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Abstract

Astrocytes are involved in neuroprotection, and DJ-1 is an important antioxidant protein that is abundantly expressed in reactive
astrocytes. However, the role of DJ-1 in astrocytes’ neuroprotection in cerebral ischemia/reperfusion injury and its potential
mechanism is unclear. Thus, to explore effects and mechanisms of DJ-1 on the neuroprotection of astrocytes, we used primary co-
cultures of neurons and astrocytes under oxygen and glucose deprivation/reoxygenation in vitro and transient middle cerebral
artery occlusion/reperfusion in vivo to mimic ischemic reperfusion insult. Lentiviral was used to inhibit and upregulate DJ-1
expression in astrocytes, and DJ-1 siRNA blocked DJ-1 expression in rats. Inhibiting DJ-1 expression led to decreases in
neuronal viability. DJ-1 knockdown also attenuated total and nuclear Nrf2 and glutathione (GSH) levels in vitro and vivo.
Similarly, loss of DJ-1 decreased Nrf2/ARE-binding activity and expression of Nrf2/ARE pathway-driven genes.
Overexpression of DJ-1 yielded opposite results. This suggests that the mechanism of action of DJ-1 in astrocyte-mediated
neuroprotection may involve regulation of the Nrf2/ARE pathway to increase GSH after cerebral ischemia/reperfusion injury.

Thus, DJ-1 may be a new therapeutic target for treating ischemia/reperfusion injury.

Key Messages
* Astrocytes protect neurons in co-culture after OGD/R

» DIJ-1is upregulated in astrocytes and plays an important physiological roles in neuronal protection under ischemic conditions
» DIJ-1 protects neuron by the Nrf2/ARE pathway which upregulates GSH
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Introduction

During cerebral ischemia/reperfusion (I/R) injury, oxidative
stress is thought to be an important mediator of pathogenesis
[1]. Neurons are susceptible under ischemic condition while
astrocytes support neuronal function and survival during
stress [2, 3]. Previous studies have shown that astrocytes pro-
tect neurons against oxidative stress and affect neuronal sur-
vival in some neurodegenerative diseases [2, 4]. In addition,
neurons co-cultured with astrocytes are less sensitive to oxi-
dative stress than when cultured alone [4, 5]. Thus, studying
astrocyte-neuron interactions and identifying astrocyte-
derived neuroprotective molecules may help treat cerebral
ischemia/reperfusion injury.

DJ-1 is a multifunctional protein that regulates transcrip-
tion [6, 7], antioxidant stress [8, 9], and anti-apoptotic process-
es [6, 10]. It is abundantly expressed in reactive astrocytes
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during chronic neurodegenerative diseases such as
Parkinson’s disease [11, 12]. DJ-1 is also intensely expressed
in immunoreactive astrocytes during ischemic stroke [13, 14]
and important in regulating brain damage following ischemia
[15]. However, the role of DJ-1 in astrocytes’ neuroprotection
in cerebral ischemia/reperfusion injury and its potential mech-
anism is unclear. DJ-1 regulates Nrf2 and its downstream
pathways, which are master transcription factors for oxidative
stress [7, 16, 17]. In addition, there is an association between
DJ-1 and glutathione (GSH) [18, 19].

GSH is an important antioxidant in the brain that partici-
pates in interactions between astrocytes and neurons [20-22].
Previous studies have shown that GSH is synthesized and
released by astrocytes and can then be used by neurons to
resist oxidative stress [21, 23]. In addition, elevated DJ-1 ex-
pression increases GSH levels in co-cultures of astrocytes and
neurons [24], but it is not clear how these two molecules
interact. DJ-1 may increase GSH by upregulating GSH syn-
thesis to protect against oxidative stress during Parkinson’s
disease [19]. Glutamate cysteine ligase (GCL), which includes
the glutamate-cysteine ligase catalytic subunit (GCLC) and
the glutamate-cysteine ligase regulatory subunit (GCLM),
and glutathione synthesis (GSS) are necessary for synthesis
of GSH [21, 25].

To determine whether the mechanism of action of DJ-1 in
astrocyte-mediated neuroprotection involves GSH and Nrf2,
we studied effects of lentivirus-mediated DJ-1 overexpression
and knockdown on GSH and Nrf2 in experiments using oxy-
gen and glucose deprivation/reoxygenation (OGD/R) and
middle cerebral artery occlusion/reperfusion (MCAO/R) to
mimic ischemic/reperfusion insult in vitro and in vivo,
respectively.

