(Fluidigm) were added and incubated 30 minutes at room temp. Cells were washed 2× in 

CSM then combined. The tumors were barcoded together with stock human PBMCs as 

carrier cells to increase cell yield during staining. A master mix for surface staining was 

prepared in CSM to yield final dilutions according to Supplementary Table S1. Cells were 

stained for 1 hour on ice, then washed in CSM, followed by MaxPar PBS (Fluidigm). Cells 

were fixed overnight in Fix/Perm buffer (eBiosciences) overnight at 4C, then washed in 

Perm Buffer (eBiosciences). A master mix for intracellular staining was prepared in Perm 

Buffer containing 2% fetal bovine serum to yield final dilutions according to Supplementary 

Table S2 (sheet 2). Cells were stained for 1 hour at room temp. then washed twice in Perm 

buffer and once in MaxPar PBS. Cells were then resuspended in 1.6% paraformaldehyde in 

MaxPar PBS containing 0.5 μM Intercalator-Ir (Fluidigm) for at least 1 hour. Cells were then 

washed once in CSM, twice in MaxPar Water (Fluidigm) and resuspended in MaxPar water 

to a concentration of 1×106 cells/mL. EQ 4 Element Calibration Beads (Fluidigm) were 

added to cells 1:10. Samples were acquired on a CyTOF2 (Fluidigm) equipped with a 

sample chiller and super-sampler (Victorian Airships) at a rate of < 400 events per second.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data preprocessing: SEQC

Overview:  At the time of data collection adequate analysis methods to construct count 

matrices from sequencing files for this data type were lacking. We therefore designed 

SEquence Quality Control (SEQC), a package that takes Illumina fastq or bcl files and 

generates a count matrix that is carefully filtered for errors and biases. The process is 

outlined in Figure S1B. We developed SEQC into a general purpose method to build a count 

matrix from single cell sequencing reads, able to process data from inDrop, drop-seq, 10×, 

and Mars-Seq2 technologies.

Briefly, SEQC begins by extracting the cell barcode and UMI from the forward read and 

storing these data in the header of the reverse read. This produces a single fastq file 

containing alignable sequence and all relevant metadata. The merged file is carefully filtered 

for cell barcode substitution errors, broken barcodes, and low-complexity polymers to 

eliminate errors early in the pipeline, saving analysis cost.

Filtered reads are aligned against the genome with STAR (refer to Key Resources Table), a 

high performance community-standard aligner. After alignment, minimal representations of 

sequencing reads are translated into an hdf5 read store object, where cell barcodes are 

represented in reduced 3-bit coding. Reads are annotated with a reduced set of exon and 

gene ids representing gene features—only the ones that are possible to detect with poly-A 

capture based droplet RNA sequencing—and SEQC attempts to resolve reads with multiple 

equal-scoring alignments.

In cases where both genomic and transcriptomic alignments are present, the transcriptomic 

alignments are retained. Unique alignments from the previous step are corrected for errors 

using an enhancement of the method designed in Jaitin et al. (Jaitin et al., 2014), with an 
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additional probability model to constrain the false positive rate. The error-reduced, uniquely-

aligned data are grouped by cell, molecule, and gene annotation, and compressed into count 

matrices containing (1) reads and (2) molecules. This matrix is thresholded.

Finally, SEQC outputs a series of QC metrics in an HTML archive that can be used to 

evaluate the quality of the library and the success of the run. SEQC is fully modular, and as 

such has been adapted to process drop-seq, 10×, and mars-seq data by switching de-

multiplexing modules. In addition, it can be configured either to run on a local high-

performance cluster, or can automatically initiate runs on Amazon Web Services compute 

platforms for those without access to local compute servers. The SEQC code is free and 

open-source, and can be found at https://github.com/ambrosejcarr/seqc.git, licensed under 

the MIT license.

Fastq Demultiplexing:  The first stage of SEQC takes multiple fastq files containing 

genomic information and barcoding metadata spread across multiple sequencing files, and 

merges that information into a single fastq file using a “platform” class that comprises the 

locations of the cell barcodes and UMIs, the type of barcode and UMI correction to be run, 

and the number of T-nucleotides that are expected to be read from the capture primer. The 

merged fastq file contains genomic, alignable sequence in the sequence field, and has read 

metadata prepended to the name field, separated by colons. This step can be adjusted for 

novel sequencing approaches by adding a new platform class, often with only 10 lines of 

code. This allows the complete SEQC pipeline to be rapidly tested on iterations of new 

technologies.

For inDrop, which has variable-length cell barcodes, the description defines an additional 

method to localize the constant spacer sequence, which is flanked on both sides by the cell 

barcode (Figure S8B). The cell barcodes and molecular identifier are then extracted relative 

to the position of the spacer. Finally, we count the number of T-nucleotides that follow the 

UMI, where the poly-T spacer is supposed to be, and store this information for downstream 

filtering steps. The generated fastq file has the following format:

@<CELLBARCODE>:<UMI>:<#T>;GENOMIC READ NAME (read 2)

<GENOMIC SEQUENCE (read 2)>

+

<GENOMIC QUALITY (read 2)>

Substitution Error Rate Estimation:  Two pieces of information not retained by the 

demultiplexing module are the cell barcode and UMI quality scores. Some pipelines, such as 

10× Genomics’ Cell Ranger, posit that sequencing error is the major source of substitution 

mutations in 3’ sequencing data. Our inDrop data does not support this view of library 

construction. In inDrop, each read contains a 16–19 bp cell barcode selected from a whitelist 

of known barcodes. By examining barcodes for single base mutations, we estimated a 

positional, nucleotide-specific error rate for each sample (Table S1). E.g. to calculate the 
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probability of a conversion from adenosine to cytosine, where A → C denotes this 

nucleotide conversion:

PA C = 1
n ⋅ m ∑

j = 1

m
∑

i = 1

n
1 i f xi j: A C else 0

where xj is a barcode, j ∈ [1,…, m] and each barcode has n bases.

The average observed per-barcode error rates are 4%, a number far in excess of the 

abundance reported by the Illumina sequencer, which can be reliably calculated from errors 

in phiX included in sequencing runs (mean error rate 0.2% ∓ 0.1%); a 4% error rate is more 

in line with aggregate error rates of the enzymes used in the preparation of sequencing 

libraries.

To verify that quality scores do not predict error rates, we tested the correlation between the 

error state of the cell barcode (1 if the base contains an error and 0 otherwise) with Illumina 

quality scores. If quality were predictive of substitution errors, we would expect to observe 

strong negative correlations, suggesting that low quality implies high error probability. 

However, we observed no relationship (mean r2=0.04, max r2=0.06; ‘C’ errors) on either 

inDrop or 10× data.

In contrast, mutations to N bases produce the expected relationship, with base quality 

negatively correlating with N substitutions (r2=−0.87). However, N base errors made up less 

than 1 / 100,000 of the observed errors in our experiment, and we conclude (1) that base 

quality is not meaningfully predictive of error rates, and (2) that most sequenced error is 

derived from upstream library construction steps.

While a 4% barcode error rate is higher than the error rate observed by other technologies, 

the use of linear amplification means that the errors we observe are non-cumulative: each 

transcript is generated from the original captured mRNA molecule, and as a result, 99.94% 

of observed barcodes have one or zero errors, all of which are correctable. This is in contrast 

to PCR-based amplification approaches which propagate errors that occur in early cycles, 

requiring more complex, graph-based correction methods, and larger Hamming buffers (see 

https://github.com/vals/umis).

Pre-alignment filtering:  This module takes as input a raw merged fastq file and outputs a 

merged fastq file with corrected cell barcodes and full length UMI sequences (that may still 

contain substitution errors).

Cell barcode correction:  Cell barcode errors in inDrop are easy to detect by design: we 

have a whitelist of 147,456 barcodes, each with Hamming distance >= 3. Thus, any single 

base substitution error is resolved by creating a lookup table for all barcodes and all single 

substitutions. If found in the table, the barcode is corrected. If not, it is discarded. As 

estimated above, the probability of a cell barcode containing an error is ~2%, and thus the 

expected rate of barcodes accruing 2 errors in a barcode is 1 / 2500. A 2-error lookup table 

has a very large memory footprint and would significantly increase computational cost of 
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processing each experiment. Alternative algorithms have greater complexity and would 

increase run time. Thus, we accept this low rate of loss and proceed to correct single base 

errors, recovering approximately 2% additional data for each sample.

UMI validation:  In contrast to cell barcodes, UMIs are random, and correction cannot 

proceed by the same strategy, so we devote a section later in the pipeline to the detection of 

UMI errors after the gene and mapping position of a fragment are identified.

Another source of error in scRNA-seq experiments, including inDrop, cel-seq, mars-seq, and 

likely drop-seq and 10× genomics, is the fracturing and random-priming of capture primers 

(Figure S8C) (Jaitin et al., 2014). We often observe cell-barcode prefixes followed by 

randomers. When fragmentation occurs at the cell barcode level, we can remove the 

fragments using the whitelist approach above. To remove barcodes that break in the UMI, 

we determined that we would sequence 5 bases into the poly-T tail of the primer, which we 

expect to be all T-nucleotides. By excluding reads with more than 1 non-T nucleotide, we 

are able to exclude most broken UMIs.

In aggregate, the filters in this section remove an average of 36% of reads (sd = 9.3%), 

depleting the count matrix of spurious molecules (see Table S1 for detailed values). These 

values are consistent with the results of running SEQC on drop-seq or MARS-seq datasets 

(data not shown).

Annotation Construction—Because the genome annotation is designed to be broadly 

applicable across sequencing modalities, it contains many features that are theoretically 

undetectable by inDrop and other 3’ sequencing technologies. To address this, we 

constructed a custom annotation by starting with the current GENCODE genome and GTF 

file and removing all feature annotations that are not theoretically detectable by inDrop.

Two characteristics of inDrop limit its ability to capture certain gene biotypes. First, it 

employs poly-A capture, and thus will not detect non-polyadenylated transcripts. Second, it 

uses SPRIselect beads at several stages to deplete primers from reaction media. These beads 

carry out size selection, preferentially depleting primers but also small RNA species such as 

snoRNA, miRNA, and snRNA. Thus, libraries are expected to contain only transcribed, 

polyadenylated RNA of length > ~200 nt. Examining gene biotypes, this meant retaining 

protein coding and lncRNA biotypes, and excluding others.

To determine the impact of this change of reference on our data, we aligned the same single-

cell immune dataset against the full reference and the reduced reference described above. 

We constructed a pseudo-bulk dataset for each reference by summing the molecules across 

all cells, producing an expression vector that contained a single value for each gene. We 

hypothesized that the reduction in reference features would result in a concentration of 

alignments in biologically relevant genes by depleting non-specific features, and that there 

would be many drop-out events where genes would be detected in the complete reference, 

but not the subset.

This is exactly what was observed (Figure S8D). The overall r2 value between the references 

is 0.94, with 93% of genes holding the exact same values in both reference alignments. In 
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addition, information is concentrated in 35% fewer features, despite losing only 8% of the 

total molecules. There is also a large drop-out contingent present only when aligned against 

the complete reference. Gene ontology enrichment against this reference revealed high-level 

biologically agnostic enrichments, such as “protein coding,” “translation,” and other 

enrichments, which suggest a random sampling of high-expression genes.

Surprisingly, there was also a contingent of genes present only in the reduced alignment. 

These genes were highly enriched for immunological pathways, including JAK/STAT 

signaling, cytokine production, cytokine receptors, and immune growth factors, and further 

included critical immune genes such as IL3RA (Figure S8D). This suggests that they are 

likely to represent true annotations for genes in this dataset, and that reducing the annotation 

produces a gain in specificity. We reasoned that these genes were uncovered in the reduced 

annotation because there are features in the complete set, such as pseudogenes, which have 

high homology to transcribed genes. Including these annotations, which should not be 

detectable, produces illogical multi-alignment to multiple genetic locations. When such 

multi-alignment cannot be resolved, most pipelines (including this one) exclude those multi-

aligned reads, losing valuable signal. Given these results, we believe that the 8% molecule 

loss is the result of correctly discarding low-complexity alignments that were spuriously 

assigned a low-quality transcriptomic feature.

