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Abstract

Rationale and Objectives: Glomerular diseases, including minimal change disease (MCD), 

focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN), and 

immunoglobulin A nephropathy (IgAN) share clinical presentations, yet result from multiple 

biological mechanisms. Challenges to identifying underlying mechanisms, biomarkers, and new 

therapies include the rarity of each diagnosis and slow progression, often requiring decades to 

measure the effectiveness of interventions to prevent end-stage kidney disease (ESKD) or death.

Study Design: Multicenter prospective cohort study.

Setting and Participants: Cure Glomerulonephropathy (CureGN) will enroll 2,400 children 

and adults with MCD, FSGS, MN, or IgAN (including IgA Vasculitis) and a first diagnostic 

kidney biopsy within 5 years. Patients with ESKD and those with secondary causes of glomerular 

disease are excluded.
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Exposures: Clinical data, including medical history, medications, family history, and patient-

reported outcomes are obtained, along with a digital archive of kidney biopsy images and blood 

and urine specimens at study visits aligned with clinical care 1-4 times/year.

Outcomes: Patients are followed for changes in estimated glomerular filtration rate (eGFR), 

disease activity, ESKD, death, and for non-renal complications of disease and treatment, including 

infection, malignancy, cardiovascular, and thromboembolic events.

Analytical Approach: The study design supports multiple longitudinal analyses leveraging the 

diverse data domains of CureGN and its ancillary program. At 2,400 patients and average of 2 

years initial follow-up, CureGN has 80% power to detect a hazard ratio of 1.4-1.9 for proteinuria 

remission and a mean difference of 2.1 to 3.0 mL/min/1.73 m2 in eGFR per year.

Limitations: Current follow-up can only detect large differences in ESKD and death outcomes.

Conclusions: Study infrastructure will support a broad range of scientific approaches to identify 

mechanistically-distinct subgroups, identify accurate biomarkers of disease activity and 

progression, delineate disease-specific treatment targets, and inform future therapeutic trials. 

CureGN is expected to be among the largest prospective studies of children and adults with 

glomerular disease, with a broad goal to lessen disease burden and improve outcomes.

Keywords

Glomerular Disease; CureGN; Minimal Change Disease (MCD); Focal Segmental 
Glomerulosclerosis (FSGS); Membranous Nephropathy (MN); IgA Nephropathy (IgAN); IgA 
Vasculitis (IgAV); Henoch-Schönlein purpura; Glomerulonephropathy; longitudinal cohort; digital 
pathology repository; kidney biopsy; patient-reported outcome (PRO); study design; estimated 
glomerular filtration rate (eGFR); pediatric; adult

INTRODUCTION

Glomerular diseases are the third leading cause of end-stage kidney disease (ESKD) in the 

United States, accounting for approximately 10,000 incident ESKD cases per year.1 

Immunoglobulin A nephropathy (IgAN), focal segmental glomerulosclerosis (FSGS), 

membranous nephropathy (MN), and minimal change disease (MCD) constitute the majority 

of primary glomerular diseases. Recent epidemiological, clinical, and basic research studies 

have implicated novel genetic and environmental factors in the pathogenesis of these 

disorders,2–6 which have begun to reveal underlying molecular pathways that can 

differentiate etiologically distinct subtypes, identify biomarkers of disease activity, and 

delineate disease-specific treatment targets.

Despite this progress, there is insufficient translation of basic research into clinical care. 

There are few and inadequately reliable clinical tools for risk stratification, prediction of 

remission, treatment selection, and monitoring of drug response. Major challenges to such 

translational efforts include the rarity of individual glomerular diseases. And, slow disease 

progression may require years of follow-up to prove the effectiveness of an intervention 

because alternative endpoints to ESKD have not been definitively validated.
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Cure Glomerulonephropathy (CureGN; www.CureGN.org) is a multi-center, National 

Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)-funded consortium 

working collaboratively to address these challenges by recruiting a large cohort of 

participants with MCD, FSGS, MN, and IgAN, and following them prospectively using a 

common protocol that specifies enrollment criteria, aims, data and sample collection 

procedures, but not treatment. A key underlying hypothesis is that different disease 

mechanisms can result in similar pathological and clinical phenotypes, but very different 

disease courses. Identifying and characterizing these mechanisms will have broad influcence 

on diagnostic classification, accurate prognostication, definition of patient cohorts for 

clinical trials, and identification of individualized therapies. Most importantly, this study will 

establish an infrastructure and foster research that enables the nephrology community to 

answer four questions of central interest to newly-diagnosed patients: What is this disease? 