Materials and methods
Animals and reagents

Astrocytes were prepared from postnatal 1-day-old Sprague-
Dawley rats, and neurons were obtained from embryonic day
15—-16 Sprague-Dawley rats. All experiments were authorized
by the Institutional Animal Ethics Committee of Chongqing
Medical University, Chongqing, China, and procedures were
in compliance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals. All efforts were
made to minimize animal suffering.

Neurobasal medium, high-glucose Dulbecco’s Modified
Eagle’s Medium/F12 (DMEM/F12), glucose-free Dulbecco’s
Modified Eagle’s Medium (DMEM), B27, and fetal bovine
serum (FBS) were obtained from Gibco (Grand Island, NY,
USA). Hank’s solution and trypsin were purchased from
HyClone (Logan, UT, USA). Poly-L-lysine was obtained
from Sigma-Aldrich (Milan, Italy). Phosphate-buffered
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solution (PBS) and penicillin/streptomycin (Pen/Strep) were
purchased from Beyotime (Shanghai, China). Lactate dehy-
drogenase (LDH), GSH, and y-GCL assay kits were obtained
from Jiancheng Bioengineering Institute (Nanjing, China). A
CCK-8 kit was purchased from Dojindo (Kumamoto, Japan).

MCAO/R and groups

Transient middle cerebral artery occlusion (MCAO)-reperfu-
sion was performed and cerebral blood flow (CBF) was mon-
itored as described previously [26-28]. Briefly, adult male
Sprague-Dawley rats (250-280 g) were anesthetized with
3.5% chloral hydrate (350 mg/kg), and then placed on a
heating pad to maintain body temperature at 37+0.5 °C. A
monofilament nylon suture (Shadong Biotechnology
Company, Beijing, China) was inserted into the left middle
cerebral artery. A laser Doppler flow meter (PeriFlux System
5000, Perimed, Sweden) was applied to detect CBF. The local
CBF decreased to < 23.88 +2.08% of the baseline level after
the middle cerebral artery was occluded. Then, the plug was
removed after 1 h of ischemia to allow reperfusion and CBF
was restored to >75% of baseline. After 4 h, 8 h, 12 h, and
48 h of reperfusion, brain tissue from the left cerebral cortex
was assessed using Western blot analysis. After reperfusion
24 h, brain tissue was subjected to TTC, Western blot analysis,
and immunohistochemistry. Sham animals were subjected to
the same surgical procedure but without occlusion of the mid-
dle cerebral artery.

Adult male Sprague-Dawley rats were randomized to the
following groups: (1) control group, (2) MCAO group, (3)
negative control (NC) group: rats transfected with negative
control siRNA (non-targeting sequence) and treated with
MCAO, and (4) DJ-1 siRNA group: rats transfected with
DJ-1 siRNA and treated with MCAO.

DJ-1 interference in rats

The DJ-1 siRNA was designed and synthesized by Shanghai
GenePharma Co., Ltd. (sense primer 5-
CCCAUUGGCUAAGGACAAATT-3) and (antisense primer
5-UUUGUCCUUAGCCAAUGGGTT-3). As a control, a
negative control siRNA without any target sequence was con-
structed (sense primer 5-UUCUCCGA
ACGUGUCACGUTT-3 and antisense primerS5S-
ACGUGACACGUUCGGAGAATT-3). Twenty-four to
forty-eight hours before MCAO, DJ-1siRNAs were injected
into the left lateral cerebral ventricle. Western blot analysis
was used to confirm knockdown efficiency of DJ-1siRNA.

Cell cultures

Astrocyte-rich primary cultures were established using the
method of Park and colleagues [29]. Briefly, after
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maintenance of astrocyte cultures for 2—3 weeks, microglia
and oligodendrocytes were dislodged and removed from
flasks with mild shaking. The remaining astrocytes were de-
tached by trypsinization, and digested cells were plated direct-
ly on the plastic surface in 24-well plates. When astrocytes
reached 80% confluence, neuron-enriched cultures were pre-
pared using previously published methods [26]. Neurons were
plated onto poly-L-lysine-coated, PBS pre-equilibrated, 14-
mm glass coverslips in 24-well plates. Neuron purity (>
90%) was assessed using the neuron-specific marker, NeuN.