We note that Cell Ranger, the most commonly used 10× pipeline, carries out an extreme 

version of this redesign: it removes any gene that is not protein coding. We believe that this 

is too harsh: it excludes numerous transcribed pseudogenes and lincRNA which have been 

previously shown to be expressed, have biological functionality, and be detectable in 

scRNA-seq.

The extreme case of annotation redesign is to exclusively align to expected features. Several 

methods exist to accomplish this, including Kallisto (Bray et al., 2016) and Tophat2. 

However, 3’ scRNA-seq data typically contains between 10–30% genomic contamination, as 

identified by intergenic alignments. When we aligned directly against the transcriptome, we 

found that approximately 1% of intergenic reads were mistakenly aligned to exonic locations 

despite having higher alignment scores to genetic regions (data not shown). As a result, we 

align to the genome, considering only detectable features, and prefer transcriptomic 

alignments in cases where there are equivalent genomic and transcriptomic alignments, but 

remove reads that score highest against the genome.

Alignment—The merged, single-ended fastq files are aligned to hg38 with STAR using the 

annotation file as described. We selected STAR because it is a fast, highly parallel, cloud-

scalable aligner that benchmarks well against existing aligners. We note that STAR 

automatically trims bases as necessary to find alignments, and as such no pre-trimming of 

reads based on quality is carried out. Alignment parameters used are as follows: —

outFilterType BySJout, —outFilterMultimapNmax 100, —limitOutSJcollapsed 2000000 —

alignSJDBoverhangMin 8, —outFilterMismatchNoverLmax 0.04, – alignIntronMin 20, —

alignIntronMax 1000000, —readFilesIn fastqrecords, —outSAMprimaryFlag AllBestScore, 

—outSAMtype BAM Unsorted
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This module thus takes as input a fastq file and produces a bam file containing up to 20 

multiple alignments per input fastq record, with all unaligned reads contained in the same 

file. This format is useful for archival purposes, as it can be used to reconstruct the original 

merged fastq file without data loss.

Multi-Alignment Correction—Alignment algorithms aim to identify the unique portion 

of the genome that was transcribed to generate the read that is being aligned. In some cases, 

this unique source cannot be identified, and in these cases multiple possible sources are 

reported. These are commonly termed “multi-alignments”, and because 3’ ends of genes 

have higher homology than other parts of the genome, multi-alignments are more common 

in 3’ sequencing data than in approaches that cover the full-transcriptome, such as Smart-

seq2. Despite the increased frequency, most 3’ pipelines discard multi-alignments and deal 

exclusively with unique genes. This module is designed to resolve all multiple alignments, 

producing an output that contains resolved (now unique) alignments.

There are several existing approaches to resolving multi-alignments, of which transcriptomic 

pseudo-alignment, such as that done by Kallisto (Bray et al., 2016) and EM approaches, 

such as RSEM (Li and Dewey, 2011), are the most common. However, both methods have 

the effect of decreasing signal-to-noise ratios for inDrop sequencing data. For RSEM, low-

coverage 3’ sequencing data contains considerable uncertainty, which RSEM is designed to 

pass into the count matrix. This uncertainty is normally removed by UMI-aware count-based 

methods, although it incurs some data loss. Kallisto and Salmon, in contrast, both pseudo-

align and resolve multi-alignments, but only against the transcriptome. This causes 

alignments from contamination that is of genomic origin to be pseudo-aligned to 

transcriptomic positions, producing inflated and spurious alignments for low-homology 

genes.

Of the high-throughput droplet-based approaches, inDrop has a unique combination of linear 

amplification and UMIs, which produces high fragment coverage per UMI. Although 

individual alignments are often ambiguously aligned to more than one location, it is often 

possible to look at the set of fragments assigned to an UMI and identify a unique gene that is 

compatible with all the observed fragments. Here we implement an efficient method to find 

the unique genes that generate each fragment set. When a fragment set cannot be attributed 

to a specific gene, it is discarded.

Starting with all reads attributed to a cell, we begin by grouping reads according to their 

UMI, producing “fragment sets” S. Typically, these fragment sets represent trivial problems, 

such as s1= [A, A, AB], a set with two unique alignments to gene A and a third ambiguous 

alignment to genes A and B. In this case all three observations support the gene A model, 

while only one observation supports the gene B model.

In cases of UMI collisions, where two mRNA molecules were captured by different primers 

that happen to share the same UMI sequence, this can lead to problems wherein reads from 

these merged fragment sets are mistakenly discarded as multi-aligning. However, because 

the probability of two genes sharing significant homology is low, it is usually possible to 
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recover these molecules by first separating fragment sets into disjoint sets. For example, if a 

fragment set

s2 = [A, AB, B, B, C, CD, ABC, E, EF, EF],

it is broken into two disjoint groups:

s2 = s3 ∪ s4; s3 ∩ s4 = ∅ where: s3 = [A, AB, B, B, C, CD, ABC] and s4 = [E, EF, EF] .

This is biologically reasonable, as molecule collisions are the only way to reasonably obtain 

a group of molecules that covers two non-overlapping gene annotations.

To calculate disjoint sets efficiently, we utilize a Union-Find data structure which finds 

disjoint sets in O(log(n)) time. Pseudo-code is as follows:

summarize alignments as data = [cell=c, umi=u, gene=g]

sort data by c > u > g

for fragment_set in data[c, u]:

      for disjoint_set in union_find(fragment_set):

            find number_shared_genes in disjoint_set

            if number_shared_genes == 1:

                  resolve disjoint_set

We note that this allows us to more accurately identify the alignment rates for each gene, 

build better error models for barcode correction, and recover cases where reads align 

multiply to the same gene. More critically, it gives us the ability to recover fragments that 

would otherwise not be resolvable due to sequence homology, and these improved fragment 

counts per molecules act as significant predictors of molecule likelihood and UMI quality. 

We note that a similar strategy has since been published by (Klein et al., 2015) and a 

comparable logic underlies the concept of transcript compatibility in Kallisto (Bray et al., 

2016).

We had previously created a model wherein disjoint sets with more than 1 common gene 

could also be disambiguated by calculating the probability of gene-gene multi-alignments 

from their homology, by comparing gene sequences using a Suffix Array built from the final 

1000 bases of each gene. With this strategy, we could estimate the relative probability that 

genes were generated from each potential candidate molecule shared across all reads in the 

fragment set. However, the relative rarity of such events (<1% of data) combined with the 

additional run-time complexity of this method caused us to omit it from the production 

version of SEQC. This module typically resolves approximately 1M reads per hiseq lane. 

The result of this module is a bam or h5 file containing only unique alignments to gene 

features.

Azizi et al. Page 23

Cell. Author manuscript; available in PMC 2019 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Molecular Identifier Correction—Errors in molecular identifiers are well-known to 

introduce noise in sequencing experiments (Jaitin et al., 2014), since undetected errors 

induce spurious increases in molecule counts. This module takes an hdf5 read store, 

identifies errors in UMIs, and replaces them with their corrected value. The most common 

approach, published in (Jaitin et al., 2014) for MARS-seq, does a very good job of detecting 

and removing molecule errors in inDrop (due to similarity in the Cell-seq protocol used in 

both technologies). This approach deletes any UMI for which a higher-abundance donor 

UMIs can be identified that (1) lies within a single base error (2) has higher count (3) and 

contain all observed alignment positions of the recipient RNA. This results in removal of 

approximately 20% of observed UMIs. However, we observed that this model can be overly 

stringent, correcting UMIs when the donor molecule has as few as one read count higher 

than the recipient.

We apply a modified version of the (Jaitin et al., 2014) approach, where we replace errors 

with corrected barcodes instead of deleting them, and where we only eliminate errors when 

we have adequate statistical evidence. To accomplish this, we utilize the spacer and cell-

barcode whitelist to empirically estimate a per-base error UMI error rate of approximately 

0.2% per base, e.g. to calculate the probability of a conversion from adenosine to cytosine, 

where A → C denotes this nucleotide conversion:

PA C = 1
n ⋅ m ∑

j = 1

m
∑

i = 1

n
1 i f xi j: A C else 0

where xj is a barcode, j ∈ [1,…, m] and each barcode has n bases.

To calculate the probability a target read was generated in error from a specific donor 

molecule, we calculate the product of the errors that could potentially convert a donor into 

the observed molecule. To convert, for example, ACGTACGT into TTGTACGT, having one 

A → T and one C → T conversion:

e = [PA T , PC T]

The probability of the above conversion is

PACGT ACGT TTGT ACGT = ∏i
nei

Because there are multiple potential donors for each molecule, we calculate the conversion 

probability for each molecule. Assuming errors are randomly distributed, they can be 

modeled by a Poisson process, and Poisson rate term can be estimated from the data:

λ = ndonor × Pconversion

where ndonor is the number of observations (reads) attributed to the donor molecule in the 

data. Since the sum of multiple Poisson processes is itself Poisson, the rate of conversion 
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from each donor can be combined into a single rate λagg for each target molecule. The set 

of conversions s that we consider for each target molecule are all conversions that can occur 

with two or fewer nucleotide substitutions, in other words, all molecules within a Hamming 

distance (Dh≤ 2, where (Dh is a matrix of pairwise Hamming distances between barcodes.

s = [λ j i i f Dh, (i, j) ≤ 2]

λagg = ∑
i ∈ s

n
λi

Finally, given the probability of a molecule being observed via the substitution errors that 

are corrected by the Jaitin method, we can calculate the probability that observations of a 

specific molecule x were generated via the Poisson process with rate λagg:

P =
λagg

xe−λ

x!

Cases that are very unlikely (p < 0.05) are not corrected. For inDrop experiments, this results 

in a recovery of an additional 3–5% of molecules in the data that are otherwise error-

corrected. We note that this model is not applicable to all data; it is useful in this instance 

because we have relatively high coverage (10 reads / molecule), which allows us to evaluate 

our confidence in molecule observations. For lower-coverage data, it may be appropriate to 

err towards removing molecules instead of retaining them.

Raw Digital Expression Matrix Construction—To create a digital expression matrix, 

the uniquely-aligned, error-corrected hdf5 read store is de-duplicated by counting unique 

groups of reads with the same UMI, cell barcode, and gene annotation. A single molecule 

then replaces each set, and those molecules are summed to create a cells × genes matrix. 

scRNA-seq count matrices are often over 95% sparse, and thus are stored in matrix market 

format and operated on as coordinate sparse or compressed sparse row matrices. We call 

these count matrices “raw” count matrices because they contain all barcodes observed in an 

experiment.

Cell Selection and Filtering

Size Selection:  Barcoding beads are loaded into inDrop at higher rates than cells in order to 

ensure that a high fraction of cells are encapsulated with exactly one bead. As a result, the 

raw count matrix contains a mixture of cell barcodes that were encapsulated with cells and 

cell barcodes that were encapsulated alone, but may nevertheless capture some ambient 

mRNA molecules that float in solution due to premature lysis or cell death in the cell 

solution. We separate these by finding the saddle point in the distribution of total molecule 

counts per barcode and excluding the mode with lower mean. In practice, we accomplish 

this by constructing the empirical cumulative density function of cell sizes and finding the 
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minimum of the second derivative (Figure S8E) of the distribution. For typical inDrop runs, 

this results in the elimination of over 95% of the cell barcodes, but retains as many as 95% 

of the molecules.

Coverage Selection:  Molecule size alone is not adequate to remove all barcodes that were 

not paired with real cells. Some barcodes appear to aggregate higher numbers of errors, and 

as such we often see a bimodal distribution of molecule coverage: a higher mode that 

represents real cells, and a smaller mode that represents aggregated errors (Figure S8E). We 

remove the low-count density by fitting 2-component and 1-component Gaussian mixture 

models to each axis and comparing their relative fits using the Bayesian information 

criterion. When the 2-component model’s difference in likelihood is at least 5% larger than 

the 1-component model, we exclude the densities with the smaller mean (Figure S8E).

Filtration of dead or dying cells:  We score cells for mitochondrial RNA content, which is 

widely used as a proxy for cell death in scRNA-seq. We observe that a small fraction of cells 

contain a higher abundance of molecules annotated by this signature, as much as 20–95% of 

their RNA. Since inDrop does not lyse mitochondria, we reason that these are likely to be 

cells dying due to stress imposed on them by the inDrop procedure or prior sorting, and 

remove them from further analysis. This filter may be turned off for studies where apoptosis 

is a relevant phenotype.