Why do I have this disease? What will happen to me? What effective treatments can you 

offer me?

METHODS

Organizational Structure Of The Consortium

CureGN participants are recruited concurrently from four Participating Clinical Center 

(PCC) networks, managed by: Columbia University, Midwest Pediatric Nephrology 

Consortium, University of North Carolina, and University of Pennsylvania. Each PCC 

represents multiple clinical sites (currently, 65 US sites, three in Canada, one in Italy, and 

one in Poland [Box 1] The Data Coordinating Center (DCC) is located at the University of 

Michigan and Arbor Research Collaborative for Health.

Objectives And Study Desig

Objectives—The scientific aims of the core CureGN study and its future ancillary study 

program cover four broad areas of research (Box 2).

Study Population—CureGN aims to recruit a racially and ethnically diverse cohort 

comprising 600 participants for each of the four target diagnoses: MCD, FSGS, MN, and 

IgAN. At least 30% of the cohort is expected to be pediatric. Study enrollment must occur 

within 5 years of the patient’s first diagnostic kidney biopsy. Inclusion and exclusion criteria 

are in Box 3. Patients with one of the target diagnoses who have completed the Nephrotic 

Syndrome Study Network (NEPTUNE)7 are eligible for enrollment into CureGN for long-

term follow-up, regardless of other CureGN exclusion criteria.

For all patients approached for consent, minimal demographic information (e.g., age, sex, 

race, ethnicity) is recorded to monitor for consent bias and reason for nonparticipation. All 

patients biopsied at the enrolling site after 1/1/2015 with one of the eligible diagnoses are 

entered on the screening log to monitor for referral bias by comparing the full cohort to the 

locally-biopsied subcohort. Institutional Review Board approval was obtained at each 

enrolling site.
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Pathology Review for Study Enrollment—Inclusion and exclusion kidney biopsy 

criteria, including specimen adequacy, are listed in Table S1. After consent, the pathology 

report is reviewed by study pathologists to assess eligibility, quality assurance, and diagnosis 

assignment. If the report is insufficient to determine eligibility or exclusion, pathology 

materials (slides and images) are reviewed by a study pathologist. If confirmation of 

eligibility remains uncertain, an additional CureGN pathologist reviews the report and 

pathology materials for adjudication.

Study Procedures, Data and Sample Collection—After the enrollment visit, study 

visits occur within contiguous 4-month intervals for the duration of the study to allow 

alignment with clinical care and to enable sample collection at the time of disease 

exacerbation or remission (Table 1). Enrollment and subsequent annual visits are required 

in-person visits. All other visits can be conducted in-person or remotely (phone or email). 

For in-person visits, a focused physical exam is performed and patient-reported outcome 

(PRO) measures are assessed (medication adherence, symptoms, and Patient-Reported 

Outcomes Measurement Information System [PROMIS] items).8–11

A fresh, spot urine sample is collected and centrifuged at each visit, and the supernatant and 

pellet are stored. A 24-hour collection is requested annually for adults and continent 

children. A first-morning urine sample is requested at non-annual visits. Timed urine and 

first-morning voids are stored as whole urine. Volumes in pediatric patients are determined 

by weight (Table S2 & S3). Biospecimens are stored at the NIDDK biorepository, and 

extracted annually for central measurement of serum creatinine and urine protein-creatinine 

ratio (UPCR). Estimated glomerular filtration rate (eGFR) will be calculated using the 

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation for adults and 

the modified Chronic Kidney Disease in Children (CKiD-Schwartz) formula for participants 

<18 years old.12,13 For adolescents (defined for the purposes of this study as age 18-26), an 

average of the two formulas will be used.14

For all enrolled participants, outcomes of death (including date and cause) and ESKD 

(including date, renal replacement modality, and/or transplant donor type) are collected. 

Participant consent allows linkage to data sources such as Centers for Medicaid and 

Medicare Services (CMS) and National Death Index to validate ESKD and death events. 

Other outcomes include non-renal complications of disease and treatment. Patients will be 

followed until death, study withdrawal, or end of study. Phase one of CureGN will last 5 

years; additional phases are anticipated to capture sufficient numbers of ESKD and death 

events.