Non-contact neuron-astrocyte co-cultures were established
as previously described with modifications [30]. The co-
culture model is shown in Fig. 1a. Briefly, when neurons were
almost adhered to a poly-L-lysine-coated coverslips on paraf-
fin column without glial cells in culture medium containing
2% B27 and 1% Pen/Strep, they were incubated with astro-
cyte monolayers in a manner that did not allow physical con-
tact between the two cell types. The paraffin column was not
injurious to cultures.

OGD/R and groups

OGD/R was performed as previously described. The co-
culture system was established with glucose-free DMEM in
an incubator with 94% N,, 1% O,, and 5% CO, for 1, 2, 3, 4,
5, and 6 h at 37 °C. Then, the medium was replaced with
normal culture medium (neurobasal medium with 2% B27
and 1% Pen/Strep) in an incubator with 5% CO, and 95%
air for 24 h at 37 °C.

Co-cultures were randomized to the following groups: (1)
control: untreated cells, (2) OGD/R treatment, (3) negative

a

control (NC): astrocytes transfected with negative control len-
tivirus (non-targeting sequence lentivirus) and treated with
OGD/R, (4) knockdown: astrocytes transfected with DJ-1
knockdown lentivirus and treated with OGD/R, (5) scramble:
astrocytes transfected with scramble lentivirus and treated
with OGD/R, and (6) overexpression: astrocytes transfected
with DJ-1 overexpressing lentivirus and treated with OGD/R.

Lentiviral transfection of shRNA

Lentivirus was obtained from Neuron Biotech (Shanghai,
China). The following three RNA sequences based on the
rat DJ-1 gene (Gene ID: NM_117287) were used: 5-
CCGGACGGCAGTCACTACAGCTACTCAAGAGA
TAGCTGTAGTGACTGCCGTTTTTTTG-3 (knockdown),
5-CCGGTTCTCCGAACGTGTCACGTTTCAAGAGA
ACGTGACACGTTCGGAGAATTTTTTG-3 (NC: It was
the control sequence of the knockdown sequence), and 5-
ATGGACTACAAGGATGACGATGACAAGGATTA
CAAAGACGACGATGATAAGGACTATAAGGA
TGATGACGACAAA-3 (overexpression). Scramble lentivi-
rus did not contain inserts. Astrocytes were transfected with
knockdown or NC at a multiplicity of infection (MOI) of 10 in
medium and overexpression or scramble at a MOI of 15 in
medium. Green fluorescent protein (GFP)-positive (overex-
pression and scramble) cells and red fluorescent protein
(RFP)-positive (knockdown and NC) cells were confirmed
under a fluorescence microscope. Sustained DJ-1 downregu-
lation or overexpression efficiency was confirmed by Western
blot analysis and quantitative real-time PCR (q-PCR).
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Fig. 1 Co-culture with astrocytes increased neuronal survival after OGD/
R. a Non-contact neuron-astrocyte co-culture system. b Cell viability
data. n=6 of samples/group from an experiment, three independent
experiments were carried out. ¢ LDH release. n=6 of samples/group
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from an experiment, three independent experiments were carried out.
OGD/R = oxygen-glucose deprivation/reoxygenation. Values are
expressed as mean = SEM. Neuronal monoculture vs. co-culture;
#p<0.05, **p <0.01, ***p <0.001
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g-PCR arrays

Differences in mRNA expression between groups were
assessed using g-PCR as previously reported (Carrion et al.
2014; Lu et al. 2012). Total RNA from astrocytes was extract-
ed using RNAiso Plus (TaKaRa Biotechnology, Dalian,
China), and RNA was converted to complementary DNA
(cDNA) by reverse transcription (TaKaRa Biotechnology).
Then, g-PCR was performed using TaKaRa SYBR Premix
Ex Taq II (Tli RNase H Plus) (TaKaRa Biotechnology) with
a CFX96 Touch™ Real-Time PCR Detection System. Probe
and primer sequences (Sangon Biotech, Shanghai, China)
were as follows for DJ-1: forward, 5'-AGGA
GCAGAGGAGATGGAGA-3’, reverse, 5'-ACAT
CACGGCTACACTGCAC-3".