Low-complexity cell filtration:  Finally, we regress the number of genes detected per cell 

against the number of molecules contained in that cell. We observe that there are sometimes 

cells whose residuals are significantly negative, indicating a cell which detects many fewer 

genes than would be expected given its number of molecules. We exclude these cells whose 

residual genes per cell are more than 3 standard deviations below the mean (Figure S8E).

Information Storage & Run Time—scRNA-seq generates large volumes of data whose 

storage can be costly and onerous. We thus store only aligned, barcode-tagged bam files 

which losslessly retain all information from the original multiplex fastq files in small storage 

space. SEQC supports reprocessing of these files, and backwards conversion into fastq files, 

if users desire the ability to process their data on other platforms or reprocess with updated 

versions of SEQC. Additional metadata files take up nominal space, and generated count 

matrices are stored in matrix market sparse format in light of the sparsity of the data. SEQC 

requires approximately 8 hours to run on a standard 32 GB / 16 core Amazon c4.4×large, 

and costs $5.84 on on-demand or $0.88 on preemptible (spot) instances to process an 

inDrop, drop-seq, or 10× genomics experiment. In contrast, the 10× genomics commercial 

pipeline Cell Ranger costs approximately $20, in large part due to high RAM requirements.

Data Quality Analysis of Breast Leukocytes—We applied SEQC to each of the 14 

inDrop samples and 61 replicates in our data. Each sample had a minimum of 2 replicates 

(Table S1). Samples were sequenced such that each cell was covered by an average of 

22,000 reads. Cells contained on average 15 reads per molecule, and cell saturation was 91% 

across all samples and replicates. On average, 20% of cells were excluded due to high 

mitochondrial content, a proxy for cell death and stress. Samples obtained from tissue 

requiring dissociation had significantly higher mitochondrial transcripts (25%) than those 
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obtained from blood (13%) (t=2.42, p=0.018). Small numbers of low-complexity cells 

displaying fewer than expected genes for their molecule count were detected and removed, 

removing 1.2 ∓ 2.3% of total molecules. A complete summary of read abundances, genes 

detected, and number of cells can be found in Table S1 (Sheet 2). Having excluded non-

viable cells from downstream analysis, we shifted to examining within-sample consistency 

across technical replicates.

Library Consistency and Quality Control—The inDrop encapsulation procedure runs 

10,000 cell aliquots in series, leaving open the possibility of batch-to-batch variation within 

technical replicates of patient samples. To determine the magnitude of batch-to-batch 

variation, we compared the variation within patient replicates to between-patient 

comparison. Each sample was collapsed into pseudo-bulk by summing over the cells of the 

digital expression matrix. We determined intra-patient consistency by calculating the 

average pairwise Pearson correlation between pairs of samples, and compared that against 

the inter-patient correlations. After excluding one aberrant sample with a sample-sample 

correlation of 0.6, we observed Pearson correlations with a minimum of r2=0.92, a mean of 

0.97, and a standard deviation of 0.02 (full pairwise correlation matrix in Figure S8F). This 

is in contrast to the complete pairwise correlation matrix, where the average correlation 

between patients is 0.72. This suggests that patient-to-patient variation is primarily 

biological, and that we have low technical variation between inDrop runs. These 

comparisons are generated automatically by SEQC, and serve as an internal control for batch 

variation.

Individual Sample Normalization and Clustering—To characterize the immune cells 

extracted from patients in this study, we began by analyzing samples independently to 

identify their cellular composition and cell type abundances (Figures 1C, S1C). Cells were 

first normalized by median library size.

The normalized data was then decomposed using randomized principal component analysis. 

We selected the number of principal components to retain using the knee point (minimum 

radius of curvature in eigenvalues). This resulted in 6–10 principal components per sample. 

The dimension-reduced PCA projection was used as the input to PhenoGraph (Levine et al., 

2015), which was used to cluster the data with default parameters (k=30 nearest neighbors). 

The same principal components were used to generate tSNE projections (van der Maaten 

and Hinton, 2008), which were generated with barnes-hut tSNE, implemented in the bhtsne 

package https://github.com/lvdmaaten/bhtsne (Figure 1C, S1C).

To determine the reliability of inDrop in representative sampling of heterogeneous 

populations, we compared the proportions of cell types as measured by flow cytometry and 

scRNA-seq. Although this comparison revealed a significant bias towards monocytic lineage 

cell subsets in scRNA-seq, we observed a high correlation between cell type frequencies 

across patient samples (r2 > 0.8, Figure S1D). The observed bias, likely due to the higher 

RNA yield of myeloid cells vs. T cells, was systemic, and did not adversely affect our 

analyses.
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Cluster Cell Type Annotation—As reference data, to facilitate the interpretation and 

labeling of clusters derived from PhenoGraph and Biscuit, we collected previously generated 

bulk gene expression profiles of sorted cells from a number of sources. To label our immune 

clusters we collected profiles from several published datasets on sorted immune populations 

(Jeffrey et al., 2006; Novershtern et al., 2011), which provided 37 and 32 sorted populations, 

respectively. In addition, samples from the ENCODE consortium were added as negative 

controls to identify and subsequently remove contaminating stroma and tumor cells which 

may have infiltrated the sample due to low-level CD45 expression or autofluorescence. To 

determine the gross cell types of the clustered immune cells extracted in this experiment, we 

examined the correspondence between cluster centroids for PhenoGraph clusters or mean 

parameters for Biscuit clusters and the collected cohort of bulk profiles.

Bulk samples were library-size normalized and pre-processed by mean centering, and in the 

case of microarray data from (Jeffrey et al., 2006; Novershtern et al., 2011), the data was 

also scaled by standard deviations. In the case of PhenoGraph clusters (Figures 1C, S1C), 

cells were library size normalized, clusters were mean centered, and low-expression genes 

with an average of fewer than 1 count per cell were removed to ensure the correlations were 

based on the highly expressed genes in each cell type. Cluster centroids were then correlated 

with bulk profiles. In the case of Biscuit clusters (Figures 2E, F), mean parameters for each 

cluster were correlated with bulk profiles.

Each of the bulk profiles was marked as having derived from one of several major cell types: 

B-cells; T-cells (naive, central memory, cytotoxic, Treg); Monocytic cells (monocytes, 

dendritic cells, macrophages); Mast cells; Neutrophils; or NK-cells. The highest-scoring 

bulk profile for each centroid was used to categorize each cluster by its type, and types were 

split for downstream analysis.

Cells were also typed by examining expression of known marker genes. In this analysis, 

cells were scored as detecting a marker gene if the cell contained a non-zero molecule count 

for that gene. Each cell was corrected for its detection rate (the fraction of total genes 

detected in that cell) and the marker detection rate was then averaged across cells of a 

cluster. Markers used to type cells included NCAM1, NCR1, NKG2 (NK-cells), GNLY, 

PFN1, GZMA, GZMB, GMZM, GZMH (cytotoxic T, NK), FOXP3, CTLA4, TIGIT, 

TNFRSF4, LAG3, PDCD1 (Exhausted T-cell, T-regulatory Cell), CD8, CD3, CD4 (T-cells), 

IL7R (Naive T-cells), CD19 (B-cells), ENPP3, KIT (Mast cells), IL3RA, LILRA4 

(plasmacytoid DC), HLA-DR, FCGR3A, CD68, ANPEP, ITGAX, CD14, ITGAM, CD33 

(Monocytic Lineage). For all retained clusters, the two typing methods were in agreement 

(Figure 2H).

Twelve populations did not correlate highly with any of the immune populations sorted and 

sequenced in Dmap and Garvan, and were unique among the Biscuit clusters. However, 

when the same analysis was performed with ENCODE data that included non-immune 

populations, we found that these clusters (7, 10, 13, 14, 17, 18, 26, 32, 33, 34, 52, and 79), 

which are marked in Table S2, correlated much more highly with various bulk-sorted 

epithelial, stromal, and endothelial cell populations. Further, manually examining their 
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Biscuit-identified differentially expressed genes, provided in Table S3, led to an identical 

conclusion. They were thus labeled as non-immune and excluded from the present study.

Gene Signature Summarization Across Patients—While attempting to interpret 

biological signals that were observed in the studied immune cells, we realized that it was 

important to consider several facets of gene signature enrichment: (1) the classically studied 

mean value of the signature across cells in the cluster, but also (2) the marginal distribution 

of cell loadings across the signature, and (3) the relative contribution of each gene. 

Therefore, for plots of signature expression by patient we began by constructing a barplot of 

the counts for each gene in the signature, corrected for cellular observation rate (the total 

number of genes observed with molecule count > 1). This displays the contribution of each 

gene to the signature (top panel in Figure 1E, 2B, and S1E–G). The normalized values for 

each signature, per cell, are then summarized as a box plot to display the variation of cells in 

each patient (left panels). Finally, the cluster median of each gene is taken per patient, and 

the cluster medians are z-scored across patients. The z-scored values are plotted as a 

heatmap (center-right panel in Figure 1E, S1E–G and 2B), facilitating a comparison of 

signatures across patients.

Gene Signatures for Cluster Annotation and Analysis—The full lists of compiled 

gene signatures used for distinguishing clusters, particularly in Figures 5A–C, 6D–E, S7E, 

can be found in Table S4 and may serve as a valuable resource for additional investigations. 

To create these lists we broadly surveyed the extant literature and manually curated 

consensus lists of genes to be included. The relevant literature surveyed to form these 

signatures is listed in Table S4 (last sheet).

Biscuit Clustering and Normalization for Merging Samples—When attempting to 

merge immune systems from multiple patients, we observed that in some cases, cells were 

more similar to other cells from the same patient than they were to those of the same cell 

type. As an example, Figure 2A (left) shows scRNA-seq data from 9K immune cells from 4 

breast cancer tumors (excluding other tissues) after normalization of cells to median library 

size, suggesting large differences between patients. Moreover, the tSNE projection does not 

suggest diverse subpopulations and structure beyond the two main cell types, lymphoid and 

myeloid cells (Figure 2A left).

The differences across patients are likely caused by a large number of factors, both technical 

and biological. Technical factors include differences in machine, enzyme activity, lysis 

efficiency, and experimental protocol. These samples were also subject to operational 

variation during the clinical resection, transport, and handling. These factors all impact cell 

viability, which in turn affects the single cell RNA-seq library preparation, in particular 

molecular capture rate and sampling. Because molecular capture is a binary event, and the 

capture rates are very low, these technical variations often determine whether a given gene 

feature is observed in the data for a given cell.

These more technical artifacts, particularly in capture rate, are confounded with biological 

differences. This is particularly challenging in the case of immune cells, where activated 

cells have higher transcription rates. Thus, the number of captured molecules may be higher 
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in activated immune cells, and therefore activation of immune cells can be convolved with 

total counts (Singer et al., 2016). As a result, methods that normalize all cells together may 

remove critical cell type-specific biological variation in the systems of interest such as 

immune activation and environmental response. Indeed, we see large differences in the 

number of activated T cells across patients (Figure 2B), with more activated T cells in the 

Triple Negative subtype as expected (Dushyanthen et al., 2015). Hence, normalizing by 

library size will likely remove these biological variations. Cell type-specific normalization is 

especially crucial in cases involving vast subtype diversity, such as immune cells including 

large macrophages and smaller lymphocytes.

To solve this problem we developed and applied the method “Biscuit” (short for Bayesian 

Inference for Single-cell ClUstering and ImpuTing) to simultaneously cluster cells and 

normalize according to their assigned clusters (Figure S8G–I). This is done through 

incorporating parameters denoting cell-specific technical variation into a Hierarchical 

Dirichlet Process mixture model (HDPMM) (Görür and Rasmussen, 2010)(Figure S8G). 

This allows for inference of cell clusters based on similarity in gene expression as well as in 

co-expression patterns, while identifying and accounting for technical variation per cell 

(Figure S8H, I). Two key ideas that power Biscuit are the use of gene co-expression as a 

more robust means to identify cell types, and the normalization of each cell type separately 

to better account for cell type-specific effects on technical variation. The main idea behind 

the use of co-expression is that cell types not only share similar mean expression, but also 

share similar co-expression patterns (covariance) between genes. While mean expression can 

be more sensitive to capture efficiency, covariation is more robust to such effects. This 

similarity in co-variation can be used to improve normalization and in turn improve 

clustering, through the learning of cluster-specific parameters.