Data-Sharing—To maximize use and collaboration around CureGN data sets, a data-

sharing and analytic platform was established for use by consortium and ancillary study 

researchers. TranSMART is an open-source web-based software platform supported by the 

tranSMART Foundation (transmartfoundation.org) and its open-user community. The 

password-protected CureGN tranSMART platform is loaded with curated, clinical data at 

regular intervals. Analytic tools of the platform can be used to identify subcohorts of 

interest, generate descriptive statistics, and test associations between data elements. As 

Mariani et al. Page 6

Am J Kidney Dis. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://transmartfoundation.org


further data sets are generated (e.g., genomic, proteomics, or metabolomics), these data will 

be available for analysis, allowing scientists with diverse expertise to collaborate efficiently.

Digital Pathology Repository (DPR)—Kidney biopsy materials from enrolled patients, 

including glass slides scanned into high-resolution whole slide images (WSIs), digital 

images of immunofluorescence and electron micrographs, and pathology reports, are 

collected and uploaded into the CureGN DPR, located at NIH.15 All submitted cases will 

undergo scoring by pathologists for defined glomerular, tubulointerstitial, and vascular 

morphologic features, which will allow assignment into currently-utilized classification 

systems for the four diseases. The WSIs can be viewed on a computer screen as if viewed 

under the microscope and allow annotation, morphometric measurements, identification of 

novel morphologic parameters, and application of machine learning algorithms.

Ancillary Studies Program—The CureGN consortium is committed to collaboration 

with ancillary investigators to achieve the scientific goals of the study. Investigators within 

and external to the CureGN sites are encouraged to apply for access to clinical data and 

biospecimens and/or to use CureGN infrastructure for research relevant to CureGN’s over-

arching goals. Many ancillary study designs are possible, including observational and 

interventional studies. Ancillary study applications (available at CureGN.org/Ancillary.aspx) 

are reviewed by the ancillary studies committee and approved by the Steering Committee.

RESULTS

Statistical Analyses

The study design, eligibility criteria, visit schedule, data elements, and sample collection 

were developed to facilitate the diverse studies within CureGN and its ancillary program. A 

broad array of statistical approaches will be applied, as appropriate, depending on the 

scientific question. Methods appropriate for analyses of observational data will be used to 

minimize the impact of confounding and bias on effect estimates, account for the correlation 

of repeated measures within individuals, adjust for variable follow-up, and handle missing 

data using multiple imputation as needed. For factors susceptible to treatment-by-indication 

bias, we will evaluate whether techniques such as instrumental variables analysis are 

appropriate or stratification by treatment regimen can be utilized. Because this is a prevalent 

cohort, survival analyses of time-to-event data, particularly ESKD and death, will require 

delayed entry into the risk set until time of enrollment (i.e., left-truncation) if time origins 

such as biopsy date are used. Mixed models of longitudinal trajectories (slopes) in eGFR 

will be used in preference to two-point time-to-event estimates of 40% or 50% decline in 

eGFR from baseline. The mixed model has greater statistical power than time-to-event 

outcomes, and is independent of starting time, which is ideal as participant enrollment 

occurs at variable times during the 5 years after biopsy. And, common events in glomerular 

disease, such as acute kidney injury or initiation of a new treatment, offer a unique 

opportunity to model non-linear trajectories and their association with subsequent trajectory 

and outcomes.16

Analysis methods for proteinuria that make full use of the longitudinal data yield high power 

to investigate proteinuria trajectories. Examples include modeling integrated UPCRs over 
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time, rates of proteinuria events (relapse or remission) using Poisson models, time-to-

recurrent-events of either relapse or remission, and within-person comparisons of near-term 

outcomes under different treatments.

For some longitudinal outcomes, such as those based on serum creatinine or urine protein, 

clinic visit data may be missing not at random due to infrequent clinic visits or clinical 

endpoints. Observation times are therefore irregular and potentially outcome-dependent. 

Joint longitudinal and survival models may be useful in these situations. Data from 

telephone visits will serve to ‘fill in’ some clinical data and record reasons for missingness, 

when possible.17–19

The large number of potential predictors of outcomes in high-dimensional data (e.g., 

genomics, proteomics, or metabolomics) generated from biosamples via ancillary funding 

will require statistical approaches such as machine learning (e.g., penalized regression, 

support vector machines, and classification trees) to optimally identify predictors, cross-

validation to reduce the problem of over-fitting, and adjustment for multiple testing.