Western blots

Astrocyte protein lysates and brain tissue protein lysates were
prepared in RIPA buffer containing protease inhibitor PMSF.
Equal amounts of protein (50 pg per lane) were resolved with
SDS-PAGE and electrotransferred onto PVDF membranes
(Millipore, Boston, MA, USA). Membranes were then
blocked with 5% non-fat milk TBST buffer at room tempera-
ture and incubated at 4 °C overnight with the following pri-
mary antibodies: anti-DJ-1 (1:2000, Abcam, Cambridge, UK,
ab76008), anti-Nrf2 (1:200, Santa Cruz Biotechnology, CA,
USA, SC-722), anti-CRIF1 (1:500, Proteintech, Chicago, IL,
USA, 16260-1-AP), anti-GCLC (1:500, Proteintech, 12601-
1-AP), anti-GCLM (1:500, Proteintech, 14241-1-AP), anti-
GSS (1:500, Proteintech, 15712-1-AP), and anti-f3-actin
(1:5000, ABclonal, Wuhan, China, AC004). The next day,
membranes were washed and incubated with HRP-
conjugated secondary antibodies (1:5000, ABclonal, AS014,
AS003) for 2 h at room temperature. Protein bands were vi-
sualized with an ECL kit (Millipore, Temecula, CA, USA).
Band intensity was quantified using ImageJ and normalized to
intensity of the (3-actin band. Three independent experiments
were performed.

Immunocytochemistry and immunohistochemistry

Cells grown on glass coverslips and frozen sections of brain
tissue were lightly fixed in 4% paraformaldehyde, blocked
with 3% FBS/0.01% Triton X-100 in PBS, and incubated at
4 °C overnight with the following primary antibodies: anti-
DJ-1 (1:50, Abcam, ab76008), anti-Nrf2 (1:50, Abcam,
ab31163), and anti-GFAP (1:200, ABclonal, A10871). The
next day, cells or sections were incubated with secondary an-
tibodies at room temperature. Secondary antibodies were
tagged with either DyLight 488 (anti-mouse, Abbkine,
green, A23210) at 1:200 or DyLight 549 (anti-rabbit,
Abbkine, red, A23320) at 1:200. Coverslips and sections were
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Fig. 2 DJ-1 ameliorated cerebral (I/R) injury after MCAO/R. a Western
blot of DJ-1. d Ratios of DJ-1 relative to (3-actin. In the 24-h group, DJ-1
levels increased compared with the sham group. Values are mean + SEM.
*p <0.05. n=3 of samples/group from an experiment, three independent
experiments were carried out. ¢ Immunohistochemistry for DJ-1 and
semi-quantitation to determine percentage of DJ-1-postive cells relative
to GFAP-positive cells in astrocytes. In the 24-h MCAO group, DJ-1 was
expressed at higher levels in reactive astrocytes in cortical infarct regions
compared with controls. Laser scanning confocal microscope was used to
assess expression. DJ-1 expression in astrocytes is indicated by red
fluorescence. GFAP expression in astrocytes is indicated by green
fluorescence. Cell nuclei were stained with DAPI. Original
magnification, 400%. Values are expressed as mean = SEM. *p <0.05
vs. sham. n =3 of samples/group from an experiment, three independent
experiments were carried out. b, e Infarct volume of brain. f Neurological
scores. g Brain water content. Infarct volume, neurological scores, brain
water content were significantly increased in the DJ-1 siRNA group
compared with the MCAO and NC groups. Values are mean = SEM.
*p <0.01 vs. sham; &p <0.05 vs. MCAO, n =3 of samples/group from
an experiment, three independent experiments were carried out

mounted with Vectashield containing DAPI. Sections and
cells were imaged with a fluorescence microscope or a laser
scanning confocal microscope.
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Fig. 3 DJ-1 expression in astrocytes varied with OGD duration. After
OGD/R, astrocytes were harvested. a Western blot analysis of DJ-1. b
Ratios of DJ-1 relative to 3-actin showing that DJ-1 in the 5-h group
increased compared with controls. ¢ q-PCR data was consistent with
results of Western blots. d Immunocytochemistry to measure DJ-1
expression in astrocytes. Fluorescence microscopy was used to assess
expression. DJ-1 expression in astrocytes is indicated by red fluorescence.

Assessment of infarct volume

After 24 h of reperfusion, brains were sliced into 2-mm-thick
sections and stained with 2% 2,3,5-triphenyltetrazolium chlo-
ride (TTC, Sigma, USA) at 37 °C for 15 min in the dark, and
then fixed in 4% paraformaldehyde at 4 °C for 24 h. Each
section was photographed with a digital camera, and areas of
volume were analyzed using an ImageJ (version 6.0, NIH,
Bethesda, MD, USA). Percentage of infarct volume was cal-
culated using the following equation: {[total infarct
volume — (ipsilateral hemisphere volume — contralateral hemi-
sphere volume)] / contralateral hemisphere volume} x 100%.