By jointly performing normalization and clustering, we retain biological heterogeneity and 

avoid biases that result from independent clustering and normalization, and instead are able 

to match cells to clusters of the same cell type from different patients which may have very 

different sampling rates. Figure 2A (right) shows the same data from 4 tumors after 

normalization with Biscuit. Note that Biscuit does not use any information on sample IDs in 

the normalization, and normalization is only driven by cluster assignments. The Biscuit-

normalized data shows that the differences in library-size normalized data were largely 

artifacts of normalization and batch effects. Furthermore, data from Biscuit shows richer 

structure suggesting diversity in cell types. Hence, we then applied Biscuit to data from all 8 

tumors to infer the full diversity of immune cell types in the breast tumors, which identified 

67 immune clusters, indicating significant diversity in both lymphoid and myeloid cell types 

(Figure 2C).

Summary of Biscuit model: Starting with the count matrix X = [x1, … . , xn], where each 

column x j
(1, …, d) contains the expression (number of unique mRNA molecules) of d genes 

in cell j, the model assumes the log of counts l j = log(0.1 + x j) for each cell j = (1,…, n) 

follow a multivariate Normal distribution: l j |z j = k N(α jμk, β jΣk) where zj denotes the 

assignment of cell j to cluster k, and μk, Σk are the mean and covariance, respectively, of the 
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k-th mixture component (cluster), and scalars αj, βj are cell-dependent scaling factors used 

for normalization. Note that the assumption of log Normality has been verified using model 

mismatch and Lilliefors tests (Prabhakaran et al., 2016). Within a Bayesian model setting, 

we assign conjugate prior distributions to the parameters, namely a symmetric Dirichlet 

prior of the order K, a conjugate-family prior over μk as Normal and for Σk as Wishart. A 

noninformative Normal prior is set for αj and an Inverse-gamma is set forβj. The full model 

specification is thus as below:

l j
(1, …, d) z j = k N(α jμk, β jΣk)

y j N(μk, Σk)

μk N(μ′, Σ′)

Σk
−1 Wish(H′−1, σ′)

μ′ N(μ″, Σ″)

Σ′−1 Wish(d, 1
dΣ″)

H′ Wish(d, 1
d Σ″)

σ′ InvGamma(1, 1
d ) − 1 + d

z j π Mult(z j π )

π ϕ, K Dir( π ϕ/K, …, ϕ/K)

ϕ−1 Gamma(1, 1)
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α j N(v, δ2)

β j InvGamma(ω, θ)

where μ″, Σ″ are the empirical mean and covariance across all cells, which are used to allow 

priors to adapt to different datasets (Figure S8H).

Parameters are inferred through a scalable Gibbs algorithm using the Chinese restaurant 

process (CRP) (Pitman, 2006), which also infers the number of clusters (K) (Figure S8I). 

The conditional posterior distributions for model parameters [π, μk, Σk, α , β , z , μ′, Σ′, H′]

have analytical forms which we derived in (Prabhakaran et al., 2016).

Final cluster assignments were estimated from the mode of inferred distribution for 

assignment of cells to clusters (zj; ∀j) after removing a burn-in period. The mean of Gibbs 

samples for cluster-specific parameters (μk, Σk; ∀k = 1, …, K) and cell-specific 

parameters(αj, βj; ∀j) were used for further analysis and interpretation.

The goal of normalization is to transform the data from l j  to y j in which the expression is 

corrected for cell-specific factors αj, βj using a linear transformation y j = A l j + b such that 

imputed expression for cell j follows N(μk, Σk) and hence all cells assigned to the same 

cluster follow the same distribution after correction. One transformation satisfying the above 

distributions for l j  and y j is A = I
β j

, b = (1 − α jA)μk.

This transformation also imputes dropouts in a cell by using the parameters of the cluster to 

which it has been assigned. The use of covariance parameters in the model ensures that 

intra-cluster heterogeneity is preserved after imputing. We show a systematic evaluation of 

the algorithm performance (on synthetic and real single cell data), its robustness, and its 

ability to impute dropouts in (Prabhakaran et al., 2016).

Biscuit Implementation:  The joint distribution of Biscuit with cluster- and cell-specific 

parameters is non-conjugate. Although inference of these parameters via MCMC-Gibbs is 

possible as presented in (Prabhakaran et al., 2016), overall runtime of the algorithm was 

much slower due to multiple covariance matrix inversions leading to slower chain 

convergence. In order to reduce the number of matrix inversions and enable faster chain 

mixing, we make use of the conjugate prior for the multivariate Gaussian, namely the 

Normal-inverse Wishart distribution, where the cluster means and covariances can be jointly 

inferred (Murphy, 2007).

The Normal-inverse-Wishart (NIW) distribution is the conjugate prior to the multivariate 

Gaussian distribution with unknown mean and covariance. It is a multivariate four-parameter 

continuous distribution with probability density function defined as follows:
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f (μk, Σk l j , μ0, Λ0, ρ0, κ0, α j, β j) NIW(μk, Σk μ′, Λ′, ρ′, κ′, α j, β j)

The inference equations for parameters based on NIW also have closed-forms:

μ′ = κ0μk + nk, κ′ = κ0 + n, ρ′ = ρ0 + n

Λ′ = Λ0 + ∑
j = 1

N
( l j − l )( l j − l )

T
+ κ0μ0μ0

T + κ′μ′μ′T

f (Σk l j ) median(β j: z j ∈ k) * InverswWish(Λ′−1, ρ′)

f ( μ k l j ) median(α j: z j ∈ k) * Student t(μ′, Λ′
κ′(ρ′ − d + 1))

where μ0 ∈ Rd, λ > 0, Σ0 ∈ Rd×d and is positive semi-definite and v > (d − 1). This scalable 

implementation of Biscuit in R can be found in: https://github.com/sandhya212/

BISCUIT_SingleCell_IMM_ICML_2016. The code is parallelized at multiple stages - the 

NIW-based inference engine works in parallel across blocks of genes ordered through the 

Fiedler vector. Next, cell assignments per block are consolidated into a confusion matrix via 

further parallelization and the overall cluster means and covariances are computed using the 

law of total expectation, also performed in parallel. A dataset of 3000 cells and 1000 genes 

takes under two hours on a Cloud platform such as Amazon Web Services (AWS), which is 

at least 6 times faster than the implementation of the initial model as presented in 

(Prabhakaran et al., 2016). For the full dataset, the DPMM dispersion parameter was set to 

100, gene batches were set to 50, and the number of iterations was set to 150.

Entropy Metric to Evaluate Batch Effect Correction—To evaluate Biscuit’s ability to 

correct batch effects across data from all eight tumors (Figure 2C) and match immune 

subtypes across the tumors, we devised an entropy-based metric that quantifies the mixing of 

the normalized data across samples. We used this quantification since discerning biases in 8 

patients (tumor tissue) on a 2D t-SNE projection is difficult, whereas visualizing differences 

between 4 tumors is easier (Figure 2A). The entropy-based metric is computed as follows: 

We constructed a k-NN graph (k=30) on the normalized data using Euclidean distance, and 

computed the distribution of patients (tumors) m = 1,…,8 in the neighborhood of each cell j, 

denoted as qj
m. Then we computed Shannon entropy H j = − Σm = 1

8 q j
m log q j

m as a 

measure of mixing between patients, resulting in one entropy value Hj per cell j. High 

entropy indicates that the most similar cells come from a well mixed set of additional 

tumors, whereas low entropy indicates that the most similar cells largely come from the 
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same tumor. Prior to Biscuit, most cells in the data had low entropy values, with 40% of the 

cells residing in a neighborhood of cells purely from the same tumor. We compare the 

distribution of entropies across all cells from all 8 tumors, before and after Biscuit, which 

reveals that the median of entropy shifts significantly towards higher mixing of samples after 

processing with Biscuit (Mann-Whitney U-test: U=1.7721e+09, p=0; Figure 2D). We thus 

conclude that Biscuit substantially corrected batch effects in this data.

Quantification of Cell Type Enrichment in Tissues—To calculate cell type 

enrichments in each tissue (Figure 3B), we normalized each tissue to have equal cell count 

and created a 2-factor contingency table of cell types versus tissues. We then calculated χ2 

enrichments for each tissue type and reported the test statistic and p-value.

Next, we wished to identify which pair of tissues had the greatest phenotypic overlap. To 

assess similarity in phenotype, we constructed a k-nearest neighbor graph (with k=10) in a 

uniformly selected subset of n=3000 cells from each tissue, reasoning that a cell’s closest 

neighbors in this high-dimensional embedding are the cells with the closest phenotypes. We 

then examined the overlap between each pair of tissues u and v, where n is the number of 

cells in the subset, k is the number of neighbors, and u, v ∈ [tumor, normal, lymph node, 
blood]:

ou, v = 1
n ∑

i = 1

n
∑

j = 1

k
[1 i f ωi − u and ω j = v else 0]

with ωi denoting the tissue for cell i and j = 1,…, k denoting the neighbors of cell i. We built 

a null distribution from all overlaps between all pairs of tissues, and identified tumor and 

normal as having the highest frequency of being co-identified as neighbors. To test if this 

enrichment was significantly higher than the other shared-neighbor overlaps, we calculated 

the z-score of otumor,normal compared to the population of all pairwise overlaps (z=2.68), for 

which a z-test conferred a p-value of p=1.4e-4. Thus, we conclude that tumor and normal 

have the highest phenotypic overlap between any pair of tissues in our data. Both z-scores 

and p-values are reported. The above statistics are reported under the section 

“Environmental impact on the diversity of immune phenotypic states”.

Creating a Global Immune Atlas using Biscuit—To generate a global atlas of 

immune cell types, we combined samples from all patients and tissues by applying Biscuit 

(Figure S8G–I) to the full set of n=62024 cells and d=14875 genes, resulting in a global 

atlas of K=95 clusters (Table S2) in which n=57143 cells had statistically significant cluster 

assignments. The remainder of cells had low library size and were hence removed from 

further analysis.

A subset of these clusters were identified as probable carcinoma or stromal populations 

through correlation with bulk gene expression datasets and marker gene expression. While 

these non-immune clusters may be of significant interest in their own right, they were 

beyond the scope of this paper and were therefore excluded from downstream analysis, 

leaving 47,016 cells in 83 clusters (Table S2).
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Biscuit is a probabilistic model; hence, we inferred a probability distribution for all 

parameters. Figure S2A shows the posterior of assignment of cells to clusters, demonstrating 

a broader distribution for most naïve T cell clusters, suggesting that these clusters are less 

distinct as compared to other clusters. Other cell types exhibited a distinct, well separated 

mode. For simplicity, all further analysis is based on the mode of the probability of 

assignment of cells to clusters, such that each cell is assigned to one cluster only (Figure 

2E).

Biscuit captures cell-type specific scaling factors using parameters αj, βj. Figure S2G shows 

that αj values capture variation in library size (sum of total counts per cell j). Moreover, we 

observe different relationships with library size based on assigned clusters, highlighting the 

cluster-specific normalization that is done in Biscuit. We also observe prominent differences 

in distributions of αj, βj parameters across cells from different patients (Figure S2H, I), 

emphasizing the differences resulting from technical factors across patients that are captured 

in Biscuit. The αj, βj parameters represent each cell’s translational and rotational shifts 

within the Multivariate Normal distribution associated with the cluster assigned to that cell, 

by scaling the moments. By correcting these shifts, cells assigned to the same cluster will be 

normalized and follow the same distribution N(μk, Σk).

In other words, Biscuit seeks to find if a cell can fit the distribution characterizing a given 

cluster, either if its mean and covariance match that of a cluster as is or match that of the 

cluster after scaling the cluster mean with its alpha and cluster covariance with its beta. The 

incorporation of covariance is key in that even if a cell has a low capture rate and thus a low 

number of detected genes, additional information from the gene-gene covariance patterns 

(modules of co-expressed genes) can be utilized to identify its cluster. Once a cell is 

assigned to a cluster, the distribution characterizing that cluster is then used to normalize and 

impute the expression of a cell, and thus corrects for down-sampling and also imputes 

dropouts.