Sample Size and Power Calculation

Table 2 shows the statistical power for time-to-event analyses (minimum detectable hazard 

ratio, MDHR) and analyses of eGFR slopes, repeated assessments of eGFR, and UPCR 

(minimum detectable difference in slopes, MDDS). For illustration, the estimates are shown 

for comparisons between two groups of equal size, which could represent any subgroups of 

interest, (e.g., different diagnoses, adults and children, genetic risk alleles, or treatment 

exposures). Unequal group sizes would yield less power, and continuous exposures (e.g., 

biomarker levels) would yield greater power. The outcome event rates were based on 

published literature and early observed data in the recruited CureGN cohort.20–24 Analyses 

using continuous outcomes (e.g., eGFR slope) generally have higher power than time-to-

event outcomes due to lost information in replacing repeated values with a single time-to-

event that, except for death, is often estimated with error. For example, comparing eGFR 

slopes between two groups of 1200 subjects each could detect a difference in average eGFR 

decrease per year of approximately 2.5 mL/min/1.73 m2 (e.g., an average 1-year drop from 

50 to 49 mL/min/1.73 m2 in one group vs. 50 to 46 mL/min/1.73 m2 in a second group). 

This relatively fine distinction available with a continuous repeated-measures outcome can 

provide optimal power for testing in the overall cohort or in subgroups of interest.

DISCUSSION

CureGN is a large, prospective study of children and adults with glomerular disease, 

positioned to address the need for more accurate disease phenotyping, risk stratification, and 

treatment assignment. Although current pathologic classification assists in prediction of 

progression,25,26 histopathology alone does not adequately define disease course and 

response to therapy for all individuals within a given diagnosis. The broadly defined 

enrollment criteria allow inclusion of the clinically heterogeneous population observed in 

practice within each diagnosis and the variants not currently well understood (e.g., C1q 

nephropathy, “secondary” FSGS, IgM deposition). By integrating the multilayered data sets 

derived from clinical data and biospecimens, CureGN aims to address these knowledge gaps 
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in diagnosis and disease pathogenesis, identify novel diagnostic and prognostic biomarkers, 

and discover potential molecular targets for future therapies.27

CureGN has unique design elements that differentiate it from, and thus complement, other 

major kidney disease studies. The large number of CureGN recruitment sites target a 

racially, ethnically, and geographically diverse population with glomerular disease. Other 

large nephrology observational studies do not specifically target the glomerular disease 

population or are limited to more homogeneous patient populations. The Chronic Renal 

Insufficiency Cohort (CRIC) excluded those actively receiving immunosuppression for 

glomerulonephritis.28 The Human Heredity and Health (H3) in Africa Kidney Disease 

Research Network plans to enroll 400 participants with non-HIV, non-diabetic glomerular 

disease (along with 3,600 participants with other causes of chronic kidney disease) in an 

exclusively African population.29 The CKiD study, in which less than 20% of enrollees were 

children with glomerular disease, identified differences in risk factors for progression in 

glomerular versus non-glomerular disease, highlighting the need to examine these 

populations separately.30

NEPTUNE is an ongoing observational, incident cohort of over 500 children and adults.7 

NEPTUNE enrolls patients with suspected MCD, FSGS, or MN (but not IgAN) at the time 

of their first clinically-indicated kidney biopsy. While a biopsy diagnosis is necessary for 

CureGN enrollment, collection of biopsy tissue for research purposes is not required. The 

NEPTUNE protocol, however, incorporates obtaining renal tissue specimens to allow 

analysis of data from simultaneous tissue, serum, and urine samples with phenotypic data to 

enable discovery of molecular pathways of glomerular injury.31–33 While analyses of short-

term outcomes have come from the NEPTUNE study,34 the eligibility of most NEPTUNE 

subjects to enroll into CureGN at the conclusion of their NEPTUNE follow-up provides a 

valuable means for obtaining long-term longitudinal information. The harmonized clinical 

data and biosample collection in the two studies makes CureGN an ideal validation cohort 

for mechanistic findings arising out of NEPTUNE.