Assessment of neurological deficit scores and brain
water content

After 24 h of reperfusion, neurologic deficit scores were
assessed by an observer blinded to the experimental animals
using a modified scoring system in accordance with the
methods previously reported [27]. The scoring system was
as follows: grade 0, no neurological deficits; grade 1, unable
to entirely extend contralateral forelimb; grade 2, circling to
the right; grade 3, falling to the contralateral side; grade 4, no

DJ-1 GFAP

DAPI

GFAP expression in astrocytes is indicated by green fluorescence. Cell
nuclei were stained with DAPI. Original magnification, 200x. e Semi-
quantitation to determine percentage of DJ-1-postive cells relative to
GFAP-positive cells in astrocytes. Values are mean = SEM. *p <0.05,
n=3 of samples/group from an experiment, three independent experi-
ments were carried out

spontaneous autonomic activity or loss of consciousness;
grade 5, dead.

Rats were killed 24 h after reperfusion and the brains were
rapidly removed and weighed to obtain the wet weight. After
24 h of drying in an oven at 120 °C until the weight was
invariable, the brains were weighed again to obtain the dry
weight. Brain water content was calculated as follows: (wet
weight — dried weight) / wet weight x 100%.

Electrophoretic mobility shift assay

Electrophoretic mobility shift assay was conducted using a
commercial kit (Gel Shift Assay System; Promega,
Madison, WI, USA). The Nrf2 consensus oligonucleotide
probe (5-TGG GGA ACC TGT GCT GAG TCA CTG
GAG-3") was end-labeled with [c-32P] ATP (Sangon
Biotech., Shanghai, China) using T4-polynucleotide kinase.
Then, 15 pg of nuclear protein was incubated in a binding
buffer for 15 min at room temperature. Samples were then
loaded onto a non-denaturing 4% polyacrylamide gel and
electrophoretically separated in 0.25x TBE buffer. Gels were
vacuum-dried and exposed to X-ray film (Fuji Hyperfilm,
Tokyo, Japan) at 80 °C with an intensifying screen. Nrf2
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Fig. 4 Astrocytic DJ-1 protected neurons by upregulating GSH levels.
After OGD for 5 h followed by reoxygenation for 24 h, astrocytes,
neurons, and culture medium were harvested. a Western blot of DJ-1. b
Ratios of DJ-1 relative to (3-actin. DJ-1 expression was reduced in the
knockdown group and upregulated in the overexpression group. ¢ g-PCR
results were consistent with Western blots. Values are expressed as mean
+ SEM. #p < 0.05 vs. control; *p < 0.01 vs. OGD/R; &p < 0.01 vs. OGD/
R. n=3 of samples/group from an experiment, three independent

DNA binding activity was quantified with computer-assisted
densitometric analysis.

LDH assay

After OGD/R, cell culture medium was collected from each
group. LDH released into the culture medium was measured
using an assay kit (Jiancheng Bioengineering Institute,
Nanjing, China) according to the manufacturer’s instructions.
Absorbance was read at 440 nm using a microplate reader
(Bio-Rad, Foster City, CA, USA), and LDH activity was
expressed as U/L.

Cell viability

Neuronal viability was assessed using a CCK-8 kit (Dojindo,
Kumamoto, Japan) according to the manufacturer’s protocol.
Briefly, after cells were subjected to OGD/R, 100 ul CCK-8
was added to each well, and samples were incubated at 37 °C
for up to 2 h. Absorbance was read at 450 nm, and cell
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experiments were carried out. d Neuronal viability after exposure to
OGDJ/R. e LDH in the culture medium. f GSH in the culture medium. g
v-GCL in the culture medium. h GSH in rats. Values represent mean +
SEM. #p < 0.05 vs. control; *p < 0.01 vs. OGD/R; &p < 0.05 vs. OGD/R.
n=06 of samples/group from an experiment, three independent
experiments were carried out. Values are mean + SEM. *p<0.01 vs.
sham; &p < 0.01 vs. MCAO, n = 3 of samples/group from an experiment,
three independent experiments were carried out

viability was expressed as relative percent compared with
controls.