Cluster Robustness—To evaluate cluster robustness, we performed 10-fold cross-

validation, independently clustering and normalizing on random subsets of data. For each of 

10 subsets, we ran Biscuit to obtain a set of clusters. To compare the results across the 10 

subsets, we computed the confusion matrix indicating the probability of each pair of cells j, j
′ being assigned to the same cluster: P(z j = z j′). Figure S2C illustrates box plots for the 

probabilities of co-clustering (across 10 subsets) for every pair of cells that are assigned to 

the same cluster in the analysis of the full dataset. The average co-clustering probability in 

each cluster ranges between 92%–100%, showing remarkable robustness of clusters.

Additionally, we performed leave-one-patient-out analysis similar to the 10-fold cross-

validation above. In this analysis we hold out one patient at a time and compute the 

probability of co-clustering of cells in the other 7 patients. As expected, this probability 

slightly drops for smaller clusters biased to one patient, but is otherwise highly robust and 

stable (Figure S2C).
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Mixing of Samples in Clusters—We observed that clusters displayed differing amounts 

of mixing between samples (Figure 2G). To further quantify the exact degree of mixing 

(between patients) in each cluster, we defined an entropy-based metric. We used 

bootstrapping to correct for cluster size (which ranged from over 8900 cells to just over 30 

cells), such that we uniformly sampled 100 cells from each cluster and computed the 

distribution of patients across these cells, and then computed the Shannon entropy for this 

distribution. We repeated this procedure 100 times for each cluster, to achieve a range of 

entropy values per cluster. Figure S2D shows box plots for entropy values for each cluster, 

with the order of clusters based on their mean entropy. It also shows box plots for entropy 

values for each cell type, computed in a similar fashion. Clusters with entropy of 0 denote 

entirely patient-specific clusters. Figure S2D shows that there is a continuous range of 

entropy values, and thus a full range of sample specificity versus mixing, across clusters. For 

cell types it similarly shows a range of entropy values, with intratumoral macrophages and 

CD4+ T EM cells showing the highest degree of patient specificity.

The 10 patient-specific clusters with zero entropy are listed in the table below, showing that 

they span all cell types but are all specific to tumor tissue:

Cluster ID Most 
correlated 
cell type in 
Dmap 
(Novershtern 
2011)

Most correlated cell 
type in Garvan (Jeffrey 
2006)

Final 
Annotation 
based on DEGs 
and 
correlations

Cluste 
r size 
(#cells)

% in Tumor Patient

65 BCELLA2 bcells B: 56 100 BC5

70 TCELLA7 central_memory_T_cells T:CD4+EM 49 100 BC5

73 ERY1 mast_cells MAST: 47 100 BC4

82 TCELLA7 th1_cells T:Reg 38 100 BC5

86 MONO2 neutrophils MONOCYTE: 37 100 BC5

89 GRAN2 neutrophils NEUTROPHIL: 35 100 BC5

91 MONO2 macrophages_LPSh MONOCYTE: 35 100 BC5

93 TCELLA7 central_memory_T_cells T:CD4+EM 33 100 BC5

94 MONO2 neutrophils MONOCYTE: 33 100 BC5

95 TCELLA8 central_memory_T_cells T:CD4+CM 33 100 BC5

Two patients (BC4, BC5) contribute to these clusters. BC5 is a TNBC case, and hence is 

expected to have differences in immune phenotypes.

Distances between Clusters—Biscuit provides a parametric characterization of each 

cluster using a multivariate Normal distribution, which allowed us to directly compare the 

distributions that define these clusters. While Euclidean distances are defined for vectorial 

objects and operate under a Cartesian coordinate system, Euclidean distance with non-

vectorial objects such as probability distributions requires embedding them in Euclidean 

space. Such embeddings are non-unique and lead to loss of information. It is therefore 

advisable to use these non-vectorial objects as they are and to work with the objects’ 

pairwise similarities or distances instead. One such distance metric, which is effective at 
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comparing pairwise probability distributions, is the Bhattacharyya distance (BD) 

(Bhattacharyya, 1990).

We defined distances between each pair of clusters k, k′ with distributions pk and pk′ as BD 
= −log(BC(pk, pk′)) where BC is the Bhattacharyya coefficient measuring similarity 

(overlap) of the distributions. We use the BD to compute distances between pairs of inferred 

clusters’ moments to create the Bhattacharyya kernel. The Bhattacharyya kernel has closed 

forms for any exponential distribution including the (multivariate) Gaussian distribution 

(Jebara et al., 2004), which is Biscuit’s underlying data-generation distribution. For the case 

of multivariate normal distributions: pk N(μk, Σk) and pk′ N(μk′, Σk′):

DB = 1
8(μk − μk′)

T Σ−1(μk − μk′) + 1
2 log( det Σ

det Σkdet Σk′
) where Σ = (Σk + Σk′)/2.

Figure S2B shows the heatmap of pairwise distances between all pairs of clusters.

A geometric interpretation of BD is that, via its cosine formulation, the distance subsumes a 

full hypersphere and the center of the hypersphere is the centroid (mean) of the cluster, 

whereas the Euclidean distance only covers a quarter of the hypersphere with the center at 

the origin.

Contribution of Covariance in Defining Clusters—We used the above Bhattacharyya 

distance (BD) metric to study the contribution of Biscuit’s covariance parameters to 

characterizing clusters of different cell types. First, we computed the BD distance between 

pairs of clusters of the same type (T, monocytic, NK, B) and compared these to distances 

between pairs of clusters of different cell types (e.g. a T cell cluster and a monocytic 

cluster). Figure S2E shows violin plots for distances between pairs of clusters with dots 

(overlaid on violins) representing cluster pairs; violins are sorted based on median distance. 

As reference, we also split each cluster into two halves and computed the empirical BD 

between two splits (shown at the left end in Figure S2E). We observe that, overall, pairs of 

clusters of different types are more distant than pairs of clusters from the same type, as 

expected.

We then computed these same pairwise distances while removing the contribution of mean 

parameters for each cluster, via setting μk − μk′ = 0 and computing the distance only based 

on covariance parameters of the pair of clusters Σk, Σk′ (Figure S2F). We observed that pairs 

of T cell clusters or monocytic clusters still show prominent distances, and therefore 

covariance parameters have a crucial role in defining these clusters.

Such varying covariance parameters span the entire genome, but include functionally 

important genes. For example, the degree of co-expression of genes associated with M1 and 

M2 signatures also varied widely within clusters in a manner not fitting the functional 

M1/M2 annotation. As an example, expression of CD64 in cluster 23 exhibited varying 

degrees of positive covariance with FN1, MMP14, MSR1, cathepsins, MARCO, and 

VEGFB, but co-varied slightly negatively with chemokine CCL18 (Figure 7J).
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Defining Phenotypic Volume—One of the main aims of this paper was to compare 

immune phenotypes across tissues, including peripheral blood and lymph node tissue as 

references in which the immune phenotypes typically present are better understood. The 

global atlas from merged tissues revealed that clusters differ appreciably in their proportions 

across tissues (Figure 3A–C). For example, we observed 3 blood-specific clusters with 

CD4+ naive characteristics, as well as a lymph node-specific T cell cluster. Conversely, we 

observed a large range of shared clusters between normal and tumor tissues (Figure 3B; 

Table S2). Interestingly, the clusters observed in normal tissue were a subset of those 

observed in tumor tissue. We also observed an increase in the variance of gene expression in 

tumor compared to normal tissue (Figure 3D, E; S3B, C), which prompted us to explore 

further the range of phenotypic diversity between normal and tumor tissue. We were 

especially interested to find whether the observed increase in variance of expression is due to 

activation of additional processes and phenotypes in tumor that are independent of those 

active in normal.

Hence, to quantify the diversity of phenotypes, we defined a metric of phenotypic volume or 

space occupied by a cell type (e.g. T, NK, or monocytic), such that if more independent 

phenotypes are active, the total volume spanned by the phenotypes would be larger than an 

alternative case wherein phenotypes are dependent.

We therefore defined “phenotypic volume” (V) for a subpopulation of cells as the pseudo-

determinant of the gene expression covariance matrix for that subpopulation, which 

considers covariance between all gene pairs in addition to their variance. The (symmetric) 

covariance matrix can be written as Σ = [s1, …, sd] where sl  for i = 1,…,d is a vector 

containing covariance between gene i and all other genes. Its determinant det (Σ) is equal to 

the volume of a parallelepiped spanned by vectors of the covariance matrix (Tao and Vu, 

2006).

For example, if the covariance values between a gene and other genes is very similar to that 

of another gene i′ and other genes, such that sl , sl′ are dependent, gene i′ does not add to 

the volume. Extending this to all genes, we sought to evaluate whether the increase in 

expression variances (Figure 3D, E) are associated with phenotypes activated in tumor that 

are independent from those in normal tissue, i.e. are novel independent phenotypes observed 

in tumor that suggest additional mechanisms and pathways being activated in tumor.

In a simplified case with only two phenotypes, the determinant, which is equal to the area of 

the parallelogram spanned by two vectors representing the phenotypes, is larger if the 

phenotypes are independent, but would be equal to zero if they are fully dependent. With 

more than two phenotypes, we are then interested in measuring the volume of the 

parallelepiped spanned by these phenotypes. The pseudo-determinant can also be computed 

as the product of nonzero eigenvalues (λe) of the gene-gene covariance matrix (Σ):

V = Σ + = ∏
e = 1

E
λe = λ1λ2…λE; ∀λe > 0
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To quantify the change in phenotypic volume from normal to tumor, we computed this 

volume metric for each major cell type of T, monocytic, and NK cells. To correct for the 

effect of differences in the number of cells across cell types and tissues, we uniformly 

sampled 1000 cells with replacement from each cell type per tissue and computed the 

empirical covariance between genes based on imputed expression values for that subset of 

cells. This was followed by singular-value decomposition (SVD) of each empirical 

covariance matrix and computation of the product of nonzero eigenvalues as stated in the 

equation above. B cells were not included in this comparison due to the very small number 

of B cells in normal tissue. The log of volume was computed in Figure 3F, as the sum of log 

of nonzero eigenvalues:

log(V) = log( Σ +) = ∑
e = 1

E
log(λe); ∀λe > 0

Given the high number of dimensions (genes), the volumes were also normalized by the total 

number of genes (d). For robustness, this process was repeated 20 times to achieve a range 

of computed volumes for each cluster in each tissue, which are summarized with box plots 

(Figure 3F) showing statistically significant expansions of volume in tumor compared to 

normal in all three cell types (Mann-Whitney U-test p=0 for all three cell types).

Diffusion Component Analysis—We used diffusion maps (Coifman et al., 2005) as a 

nonlinear dimensionality reduction technique to find the major non-linear components of 

variation across cells. We computed diffusion components in each cell type separately using 

the Charlotte Python package, which implements diffusion maps as described in (Coifman et 

al., 2005). To account for differences in cell density and cluster size, we used a fixed 

perplexity Gaussian kernel with perplexity 30, with symmetric Markov normalization and 

t=1 diffusion steps. We selected t=1 diffusion steps because this approximates diffusion of 

information for each cell through its 20 nearest neighbors in our data. This is a conservative 

value, but we wanted to ensure that information did not diffuse beyond the borders of our 

smallest cluster (30 cells). To avoid technical biases in cell type proportions and focus on 

processes explaining variation specifically within major cell types, we performed diffusion 

map analyses separately on all cells labeled as T cells and myeloid cells, respectively.

In the case of T cells, the first two diffusion components identified two isolated clusters 

(Figure 3A): The first was cluster 9, which is quite distinct from other T cell clusters as 

measured by Bhattacharyya distance (Figure S2B) and shows characteristics similar to NKT 

cells (Table S3); the second was cluster 20, which is a blood-specific naive T cell cluster 

predominantly from one patient (Table S2). Since these two clusters were very distant from 

other T cell clusters according to a variety of comparative metrics, the two components 

corresponding to them were removed from further analysis, as we wished to focus on 

studying components that are informative of heterogeneity across multiple clusters.

The next components were labeled as T cell Activation, Terminal Exhaustion, and Hypoxia, 

respectively, (Figure 4A) as they were most highly correlated with the corresponding gene 

signatures (Table S4). Among the top 30 genes most correlated with the hypoxia component, 
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ATF3, BTG1, CITED2, CXCR4, DUSP1, FOS, JUN, KLF6, PPP1R15A, PRKCDBP, 

SDC4, SLC2A3, and TNFAIP3 which are also among the Hallmark Hypoxia gene set.