CureGN also complements important work from large registry studies. PodoNet,35,36 the 

Toronto Glomerulonephritis Registry,37–39 the University of North Carolina Glomerular 

Disease Collaborative Network,39–41 Midwest Pediatric Nephrology Consortium,42–44 

British Columbia Glomerulonephritis Registry,45 Canadian Childhood Nephrotic Syndrome 

Project,46 the UK National Registry of Rare Kidney Disease (RaDaR),47 and the North 

American Pediatric Renal Trials and Collaborative Studies Group48 have published data on 

risk factors for disease progression. Comparisons of CureGN data can be made to registry 

data with respect to relevant patient risk factors and outcome rates. Many of these registries 

incorporate biosamples and genetic testing, and comparing data across populations would 

increase power for novel biomarker discovery and provide independent cohorts for 

validation.49,50

CureGN has several important study design features that support the overall study goals. The 

inclusion of children makes the cohort generalizable to all patients affected by these 

diseases. While the natural history and disease pathogenesis may be unique in the pediatric 

population, the inclusion of both children and adults allows these differences to be analyzed. 
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It also facilitates studies of the genetic causes of disease, progression rates across the age 

spectrum, and the interaction of growth and puberty on disease activity and response to 

therapy. Children with biopsy-proven MCD are especially valuable for inclusion, as they 

often have a severe disease phenotype with high morbidity from longterm 

immunosuppression.

Another unique design element is the inclusion of patients up to 5 years from biopsy. These 

diseases are often lifelong, requiring monitoring and therapy over many years, and putting 

patients at risk for both renal and non-renal complications (e.g., malignancy, diabetes, 

cardiovascular events) many years after the initial biopsy. In pediatric patients, in particular, 

the time of biopsy is dependent on local clinical practice and thus variable relative to disease 

onset. By recruiting prevalent participants at various disease stages, CureGN includes those 

who are newly diagnosed as well as those resistant to or dependent on immunosuppressive 

therapy, those who have relapsed, and those in remission. This diversity allows investigation 

of patient characteristics, genetic risk factors, and longitudinal biomarkers which may, for 

example, predict relapse after tapering immunosuppression, response to second-line agents, 

development of diabetes or malignancy, or likelihood of long-term preservation of eGFR. A 

5-year post-biopsy window was selected to balance scientific value against increasing 

burden and decreasing quality of longer retrospective data collection. Importantly, most 

centers were using electronic health records at least 5 years prior to start of recruitment, 

which aids in the data extraction for this study.51

The contiguous windows of the study visit schedule allows in-person study visits to align 

with clinical visits and maximize biosample collection at times of disease activity flares and 

therapy changes. Recent advances in glomerular disease biomarkers include the discovery of 

the M-type phospholipase A2 receptor (PLA2R) as the target antigen in most patients with 

MN, studies of galactose-deficient IgA1 and anti-glycan response in IgAN, and associating 

mutations in Apolipoprotein A1 to the development of kidney disease in patients of African 

ancestry.52–54 The number of genetic mutations identified in glomerular disease patients has 

expanded greatly in the last decade, yet their causative role in disease is less certain.55 The 

CureGN biosamples provide a platform for the identification, testing, and validation of novel 

biomarkers, and help to address the large gaps that remain in understanding how to integrate 

these biomarkers and genetic data into clinical management.55–57

The CureGN patient-reported outcome (PRO) measures were selected to capture information 

of health-related quality of life (HRQoL), symptoms and medication adherence, and provide 

a generic PRO background upon which disease-specific PRO tools could be developed or 

validated within CureGN. PROMIS instruments were developed using general populations 

and validated in general and disease-specific populations. CureGN PROMIS domains are 

those shown to be responsive to disease status in pediatric nephrotic syndrome patients and 

equivalent domains for adults.9,11,44 The selected symptom concepts were identified in an 

FSGS PRO development study.10 Adherence assessment is included due to the well-

described concern for poor medication adherence in chronic diseases, which has not been 

previously well studied in glomerular disease as a potentially disease-modifying variable.
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The comprehensive DPR, containing the digitized biopsy materials, is another unique 

CureGN resource. The repository will be used to collect morphologic parameters currently 

used in the classification of the four disease categories, as a reference to assess associations 

with clinical outcome.58–60 But, the DPR has several additional advantages. It is remotely 

accessible to multiple pathologists simultaneously and thus allows for discovery and 

validation of novel morphologic analysis protocols, testing protocol reproducibility, image 

annotation for training and standardization,61 and application of computer-aided image 

analysis (e.g., Convolutional Neural Networks).62,63,58,64 In the NEPTUNE study, a smaller 