ELISA measurement of GSH

To investigate the level of GSH expression in rats, the GSH
amount was measured using GSH enzyme-linked immunosor-
bent assay (ELISA) kit (Mbbiology Institute, JiangSu, China)
according to the manufacturer’s instructions. And absorbance
was read at 450 nm.

GSH and y-GCL assays

Cell culture medium was collected from each group. GSH and
v-GCL activity was assayed in culture medium using kits
(Jiancheng Bioengineering Institute, Nanjing, China) accord-
ing to the manufacturer’s instructions. Data were collected at
405 and 660 nm.
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Fig. 5 Effects of DJ-1 on expression of Nrf2. a After OGD for 5 h
followed by 24 h of reoxygenation, astrocytes were harvested. Western
blot for Nrf2 and CRIF1 in astrocytes. b After 24 h of reperfusion, brains
were collected. Western blot for Nrf2 and CRIF1 in rats. ¢, d Ratios of
Nrf2 and CRIF1 relative to (3-actin in astrocytes and in rats, respectively.
e Immunocytochemistry assays to measure total Nrf2 and nuclear Nrf2 in
astrocytes. Fluorescence microscopy was used to assess expression. Nrf2
expression in astrocytes is indicated by red fluorescence. Cell nuclei were

Statistical analysis

Data are expressed as mean + SEM. All statistical analyses
were performed using GraphPad Prism software (version 6.0).
Statistical differences among multiple groups were deter-
mined by one-way analysis of variance (ANOVA) followed
by the Tukey’s test for multiple comparisons. Statistical sig-
nificance was established when P < 0.05.

Results

Co-culture with astrocytes increased neuronal
survival after OGD/R

Monocultured neurons and co-culture system were subjected
to OGD for different time periods ranging from 1 to 6 h; after

stained with DAPI. Original magnification, 200x. f Semi-quantitation to
determine total number of Nrf2-positive cells and number of nuclear
Nrf2-positive cells in astrocytes. Values are mean + SEM. #p < 0.05 vs.
control; *p <0.05 vs. OGD/R; and &p <0.05 vs. OGD/R. n=3 of
samples/group from an experiment, three independent experiments were
carried out. Values are mean + SEM. *p <0.01 vs. sham; &p <0.01 vs.
MCAO, n =3 of samples/group from an experiment, three independent
experiments were carried out

24 h of reoxygenation, cell viability was tested by CCK-8 kit.
Figure 1b shows that neuronal viability gradually decreased
after extended OGD/R. Co-cultured neurons exhibited greater
survival compared with monocultured neurons. LDH activity
(Fig. 1c) increased with increasing OGD/R time, and it was
lower in co-cultures compared with neuronal monocultures.
Thus, astrocytes protect neurons against OGD/R.

DJ-1 ameliorated cerebral (I/R) injury after MCAO/R

We analyzed the changes of DJ-1 in ischemic rats with in-
creasing reperfusion time (Fig. 2a, d) and showed higher
levels of DJ-1 at reperfusion 24 h when compared with the
sham group, and there were no differences among the other
treatment groups. Double staining of brain sections with anti-
bodies against GFAP and DJ-1 showed that reactive astrocytes
expressed DJ-1 protein in cortical infarct regions in the 24-h
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Fig. 6 DJ-1 regulates Nrf2/ARE binding activity and Nrf2/ARE-driven
gene expression. After OGD for 5 h followed by 24 h of reoxygenation,
astrocytes were harvested. And after 24 h of reperfusion, brains were
collected. a EMSA analysis of Nrf2/ARE binding. b Semiquantitative
analysis of Nrf2/ARE binding. CK, 100x, (+) and (—) indicate controls.
¢ Western blot for GCLM, GCLC, and GSS in astrocytes. d Western blot
for GCLM, GCLC, and GSS in rats. e, f Ratios of GCLM, GCLC, and
GSS relative to (3-actin in astrocytes and in rats, respectively. Values are
mean + SEM. #p <0.01 vs. control; *» <0.01 vs. OGD/R; and p <0.05
vs. OGD/R. n=3 of samples/group from an experiment, three
independent experiments were carried out. Values are mean + SEM.
*p <0.05 vs. sham; &p <0.01 vs. MCAO, n =3 of samples/group from
an experiment, three independent experiments were carried out