The subsequent component is labeled as Tissue Specificity, as it separates cells primarily on 

the basis of their tissue of origin and helps explain heterogeneity in T cells across tissues.

In the separate analysis of myeloid cells, several isolated clusters, namely neutrophils and 

mast cells, were not considered in the analysis, with the goal of identifying components 

explaining variation across multiple monocytic clusters (Figure 7B, S7A). The first 

component identified a trajectory of macrophage (TAM) activation. The second and third 

branches together captured a more gradual trajectory from blood monocytes to intratumoral 

monocytes (Figure 7B–D; S7B–D). The “blood terminus” of the trajectory correlated with 

expression of co-stimulatory gene ITGAL, but also with several tumor growth-promoting 

genes, i.e. fibroblast and epidermal growth factors, as well as IL-4 (Figure S7B), proposed to 

support the M2 type of macrophage activation (Mantovani and Locati, 2013). The other end 

of the trajectory, populated by intratumoral monocytes, was characterized by high expression 

of activation and antigen presentation-related genes encoding CD74 and HLA-DRA, but 

also an IFN-inducible gene encoding ISG15.

The fourth branch correlated with canonical plasmacytoid dendritic cell (pDC) markers such 

as LILRA4, CLEC4C (CD303), and IL3RA. The most discrete of the myeloid components, 

this branch separated the lone pDC cluster (41) from the other myeloidmonocytic cell 

clusters (Figure 7B, E, G, H; S7B, C, E). This subset was also the only monocytic cluster 

common between the tumor and the lymph node; it featured high levels of granzyme B 

(GZMB) (Figure S7B).

Significance of Differences in Covariances in Raw Data—To verify that the 

differing covariance patterns inferred from Biscuit, shown in Figures 5 and 7 were not the 

result of computational modeling decisions, we tested the difference in covariance in raw 

unnormalized data (prior to Biscuit). As the raw data involves significant amount of 

dropouts, co-expression patterns and their signs cannot be easily visualized or inferred.

Hence, we performed hypothesis testing accounting for the level of dropouts by comparing 

the observed empirical covariance between a pair of genes i,i′ to a null distribution for the 

gene pair in which co-expression patterns are removed. We assume the null hypothesis to be 

the case where covariance between a specific gene pair for a given cluster is the same across 

all clusters.

Specifically, to test whether cov( xl , xl′) in a cluster k, with xl , xl′ being expression levels of 

genes i,i′ across cells assigned to cluster k, is significantly different from that in all other 

clusters, we used bootstrapping and permutation testing as follows: We started by generating 

a null distribution for the covariance between a pair of genes by first uniformly sampling a 

subset of cells from all clusters, with the subset being the same size as cluster k. Then, to 

further remove existing structures of co-expression in cells, we permuted the cell labels for 

gene i′ (while retaining labels for gene i) and computed empirical covariance between the 

two genes in this subset of “scrambled” cells. We repeated this on 10,000 subsets to achieve 
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a null distribution of cov(wl, wl′) where wi, wi′ are the expressions of gene i,i′ in the sets of 

scrambled cells. We then compared the observed cov( xl , xl′) (marked with a star in Figure 

S5A, S7F) to the null distribution, which was rejected for that pair of genes if p-value<0.05, 

indicating that the covariance is significantly different in cluster k compared to all other 

clusters.

We concluded that the signal is also apparent in raw unnormalized data for all the 

aforementioned clusters and we observe a range of covariance values with different signs 

between GITR and CTLA4 across Treg clusters (Figure S5B), and similarly different values 

in covariance between MARCO and CD276 in TAM clusters (Figure S7G).

Comparison of Treg clusters to previous studies—Recent studies examining Treg 

cell gene expression profiles in breast, lung, and colorectal tumors found differences in gene 

expression between tumor and normal tissue-associated cells (Plitas et al., 2016). CCR8, 

CD177, LAYN, and MAGEH1 were expressed highly by tumor Treg cells. Flow cytometric 

analyses revealed that CD177 was expressed on a subset of tumor-associated Treg cells, 

while CCR8 was expressed on all Treg cells. Our single cell analyses confirmed that CD177 

is expressed highly in some Treg clusters. While flow cytometric analysis of LAYN and 

MAGEH1 was not attainable due to the absence of reagents, we observed high expression of 

LAYN and MAGEH1 in all Treg cell clusters, suggesting that the pattern of expression of 

these two genes in Treg cells is similar to that of CCR8.

Continuity of Cells along Components—The prevalent view is that relatively few 

states of differentiation of lymphoid and myeloid cells define the local tumor environment 

(Philip et al., 2017; Wherry and Kurachi, 2015), and that these distinct states are linked to 

clinical outcomes such as cancer progression and response to anti-tumor therapies. We were 

interested to know whether cells show continuity as opposed to defined cell states along 

various diffusion components representing key cellular differentiation trajectories. For 

example, we were interested to know whether T cells exhibit defined states with different 

activation levels. For this, we computed the distribution of cells projected on each diffusion 

component and then used Hartigan’s Dip Test (Hartigan and Hartigan, 1985) to test whether 

the distribution of cells is unimodal (broad continuum of cells) or alternatively multimodal 

(representative of multiple defined states) with p<0.01. In Figure S4A, we observe that in the 

case of the T Cell Activation component, the null hypothesis of unimodality is not rejected, 

indicating that the distribution of cells is similar to a broad unimodal distribution as opposed 

to a multimodal distribution with defined states. In contrast, other components (such as the 

Tissue Specificity Component) exhibit multimodal distributions with distinct modes 

implying distinct states (in this case corresponding to various tissues). In the case of terminal 

differentiation (exhaustion), the distribution is statistically continuous (based on Hartigan’s 

test), if Tregs are not considered.

In the case of myeloid cells, the null hypothesis of unimodality is rejected in all diffusion 

components, indicating that myeloid cells lie in distinct states along all major components 

explaining variation across cells that were analyzed (Figure S7A).
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Differences across patients—We performed Hallmark gene set enrichment on standard 

deviations of genes across patients, to identify signatures most variable across patients. 

Further details of distributions of a number of these signatures such as Hypoxia are shown in 

Figure 1E and S1E, F, G.

NAME FDR q-val FWER p-val

HALLMARK_TNFA_SIGNALING_VIA_NFKB 0 0

HALLMARK_ANGIOGENESIS 0 0

HALLMARK_COMPLEMENT 0 0

HALLMARK_ALLOGRAFT_REJECTION 0 0

HALLMARK_INTERFERON_GAMMA_RESPONSE 0 0

HALLMARK_APOPTOSIS 0 0

HALLMARK_INTERFERON_ALPHA_RESPONSE 0 0

HALLMARK_COAGULATION 0 0

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 0 0

HALLMARK_HYPOXIA 0 0

HALLMA R K_I L6_JAK_ST AT 3_S IGNALING 0 0

HALLMARK_MYC_TARG ETS_V1 0 0

HALLMARK_OXIDATIVE_PHOSPHORYLATION 0 0

HALLMARK_PI3K_AKT_MTOR_SIGNALING 0 0

HALLMARK_REACTIVE_OXIGEN_SPECIES_PATHWAY 2.67E-04 0.004

HALLMARK_MTORC1_SIGNALING 3.13E-04 0.005

HALLMARK_P53_PATHWAY 2.94E-04 0.005

HALLMARK_INFLAMMATORY_RESPONSE 2.78E-04 0.005

HALLMARK_KRAS_SIGNALING_UP 3.16E-04 0.006

HALLMARK_UV_RESPONSE_UP 3.00E-04 0.006

HALLMARK_CHOLESTEROL_HOMEOSTASIS 3.33E-04 0.007

HALLMARK_ANDROGEN_RESPONSE 5.46E-04 0.012

More importantly, we observe more heterogeneity in these signatures within each tumor 

(Figure 1E and S1E, F, G), motivating the characterization of various cell states that vary in 

frequency between patients.

Preprocessing of paired 5’ scRNA-seq and TCR-seq data from 10×—Data was 

collected from FACS-sorted CD3+ T cells generating two technical replicates from the BC9 

tumor, one replicate from the BC10 tumor (due to a lower number of T cells), and two 

technical replicates from the BC11 tumor. Technical replicates were run on separate 10× 

lanes, but originate from the same sample after tissue dissociation. The sequencing data 

from each replicate was preprocessed separately using Cell Ranger 2.1.1, available from 10× 

Genomics. The clonotype comparison feature in Loupe Cell Browser (also from 10× 

Genomics) combined with custom scripts were then used to pool TCR clonotypes across 

replicates by matching CDR3 sequences from both alpha and beta chains across replicates of 
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the same tumor. For two cells to be assigned to the same clonotype they had to share both 

alpha and beta sequences. We also present details and statistics on V and J gene usage and 

alpha and beta sequences in Table S6 (sheet 2). We achieved a paired transcriptome and 

TCR sequence for 12962, 4677, and 9436 T cells from BC9, 10, and 11, respectively, 

resulting in a total dataset of 27,075 T cells. The median number of molecules per cell in this 

dataset was 4780. The frequencies of the most dominant clonotypes per patient are shown in 

Figure S6D.

Analysis of 10× Genomics paired TCR and scRNA sequencing data—The 

single-cell expression count matrices for 27,075 T cells from three tumors (BC9–11) were 

combined, and these cells were normalized and clustered with Biscuit with the following 

parameters: 500 iterations; gene batch size set to 50; and alpha (dispersion parameter) set to 

200, identifying 34 clusters. The number of genes detected in each of the 34 clusters are 

shown in Figure S6B, showing an increase in capture rate compared to inDrop data shown in 

Figure S3A.

To evaluate the extent to which the 38 T cell clusters previously inferred from BC1–8 (using 

inDrop) generalize to these new cases BC9–11 (profiled with 10×), we computed the 

correlations between empirical means of previous and new clusters (Figure 6A). The 

correlations were computed using the expression of previously identified differentially 

expressed genes (listed in Table S3) for each of the 38 clusters. Furthermore, to correct for 

different distributions between the two technologies, the datasets were first quantile 

normalized prior to computing these correlations. Rows in Figure 6A are ordered based on 

the cluster from the previous set most correlated with each of the new 34 T cell clusters, and 

columns (new clusters) are ordered by size, i.e. number of cells in the cluster. The heatmap 

only shows the 34 (out of 38) inDrop T cell clusters most correlated with 10× clusters. This 

heatmap shows near one-to-one mapping of each cluster identified in the three tumors 

profiled with 10× to a cluster previously inferred from the eight tumors profiled with inDrop, 

confirming the generalizability of the clusters. The correlation values on the diagonal of the 

heatmap are on average 0.72 with a standard deviation of 0.14, while the mean of non-

diagonal values is 0.02. The average difference between the highest and second highest 

correlation is 0.40, meaning the average cluster identified in 10× is over twice as correlated 

with a single cluster in the inDrop data as it is any other inDrop cluster.

Furthermore, to account for the gene distributions used to characterize clusters in Biscuit 

(recall, Biscuit clusters are defined by both mean and covariance, with covariance playing an 

important role, see figure S2E, F), we also computed the Bhattacharyya coefficient between 

the old and new clusters as a metric for the similarity of distributions of the differentially 

expressed genes (Figure 6B), with a result even nearer to one-toone-mapping of clusters 

characterized by both mean and covariance.

Evaluation of the role of TCR diversity in driving a continuous spectrum of T 
cell activation—The activation state of each T cell was computed by taking the mean 

expression of all genes in the T cell activation signature (Table S4). The distribution of 

activation states across all T cells is shown in Figure S6C, reproducing the observation of 

continuity along activation as opposed to defined states in three new cases profiled with a 
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different technology (10× rather than inDrop). We confirmed this continuity with Hartigan’s 

Dip test (dip statistic = 0.0578; p=0). We also observed continuity of the T cell distribution 

along the first diffusion component across these cells from BC9–11, similar to the first 

informative diffusion component across T cells from BC1–8. To further verify that the 

continuity is not an artifact of either modeling or dropout, we also performed the Hartigan 

dip test on the distribution of T cell activation on raw 10× data, library-size normalized and 

log-transformed, rather than Biscuit normalized with imputed counts, confirming a unimodal 

continuous distribution of T cell activation (p<0.01) that is not an artifact of Biscuit, 

diffusion analysis, or a high rate of dropouts (since 10× data has less dropouts compared to 

inDrop).