DPR has been used to identify structural features associated with disease progression not 

currently employed in traditional classification systems.60,64–66 Digital pathology is 

becoming the new standard practice in clinical research, and DPR protocols have been 

implemented in multiple other renal consortia, assembling a virtual pathology archive across 

multiple continents and populations.67,68 And, whole slide imaging was recently approved 

by the US Food & Drug Administration (FDA) for primary pathologic diagnosis and is 

likely to become the primary method for pathologic interpretation of specimens.69,70 The 

permanent DPR will allow studies by investigators within and outside CureGN to establish 

computational pathology models currently developing in non-renal disease, which allow 

integration of structural information with other “omics” data sets to improve clinical 

outcome prediction.67,68,71

A number of limitations of the CureGN study are acknowledged. The current 5-year phase 

of the study is under-powered to detect small differences in clinically-meaningful, but rare, 

outcomes such as ESKD or death. Although extended follow-up in future phases of the 

study will address this issue, the current phase of CureGN will optimize statistical power by 

using mixed models based on eGFR slope and repeated disease activity events to test risk 

factors for accelerated rates of progression. The exclusion of patients with diabetes at the 

time of biopsy will limit extrapolation of findings to this important subgroup of patients. 

However, patients developing diabetes after biopsy are retained. CureGN has locally, not 

centrally, processed kidney biopsies, with resulting image variability due to processing 

methods. Pediatric participants will require dedicated efforts to maintain long-term follow-

up as they transition to adult care settings. Treatment strategies are not protocolized, so 

analyses will have to account for medication exposure heterogeneity. Associations of 

treatment with outcome and interaction with biomarkers may need to be validated in 

independent studies with standardized therapeutic regimens. Finally, CureGN is not 

designed as a population-based sample, and thus epidemiological inference requires caution. 

Whereas most pediatric patients receive initial care at academic centers (yielding a 

representative CureGN sample), adult patients often receive initial care from local 

physicians, with more severe cases referred to academic centers. A subset of CureGN 

participants who had their initial biopsy at the enrolling center are more representative of the 

underlying source population and can be analyzed for population-based inference.

In conclusion, we describe the objectives, organizational structure, and clinical protocol for 

CureGN, a multi-center, NIDDK-funded consortium that is recruiting a large, diverse cohort 

of pediatric and adult patients with MCD, FSGS, MN, and IgAN. We anticipate that 

CureGN will foster collaborative research activity that will identify common and distinct 

disease mechanisms for the four diagnoses, which may have similar presenting histological 
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and clinical phenotypes, but very different disease courses. It has established an 

infrastructure to promote translational research and apply these findings to improve clinical 

outcomes in glomerular disease patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1.

PCCs and clinical sites

Columbia University PCC

PI: Ali G. Gharavi

Columbia University

Giannina Gaslini Children’s Hospital, Italy

Medical University of Warsaw, Poland

Midwest Pediatric Nephrology Consortium PCC

Co-PIs: William E. Smoyer & Larry A. Greenbaum

Children’s Hospital of Michigan

Children’s Hospital of New Orleans/LSU Health Sciences Center

Children’s Mercy Hospital

Children’s National Medical Center

Cincinnati Children’s Hospital

Connecticut Children’s Medical Center Duke University Medical Center (Pediatrics)

East Carolina University Brody School of Medicine

Emory University

Helen DeVos Children’s Hospital

Levine Children’s Hospital/Carolinas Medical Center

Lurie Children’s Hospital

Mayo Clinic (Pediatrics)

Medical College of Wisconsin

Medical University of South Carolina, Children’s Hospital

Nationwide Children’s Hospital

Oregon Health and Science University

Riley Children’s Hospital

St. Louis University/Cardinal Glennon Children’s Medical Center

Texas Children’s Hospital/Baylor College of Medicine

Texas Tech Health Sciences Center

University of Alabama, Birmingham, Children’s of Alabama

University of Colorado-Children’s Colorado
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University of Iowa Children’s Hospital University of Kentucky