reperfusion group (Fig. 2¢). To explore the effects of DJ-1 on
cerebral I/R injury, cerebral infarct volume, neurological def-
icit scores, and brain water content were used to detect the
effects of DJ-1 on cerebral I/R injury. Figure 2b, e shows that
infarct volume was significantly increased in the DJ-1 siRNA
group compared with the MCAO group, and there were no
differences in infarct volume between the MCAO and NC
groups. Similarly, silencing DJ-1 could remarkably increase
neurological deficit scores and brain water content compared
with the MCAO group (Fig. 2f, g). These results indicate that
DJ-1 can ameliorate cerebral I/R injury.
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DJ-1 expression in astrocytes varied with 0GD
duration

To test whether astrocytic DJ-1 levels increased after OGD/R
treatment, we used Western blot and q-PCR to detect expression
levels of DJ-1 protein and mRNA, respectively. Figure 3a—c
shows that DJ-1 was upregulated in the 5-h OGD group
compared with the controls, and there were no differences in
DJ-1 expression in the remaining treatment groups.
Immunocytochemistry (Fig. 3d, €) confirmed that expression of
DJ-1 was higher in the 5-h group compared with the control
group. These results suggest that DJ-1 expression is upregulated
when co-cultured cells are subjected to OGD/R, and the maximal
effect was observed in the 5-h group. Therefore, to explore neu-
roprotective effects of DJ-1 and its mechanisms of action, we
chose OGD 5 h as the optimum time point for further study.

Astrocytic DJ-1 protected neurons by upregulating
GSH levels

Knockdown lentivirus and overexpressing lentivirus were
continuously applied from 72 h to knockdown and overex-
press the DJ-1. Western blotting and qPCR were used to detect
the knockdown and overexpression efficiency. Western blot
analysis (Fig. 4a, b) showed that DJ-1 expression decreased
after lentiviral knockdown and increased after lentiviral over-
expression when compared with the OGD/R group, and these
data are consistent with q-PCR results in Fig. 4c.

The CCK-8 kit was used to test the effects of DJ-1 on neuron
viability after exposure to OGD/R. As shown in Fig. 4d, com-
pared with the OGD/R treatment group, cells in the knockdown
group subjected to lentiviral-mediated interference of DJ-1 were
less viable, and viability was increased in the DJ-1 overexpres-
sion group. Silencing DJ-1 increased LDH activity (Fig. 4e), and
overexpression decreased it. To investigate the neuroprotective
mechanisms of DJ-1, GSH level and GCL activity in the culture
medium was measured. Figure 4f, g shows that overexpressing
DJ-1 increased GSH levels and GCL activity compared with the
OGD/R group. DJ-1 knockdown had the opposite effect.
Similarly, GSH levels in rats were measured. Figure 4h shows
that loss of DJ-1 decreased GSH levels.

Effects of DJ-1 on expression of Nrf2

Western blotting was used to detect the expression of total Nrf2
and CRIF1. After OGD/R, expression of total Nrf2 increased
compared with controls, and after DJ-1 knockdown, expression
of total Nrf2 decreased compared with the OGD/R group.
Overexpression of DJ-1 had the opposite effect (Fig. Sa, c).
Similarly, DJ-1 interference decreased levels of total Nrf2 com-
pared with the MCAO group in rats (Fig. 5b, d). However,
changes in DJ-1 expression had no effect on levels of CRIF1
in cells and rats (Fig. 5a—d). Results of immunocytochemistry
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Fig. 7 Mechanisms of action of
DIJ-1 in astrocytes. After
oxidative stress induced by
cerebral ischemia and
reperfusion, DJ-1 is expressed in
immunoreactive astrocytes. DJ-1
facilitates Nrf2 translocation to
the nucleus by preventing binding
with Keap1. Nrf2 binds to ARE
and upregulates expression of
GCLC, GCLM, and GSS, which
regulate synthesis of GSH
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Nucleus
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experiments presented in Fig. Se, f confirmed that expression of
total Nrf2 and nuclear Nrf2 in astrocytes significantly increased
in the OGD/R group compared with the controls. Silencing DJ-1
decreased Nrf2 expression, and overexpressing DJ-1 increased
Nrf2 expression. No changes were observed in the other treat-
ment groups.