Using paired TCR sequencing of the same cells, we identified 9562, 3080, 6423 unique 

clonotypes from BC9, 10, and 11, respectively (details are provided in Table S6). The 

distributions of activation states across T cells from each clonotype are shown in Figure 6C 

and Figure S6E.

To determine whether clonotype identity has any role in explaining the continuity of T cell 

activation, we compared the entropy of the distribution of activation states in each clonotype 

with that of random T cells from various clonotypes. Specifically, for each clonotype, we 

first computed the entropy for its distribution of activation states. Then we created a null 

distribution by uniformly subsampling the same number of T cells as in the clonotype (to 

control for sample size) from the pool of all cells regardless of clonotype. This was followed 

by computing the entropy in each subsample, achieving a null distribution for entropy. We 

then compared the clonotype entropy to this null to test whether the clonotype had 

significantly less entropy, which would indicate it is not as uniformly distributed as random 

subsamples of T cells. We indeed observed significantly lower entropy values for all top 30 

clonotypes in each tumor (p=0), showing that individual clonotypes are confined to certain 

activation states and are not as widely distributed as are all T cells, and further that this is not 

merely an artifact of clonotypes containing less cells than the entire dataset. This suggests 

that individual clonotypes are not as uniformly distributed as are the aggregation of all 

clonotypes. Thus, TCR diversity partially explains the observed broad, continuous range of 

T cell activation, and aggregating all clonotypes thus obscures transitional activation states. 

For example, clonotypes 10, 11, and 12 in BC9 are centered in distinct regions of the 

activation component, and if the clonotype identities were not known, the aggregation would 

result in a more uniform distribution. Extending this to thousands of clones observed per 

tumor in part explains why we observe a continuous distribution of activation across all T 

cells.

Nevertheless, a surprisingly wide range of activation states was observed in each individual 

clonotype (Figure 6C; S6E). This is summarized with the distribution standard deviations of 

each clonotype listed in these figures. To assess the extent to which clonotype identities 

explain variability in T cell activation, we performed one-way ANOVA tests on the top 100 

most frequent clonotypes in each tumor. ANOVA partitions the total variation into variation 

between versus within clonotypes, and tests if the means of clonotypes are significantly 

different. The percentage of variation in activation states across all cells that can be 

explained by clonotype identities in each tumor are listed below:
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BC9: 52%, F-statistic=28.2095, p=3.8298e-100

BC10: 48%, F-statistic=35.2584, p= 4.5597e-139

BC11: 32%, F-statistic=10.6126, p=9.8365e-40

Moreover, we computed the average pairwise variation between the top 20 most frequent 

clonotypes using the one-way ANOVA F-test. The ratio of average pairwise variation 

between the top 20 most frequent clonotypes to the average variation within a clonotype in 

each tumor is as follows:

BC9: 0.54, F-statistic=49.0512, p=4.0576e-119

BC10: 0.46, F-statistic=42.1998, p=3.7453e-111

BC11= 0.29, F-statistic=24.3593, p= 2.8834e-71

These results together suggest that TCR diversity may not be the primary driver of the 

continuity of T cell activation, implying the existence of additional key factors contributing 

to activation state.

Evaluation of the role of TCR repertoire in explaining phenotypic states in T 
cells—The proportions of the most frequent clonotypes composing clusters are shown in 

Figure 6E. In these heatmaps only CD8+ T cell and Treg clusters are shown, as the majority 

of dominant clonotypes were present in CD8 and Treg clusters (Figure S6F). Clusters 

(columns) are ordered by T cell activation.

In some cases, clusters that shared a clonotype exhibited similar levels of activation, 

apparent in Figure 6E as horizontal stretches in the heatmap. In other cases clusters that 

shared a clonotype were similar in gene expression signatures relating to environmental 

stimuli. For example, clonotype 9 from tumor BC9 is present in clusters T11 and T12, which 

have very similar expression levels across nearly all of the environmental signatures (Figure 

6D, E). Additionally, clonotype 16 in BC9 is present in two clusters that are both high in 

exhaustion, whereas clonotype 20 in BC9 is present in clusters high in anergy and 

gluconeogenesis. Clonotype 21 in BC10 is present in clusters with high expression in the 

G1/S signature and low expression of exhaustion, hypoxia, TCA cycle, and anti-

inflammatory signatures. The full list of differentially expressed genes (computed with t-test 

p<0.1) for each clonotype in each tumor are listed in supplementary Table S6.

All 27,075 T cells are projected together using t-SNE in Figure 6F, and are colored by 

specific marker genes, mean expression of the T cell activation signature, sample identity, 

and finally Biscuit cluster assignment. Individual select clonotypes for each tumor are 

projected in Figure S6F (right) using the same t-SNE coordinates, showing that each 

clonotype spans a confined region and is present in a limited set of similar clusters. Note that 

clonotypes are not shared across patients; note also that the HLA types of the patients are 

not known), and hence these projections showing clonotype identity are provided separately 

for each patient. To confirm the statistical significance of the similarity of clusters sharing 

clonotypes, we computed the sum of pairwise Bhattacharyya coefficient (similarities) 
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between clusters present in each clonotype and compared that value to a null distribution of 

the sum of pairwise similarities between 1000 random subsamples of (the same number of) 

clusters, resulting in p<0.001 for each of the top 20 most frequent clonotypes in all three 

tumors.

CyTOF Data Processing and Analysis—To confirm the role of covariance in 

characterizing Treg clusters, we collected CyTOF data from three additional breast tumors. 

We designed a panel that included markers which are either differentially expressed in a 

Treg cluster and/or show different covariance patterns across Treg clusters. This panel is 

included in Table S2 (sheet 2).

Cells from each tumor sample were barcoded together with stock human PBMCs as carrier 

cells, using three non-overlapping isotope channels for each. Thus two separate samples, 

TILs from a tumor and stock PBMCs, were run together and present in subsequent .fcs files. 

These two samples were debarcoded and the resulting debarcoded tumor files were 

normalized together using bead standards (refer to Software and Algorithms in Key 

Resources Table). Bead-normalized single cell measurement values were then transformed 

using the hyperbolic inverse sine function with a cofactor of 5. Samples were manually 

gated by event length, live/dead discrimination, and CD3, resulting in 6559 T cells from 

three tumors available for downstream analysis.

The data was then clustered using PhenoGraph on 10 principal components (chosen based 

on the knee point of eigenvalues) calculated using all channels, with the parameter k=25 for 

the number of nearest neighbors. Data was visualized using t-SNE (van der Maaten and 

Hinton, 2008), shown in Figure S5C.

We observed two Treg clusters shown in Figure S5C (labeled cluster A, B) resembling two 

previously identified Treg clusters: Treg cluster A is similar to cluster 82 differentially 

expressing CD25 (t-test p=0) and showing no covariance between GITR and CTLA-4; while 

Treg cluster B resembles previously inferred cluster 46, differentially expressing TIGIT (t-

test p=0) and showing strong positive covariance between CTLA-4 and GITR.

DATA AND SOFTWARE AVAILABILITY

The sequencing data presented in this paper is available for download on GEO data 

repository accession numbers GSE114727, GSE114725, GSE114725.

SEQC is available on https://github.com/ambrosejcarr/seqc.git and Biscuit is available on 

https://github.com/sandhya212/BISCUIT_SingleCell_IMM_ICML_2016.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Breast carcinoma Fresh operative 
tissue samples at 
MSKCC

N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Normal breast tissue Fresh operative 
tissue samples at 
MSKCC

N/A

Lymph node Fresh operative 
tissue samples at 
MSKCC

N/A

Peripheral blood Patient 
venipuncture at 
MSKCC

N/A

Antibodies

anti-CD45 ab Biolegend RRID:AB_2566372

DAPI Stain Calbiochem SCR_014366

anti-Foxp3 ab Thermo Fisher RRID:AB_1834364

anti-CD3 ab Biolegend RRID:AB_1575008

anti-CD4 ab Biolegend RRID:AB_571945

anti-CD16 ab Biolegend RRID:AB_314207

anti-CD56 ab BD Biosciences RRID:AB_396853

anti-CD8 ab Biolegend RRID:AB_528885

anti-CD19 ab Biolegend RRID:AB_2562015

anti-CD11b ab Biolegend RRID:AB_2563395

anti-CD45 Y89 Fluidigm RRID:AB_2261851

anti-CD235ab BioLegend RRID:AB_314620

anti-CD61 BioLegend RRID:AB_1227584

anti-CD196/CCR6 Pr141 Fluidigm Cat:3141014A

anti-CD19 142Nd Fluidigm RRID:AB_2651155

anti-CD278/ICOS 143Nd Fluidigm Cat:3143025B

anti-CD270 144Nd Fluidigm Cat:3144022B

anti-CD4 145Nd Fluidigm RRID:AB_2661789

anti-CD8a 146Nd Fluidigm Cat:3146001B

anti-CD11c 147Sm Fluidigm RRID:AB_2687850

anti-CD14 148Nd Fluidigm Cat:3148010B

anti-CD127 149Sm Fluidigm RRID:AB_2661792

anti-TIGIT eBioscience Cat:16-9500-82

anti-CD123 151Eu Fluidigm RRID:AB_2661794

anti-CD95/Fas 152Sm Fluidigm Cat:3152017B

anti-CD45RA 153Eu Fluidigm Cat:3153001B

anti-TIM3 154Sm Fluidigm Cat:3154010B

anti-CD39 BioLegend RRID:AB_940438

anti-CD274/PD-L1 156Gd Fluidigm Cat: 3156026B

anti-CD27 158Gd Fluidigm Cat: 3158010B

anti-CD357/GITR 159Tb Fluidigm Cat: 3159020B

anti-CD28 160Gd Fluidigm Cat: 3160003B

anti-CD152/CTLA4 161Dy Fluidigm Cat: 3161004B

anti-FoxP3 162Dy Fluidigm RRID:AB_2687650

anti-CD33 163Dy Fluidigm RRID:AB_2687857

anti-CD45RO 164Dy Fluidigm Cat: 3164007B

anti-CD223/LAG3 165Ho Fluidigm RRID:AB_2687859
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REAGENT or RESOURCE SOURCE IDENTIFIER

anti-Ki67 BD RRID:AB_396287

anti-CD197/CCR7 167Er Fluidigm Cat:3167009A

anti-CD154/CD40L 168Er Fluidigm Cat: 3170011B

anti-CD25 169Tm Fluidigm RRID:AB_2661806

anti-CD3 170Er Fluidigm RRID:AB_2661807

anti-CD226 171Tb Fluidigm Cat: 3171013B

anti-CD38 172Yb Fluidigm Cat: 3172007B

anti-CD137/4–1BB 173Yb Fluidigm Cat: 3173015B

anti-CD279/PD-1 174Yb Fluidigm Cat: 3174020B

anti-CD194/CCR4 175Lu Fluidigm Cat: 3175021A

anti-CD56 176Yb Fluidigm RRID:AB_2661813

anti-CD11b 209Bi Fluidigm Cat: 3209003B

Critical Commercial Assays

inDrop platform Custom-built 
droplet 
microfluidics 
platform; Klein et 
al., 2015; Zilionis et 
al., 2017.