University of Miami (Pediatrics)/Holtz Medical Center

University of Minnesota Children’s Hospital

University of New Mexico Health Sciences Center

University of Oklahoma Health Sciences Center

University of Virginia, Pediatric Nephrology

University of Wisconsin, Madison

Vanderbilt Pediatric Nephrology

Washington University in St. Louis

University of Pennsylvania PCC

PI: Lawrence B. Holzman

Case Western University/University Hospitals

Medical Case Medical Center

Children’s Hospital of Los Angeles

Children’s Hospital of Philadelphia

Cleveland Clinic

Cohen Children’s Medical Center/North Shore

Hospital Long Island Jewish Medical Center

Hospital for Sick Children, Canada

Johns Hopkins University

Los Angeles Biomedical Research Institute at

Harbor-UCLA

Mayo Clinic (Adults)

Montefiore Medical Center NIDDK

New York University

Stanford University

Sunnybrook Health Sciences Centre

University Health Network University of Miami (Adults)

University of Michigan

University of Pittsburgh/Children’s Hospital of Pittsburgh

University of Pittsburgh School of Medicine

University of Pennsylvania
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University of Texas Southwestern

University of Washington

Seattle Children’s Hospital

Spokane Providence Medical Center

Temple University

University of North Carolina PCC

PI: Ronald Falk

Columbia Nephrology Associates

Hôpital Maisonneuve-Rosemont, University of Montreal, Canada

Medical University of South Carolina

The Ohio State University

University of Alabama at Birmingham

University of North Carolina Kidney Center

Vanderbilt University (Adults)

Virginia Commonwealth University

All sites are US sites, unless indicated.

Abbreviations: PCC, participating clinical center; PI, principal investigator; NIDDK, 

______; UCLA, ______.
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Box 2.

Scientific aims of CureGN, to be addressed by core and ancillary studies

Epidemiology

• To describe the disease trajectory under current clinical care

• To estimate event rates for clinically meaningful outcomes

• To identify patient characteristics (demographic, clinical, laboratory, 

environmental) associated with glomerular disease and non-renal 

complications of disease

• To identify clinical predictors of short- and long-term outcomes, including 

therapeutic responses

• To evaluate intermediate outcomes, such as proteinuria, as potential 

surrogates for longer-term outcomes

Biomarkers

• To identify and characterize clinical, histological, molecular, and genetic 

biomarkers that are linked to glomerular disease pathogenesis, disease 

outcomes, or that might be used to improve disease classification

• To identify biomarkers that may be employed in clinical practice or clinical 

trials to predict disease trajectory, disease activity, or response to therapy

Genetics

• To understand the genetic architecture of the four glomerulopathies, including 

studies of germline sequence variation, somatic mutations, epigenetic 

changes, and transcriptomic profile, and their impact on disease presentation 

and clinical outcome

• To study gene-gene and gene-environment interactions that contribute to the 

development of the four glomerulopathies and/or their response to therapy

• To devise systems genetics approaches to clarify pathogenesis

PROs

• To identify PROs (e.g., symptom burden, physical function, and quality of 

life) associated with primary glomerular diseases

• To validate disease-specific instrument(s) that assess the impact of disease 

and its therapy on patients

• To test the associations of PROs with disease progression

Abbreviations: PRO, patient-reported outcome; CureGN, _____.
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Box 3.

Inclusion and exclusion criteria

Inclusion Criteria

• Diagnosis of MCD, FSGS, MN, or IgAN on first diagnostic kidney biopsy

∘ IgM nephropathy, C1q nephropathy, and IgA vasculitis (Henoch-

Schonlein purpura nephritis) are included

• First diagnostic kidney biopsy within 5 years of study enrollment

• Access to first kidney biopsy report and/or slides

• All ages

• Willingness to comply with study requirements

• Informed consent/assent

Exclusion Criteria

• ESKD (long-term dialysis or kidney transplant) at time of screening

• Institutionalized patient

• Solid organ or bone marrow transplant recipient at the time of first kidney 

biopsy

• Diagnosis of any of the following at the time of first diagnostic kidney biopsy:

∘ Diabetes mellitus

∘ Systemic lupus erythematosus

∘ HIV infection

∘ Active malignancy, except for non-melanoma skin cancer

∘ Active Hepatitis B or C virus infection (positive viral load)

MCD, _____; FSGS, _____ ; MN, _____ ; IgAN, _____ ; HIV, _____.
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Table 1.

Overview of data elements and biosamples

Visit Eligibility Enrollment In-Person Follow-Up Remote Follow-Up

Screening Log Data

Demographics X

Biopsy diagnosis X

Exclusion criteria X

Consent/assent X
(X)

a

Medical Data

Comorbidities X X X

Family history X X

Birth history X
X

b

Pregnancy history X X

Prior disease course X

Interim disease course X X

Subsequent renal biopsy X X

Clinical trial participation X X X

Medications
c X X X

Hospitalizations X X X

ESKD status X X

Vital status X X

Physical exam X X

Vital signs X X

PRO Data

Symptoms X X X

PRO questionnaires X X

Local Laboratory Tests*

Blood chemistries, Hematology studies, Coagulation studies, 
Rheumatologic and Infectious serologies, Urine studies

X X X

Central Laboratory Tests**

Serum creatinine X X

24-hour, morning void, or spot urine (protein, creatinine)
d X X

Biospecimens

Blood sample, including DNA and RNA X X

Immortalized cell lines
e X

24-hour, morning void, or spot urine
d X X

*
if measured, based on abstraction from clinic record

**
measured by CureGN laboratory
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(a)
If not previously performed

(b)
If not previously collected

(c)
Immunosuppressive medication since disease onset is collected at enrollment and updated at all visits. All other concurrent medications, 

vaccines, and supplements are collected at all visits using a searchable database of RxNorm.

(d)
Attempts should be made to collect a 24-hour urine sample on an annual basis. For all other visits, a morning void collection in a designated, 

pre-labeled container should be obtained. Additionally, a spot collection should be done during the visit, noting the time of collection.

(e)
Pediatric patients only

Abbreviations: ESKD, end-stage kidney disease; PRO, patient-reported outcome.
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Table 2.

MDHR for time-to-event outcomes and MDDS for comparisons within disease type (n=600) and overall 

(n=2400)

Outcome Event rates per person 
year

MDHR* for n=600 
(300/group)

MDHR* for 1=2400 
(1200/group)

Time to ESKD or death* 0.03-0.08 1.7 to 2.6 1.5 to 1.9

Time to loss of 50% eGFR from baseline* 0.04-0.15 2.1 to 7.3 1.8 to 3.6

Time to complete remission of proteinuria (<0.3 

g/d)*^
0.20-0.70 1.6 to 2.3 1.4 to 1.9

Outcome SD of subgroup MDDS
+

 for n=600 (300/
group)

MDDS
+

 for n=2400 
(1200/group)

eGFR slope
+

 (mL/min/1.73 m2 per year)
18.4-26.4 4.2-6.1 2.1-3.0

eGFR (mL/min/1.73 m2) repeated measures
++ 13.5-22.6 2.8-4.6 1.4-2.3

UPCR (mg/mg) repeated measures
++ 2.4-4.5 0.4-0.8 0.2-0.4

*
MDHR (minimum detectable hazard ratio) is based on the following assumptions: Patient follow-up time of 2 years for more common events (loss 

of 50% eGFR from baseline and complete remission of proteinuria). Patient follow-up time of 10 years for more rare events (ESKD or death); a 
loss to follow-up rate at an average rate of 0.1 per year, 80% power, alpha=0.05, an intra-cluster correlation of 0.05, and the between-site 
normalized standard deviation of site sample sizes of 0.15. Event rates per person year represent ranges over the four disease types.

+
MDDS (minimum detectable difference in slopes) based on differences between groups in mean person-specific slopes of eGFR values. Slopes 

are interpreted as eGFR change per year; SD of disease-specific eGFR slopes: MCD 20.5, FSGS 26.4, MN 24.2, and IgAN 18.4.

++
MDDS for eGFR and UPCR repeated continuous outcomes are based on differences between groups in mean slopes of eGFR and UCPR values. 

Slopes are interpreted as eGFR or UPCR change per year; SD of disease-specific eGFR: MCD 22.6, FSGS 15.6, MN 13.5, and IgAN 15.8. SD of 
disease-specific UPCR: MCD 4.5, FSGS 3.0, MN 3.6, and IgAN 2.4.

^
Group sizes for time-to-complete remission of proteinuria excluded 1/3 of the group who were in remission at enrollment.

Abbreviations: eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; FSGS, focal segmental glomerulosclerosis; IgAN, 
immunoglobulin A nephropathy; MCD, minimal change disease; MN, membranous nephropathy; SD, standard deviation.
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