N/A

Microfluidic chips and 
consumables

Droplet Genomics https://dropletgenomics.com

Chromium Single Cell 5’ 
Library and Bead Kit

10× Genomics cat no. 1000014

HiSeq 2500 Illumina at MSKCC N/A

NEBNext mRNA Second 
Strand Synthesis Module

NEB cat no. E6111S

HiScribe T7 High Yield 
RNA Synthesis Kit

NEB cat no. E2040S

Kapa 2× HiFi HotStart PCR 
mix

Kapa Biosystems cat no. KK2601

CyTOF2 Fluidigm N/A

CyTOF2 Supersampler & 
Sample Chiller

Victorian Airship & 
Scientific 
Apparatus

N/A

Indium(III) Chloride Sigma Cat: 203440

Maxpar X8 Antibody 
Labeling Kit 150Nd

Fluidigm Cat: 201150A

Maxpar X8 Antibody 
Labeling Kit 155Gd

Fluidigm Cat: 201155A

Maxpar X8 Antibody 
Labeling Kit 166Er

Fluidigm Cat: 201166A

Cell-ID 20-Plex Pd 
Barcoding Kit

Fluidigm Cat: 201060

Cell-ID Intercalator-Ir Fluidigm Cat: 201192

Cell-ID Cisplatin Fluidigm Cat: 201064

FoxP3 Transcription Factor 
Fix/Perm

eBiosciences Cat: 00-5523-00

TruStain FcX BioLegend Cat: 422302

Deposited Data

inDrop single-cell RNA-seq 
dataset

GEO Accession numbers GSE114727, GSE114725

10× paired single-cell TCR 
and RNA-seq dataset

GEO Accession numbers GSE114727, GSE114724

CyTOF dataset Flow Repository https://flowrepository.org/id/FR-FCM-ZYJP
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

SEQC This paper https://github.com/ambrosejcarr/seqc.git

Biscuit This paper and 
Prabhkaran et al., 
2016.

https://github.com/sandhya212/BISCUIT_SingleCell_IMM_ICML_2016

t-SNE van der Maaten and 
Hinton, 2008.

https://lvdmaaten.github.io/software/

PhenoGraph Levine et al., 2015. https://github.com/jacoblevine/PhenoGraph

Diffusion maps Coifman et al., 
2005.

http://www.math.jhu.edu/~mauro/#tab_DiffusionGeom

FACSDiva BD Biosciences RRID:SCR_001456

FlowJo BD Biosciences RRID:SCR_008520 https://www.flowjo.com/

FastQC Andrews, 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

STAR 2.5.3a Dobin et al., 2013. https://github.com/alexdobin/STAR

Edittag Faircloth and 
Glenn, 2012.

https://github.com/faircloth-lab/edittag
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Highlights

• Single-cell RNA-seq reveals phenotypic expansion of intratumoral immune 

cells

• Biscuit identifies cell populations that differ in co-expression patterns

• T cells reside on continuous activation and differentiation trajectories

• Combinatorial environmental inputs and TCR usage shape T cell phenotypes
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Figure 1: 
Single-Cell RNA-Seq Experimental Design and Initial Data Exploration

(A) Flow chart of experimental design and analysis.

(B) Summary of samples and patient metadata; more details in S1A.

(C) t-SNE of complete immune systems from two example breast cancer tumors. scRNA-seq 

data for each tumor is processed with SEQC (Figure S1B) and library size-normalized; each 

dot represents a cell colored by PhenoGraph clusters, labeled by inferred cell types. 

Additional tumors are shown in Figure S1C.

(D) Pie charts of cell type fractions for each patient’s tumor-infiltrating immune cells, 

colored by cell type.

(E) Left: Boxplots of expression of Hallmark Hypoxia signature (defined as the mean 

normalized expression of genes in the signature) across immune cells from each patient. 
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Right: Heatmap of z-scored mean expression of genes in signature. Top: Barplot of total 

expression of each gene, across all patients. See Figure S1E–G for additional signatures.
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Figure 2: 
Unbiased Characterization of the Immune System Across Breast Cancer Patients

(A) t-SNE of immune cells from 4 breast cancer tumors after library-size normalization 

(left) and Biscuit normalization (right). Cells are colored by tumor. Less mixing of tumors 

indicates either batch effects or patient-specific cell states.

(B) Left: Boxplots of expression of CD8 T cell activation signature (defined as the 

normalized mean expression of genes in the activation signature in Table S4) across immune 

cells from each patient, in the same format as Figure 1E. Expression of T cell activation 

signature shows variability across patients.

(C) t-SNE map of immune cells from all 8 breast tumors after Biscuit normalization and 

imputation showing rich structure and diverse cell types. Cells colored by Biscuit clusters 

and labeled with inferred cell types.
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(D) Histogram depicting entropy of the tumor (patient) distribution as a measure of sample 

mixing. Entropy is computed per cell, based on the distribution of patients in (30-NN) local 

cell neighborhoods after library-size normalization (left) as compared to Biscuit (right).

(E) t-SNE of complete atlas of immune cells, post-Biscuit normalization, from all patients 

and tumor, blood, lymph, and contralateral normal tissues, labeled by inferred cell type (left) 

and normalized expression of 8 immune cell markers (right). Figure S2, S3A, Table S2 

present further details on clusters.

(F) Pearson correlations between cluster expression centroids and bulk RNA-seq data from 

purified immune populations from (Jeffrey et al., 2006; Novershtern et al., 2011).

(G) Histogram of frequency of patients contributing to each cluster; 19 clusters are present 

in all 8 patients and 10 clusters are patient-specific.

(H) Z-score normalized expression of canonical and cell type markers across clusters.

(I,J) Differentially expressed genes (DEGs) in B cell (I) and NK cell (J) clusters, 

standardized by z-scores within cell type to highlight clusters with higher or lower 

expression of the marker compared to the average B or NK cluster (all DEGs are presented 

in Table S3).
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Figure 3: 
Impact of the Microenvironment on Breast Immune Cells

(A) Breast immune cell atlas constructed from combining all patient samples (BC1–8) and 

tissues using Biscuit, projected with t-SNE. Each dot represents a cell, colored by cluster; 

major cell types are marked according to Figure 2F, H and Table S2, 3.

(B) Subsets of immune atlas t-SNE in (A) showing cells from each tissue separately on the 

same coordinates as 3A to highlight the differences between tissue compartments.

(C) Proportions of cell types across tissue types.

(D) Distribution of variance of expression, computed for each gene across all immune cells 

(all patients), from tumor tissue compared to normal breast tissue.

(E) Most significant Hallmark GSEA enrichment results on genes with highest difference in 

variance in tumor T cells vs normal tissue T cells. See Figure S3B, C for enrichment in 

monocytic and NK cells. Full lists of enrichments are presented in Table S5.
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(F) Phenotypic volume in log-scale (defined as pseudo-determinant of gene expression 

covariance matrix, detailed in STAR) of immune cell types in tumor compared to normal 

tissue, controlled for number of cells, showing siginificant (shown with asterisks) expansion 

of volume spanned by independent phenotypes in tumor compared to normal tissue.
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Figure 4: 
Detailed Characterization of T Cells

(A) Visualization of all T cells using first three diffusion components (two uninformative 

components denoting isolated clusters were removed). Each dot represents a cell colored by 

cluster, and by tissue type in insert. The main trajectories are indicated with arrows and 

annotated with the signature most correlated with each component. See Figure S4D for 

additional components.

(B) Traceplot of CD8 T cell activation signature (defined as mean expression across genes in 

signature in Table S4) for all T cells along activation component. Cells are projected along 

the component (x-axis), and the blue line indicates the moving average of signature 

expression, using a sliding window of length equal to 5% of total number of T cells; shaded 

area displays standard error.
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(C) Heatmap showing expression of immune-related genes with the largest positive 

correlations with activation component, averaged per cluster and z-score standardized across 

clusters; columns (clusters) are ordered by mean projection along the component. See Figure 

S4 for additional components.

(D) Violin plot showing the density of all T-cells (left), T cells in individual tissues (middle), 

and in individual clusters (right), along activation component. Number of dots inside each 

violin are proportional to number of cells.

(E) Trace-plots (as in B) of (left) exhaustion/terminal differentiation signature along second 

component and (right) hypoxia signature along third component. Signatures are presented in 

Table S4.

(F) Heatmap of cells projected on each diffusion component (rows) averaged by cluster 

(columns).
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Figure 5. 
Covariance Patterns Help Define Distinct T Cell Clusters

(A, B, C) Heatmaps of mean expression for a curated set of transcriptomic signatures (Table 

S4) for (A) CD4 memory T cell, (B) CD8 memory T cell, and (C) Treg clusters. Only 

signatures with high expression in at least one T cell cluster are shown. Expression values 

are z-scored relative to all T cell clusters.

(D) Cartoon illustration of two clusters of cells with similar mean expression for two 

example genes but opposite covariance between the same two genes. Distinct patterns in 

both mean and covariance of expression define clusters in Biscuit.

(E) Scatter plot showing mean expression of GITR vs. CTLA-4 for each T cell cluster 

(represented by a dot). Treg clusters (red) show high mean expression of both genes.

(F) Distribution of covariance values between GITR and CTLA-4 across all T cell clusters, 

with Treg clusters marked in red. Treg cluster covariance values exhibit differences despite 
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sharing high mean expression levels. See Figure S5A for similar computation on the raw, un-

normalized, data, verifying the result. See Figure S5C for similar results in CyTOF data.

(G) Network visualization illustrating strength of covariance between pairs of checkpoint 

receptor genes in Treg clusters. Edge width denotes absolute magnitude and red and blue 

colors denote positive and negative signs of covariance respectively; the case of CTLA-4 and 

GITR is highlighted in yellow. Figure S5D shows networks for other T cell populations.

(H) Heatmaps of covariance values for immune genes in two Treg clusters showing different 

modules of covarying genes.

(I) Proportion of Treg clusters in each patient, indicating that differences in covariance 

patterns between clusters translate to patients.
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Figure 6: 
TCR Repertoire Shapes Diverse Phenotypic States

(A) Pearson correlation between centroids of differentially expressed genes in T cell clusters 

inferred from BC1–8 patients using inDrop (rows) and clusters inferred from 27,000 T cells 

from BC9–11 tumors using 10× (columns) (see Figure S6A and STAR for details), showing 

near one-one-to-one mapping of clusters.

(B) Same as in (A) computing Bhattacharyya similarity between pairs of clusters, 

accounting for both mean and covariance of clusters. Further details on clusters are 

presented in S6B, C.

(C) Histogram of activation states of (top) all T cells from three tumors BC9–11 and 

(bottom) T cells separated by each of the top 20 most dominant TCR clonotypes in BC9, 

mapped using paired single-cell RNA and TCR sequencing. Frequencies of clonotypes are 

shown in S6D. Similar figures for BC10,11 are shown in Figure S6E.
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(D) Heatmap showing normalized mean expression levels for a curated set of transcriptomic 

signatures (rows, listed in Table S4) for T cell clusters in BC9–11.

(E) Distributions of each CD8+ T or Treg cluster in BC9–11 across the 30 most frequent 

clonotypes from each tumor. Clusters (columns) are z-scored to highlight the combinatorial 

impact of clonotypes in shaping each phenotypic state, and sorted by activation level. Some 

clusters associated with the same clonotype have the same level of activation (seen as 

connected horizontal stretches in the heatmap), while others have similar environmental 

responses (Table S6; STAR).

(F) t-SNE of normalized single-cell RNA-seq data for T cells from BC9–11 tumors colored 

by markers, T cell activation, and tumor (left); Biscuit clusters (middle, top); and examples 

of dominant clonotypes from each tumor identified with paired TCR sequencing, projected 

in the same coordinates (right). Separate projection of each dominant clonotype for each 

tumors is shown in Figure S6F.
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Figure 7: 
Detailed Characterization of Myeloid Cells

(A) t-SNE map projecting myeloid cells from BC1–8 patients (all tissues). Cells are colored 

by Biscuit cluster and cell types are labeled based on bulk RNA-seq correlation-based 

annotations.

(B through E) Projection of myeloid cells on macrophage activation, pDC, and monocyte 

activation diffusion components, colored by (B) cluster, (C) tissue, (D) cell type, and (E) 

expression of example lineage-demarcating genes.

(F) Violin plots showing the density of cells along macrophage activation component and 

organized by overall density (left panel), tissue type (middle panel), and cluster (right panel). 

See Figure S7 for other components.

(G) Scatter plot of normalized mean expression of M1 and M2 signatures per cell (dot); cells 

assigned to TAM clusters have been highlighted by cluster.
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(H) Scatterplot of mean expression of MARCO and CD276 in myeloid clusters; each dot 

represents a cluster; TAM clusters are marked in red, indicating high expression of both 

markers in macrophage clusters.

(I) Distribution of covariance between MARCO and CD276 across all myeloid clusters. 

TAM clusters are marked in red and present substantial outliers. See Figure S7F for similar 

computation on the raw, un-normalized data, verifying the result.

(J) Heatmaps showing covariance patterns of select macrophage marker genes in 3 TAM 

clusters.
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