DJ-1 regulated Nrf2/ARE binding activity
and Nrf2/ARE-driven gene expression

Astrocyte nuclear extracts were subjected to EMSA for mea-
surement of Nrf2-ARE binding activity. The data (Fig. 6a, b)
indicated no differences among the OGD/R, NC, and scram-
ble groups. Compared with the OGD/R group, treatment with
DJ-1 interfering lentivirus reduced Nrf2 binding activity, and
the opposite effect was observed in the overexpression group
(p <0.05). Thus, after OGD/R, DJ-1 may increase Nrf2/ARE
binding.

Western blot analysis was used to investigate the effects of
DJ-1 on expression of the Nrf2/ARE-driven genes, GCLC and
GCLM and GSS. The data (Fig. 6¢c, ) showed that GCLC,
GCLM, and GSS expression did not differ between the OGD/
R, NC, and scramble groups. After knockdown of DJ-1, ex-
pression of GCLC, GCLM, and GSS decreased compared
with the OGD/R group. After overexpression of DJ-1, expres-
sion of GCLC, GCLM, and GSS increased compared with the
OGD/R group. Similarly, Fig. 6d, f shows that silencing DJ-1
interference decreased expression of GCLC, GCLM, and GSS
compared with the MCAO group. Thus, DJ-1 upregulates
expression of Nrf2/ARE-driven genes GCLC, GCLM, and
GSS.
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Discussion

We explored mechanisms underlying actions of DJ-1 in astro-
cytes and noted that DJ-1 was upregulated in astrocytes under
ischemic conditions. After knockdown and overexpression of
DIJ-1, neuronal survival decreased or increased, respectively.
Loss of DJ-1 decreased GSH levels and Nrf2 expression
in vitro and vivo; overexpression of DJ-1 had the opposite
effect. Similarly, the Nrf2/ARE binding and expression of
antioxidant proteins GCLC, GCLM, and GSS that act down-
stream of ARE followed trends in DJ-1 expression. Thus,
astrocytic DJ-1 mediates neuroprotection by regulating the
Nrf2/ARE pathway to upregulate GSH.

Astrocytes protect neurons against chronic impairment of ox-
idative metabolism [4, 5]. Long-term survival of cultured neu-
rons is improved when they are co-cultured with glial cells [5,
21]. Consistent with these results, we found that viability of
neurons co-cultured with astrocytes was greater than neurons
cultured alone. We used neurobasal medium to support the great-
er nutritional requirements for the co-cultured neurons [28, 30].

DJ-1 is an antioxidant protein expressed in neurons and
glial cells [31, 32]. However, expression of DJ-1 is increased
in reactive astrocytes in sporadic Parkinson’s disease and oth-
er neurodegenerative diseases [12, 14]. Previous work dem-
onstrated that DJ-1 is increased in immunoreactive astrocytes
24 h after reperfusion following stroke [13], and we noted
similar results at all reperfusion time points in a time-
dependent manner [13]. DJ-1 significantly increased 24 h after
reperfusion in reactive astrocytes in vivo. In vitro, we found
that DJ-1 peaked at 5 h of OGD/R in astrocytes. This may be
an antioxidant stress response or a protective response. In this
study, DJ-1 overexpression increased neuronal viability. DJ-1
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participates in astrocyte-mediated neuroprotection [33] by
scavenging reactive oxygen species (ROS) or inducing astro-
cyte synthesis and release of protective molecules [24, 34].

GSH is a soluble factor that is synthesized and released from
astrocytes and participates in astrocyte-mediated neuroprotection
[21, 25]. DJ-1 increases GSH and reduces neuronal damage
induced by oxidative stress [24]. In contrast, Mullett and col-
leagues showed that DJ-1 did not affect GSH after cell treatment
with rotenone [35]. We noted that DJ-1 was neuroprotective
through GSH release by astrocytes after OGD/R. This may be
the result of a different model. GSH can scavenge cellular ROS
as an enzyme or in a non-enzymatic manner [36, 37]. Cysteine in
GSH is released by astrocytes and used to create neuronal GSH
[38, 39]. And lactate from astrocytes is provided to neurons for
ATP production [40]. Cysteine from astrocyte is a major substrate
for neuronal de novo GSH biosynthesis. The biosynthesis pro-
cess via two stepwise ATP-dependent reactions and the two rate-
limiting steps were regulated by GCL and GS, respectively [21].

In studies to determine how DJ-1 regulates GSH, we observed
that knockdown of DJ-1 decreased expression of Nrf2 and
prevented nuclear accumulation of Nrf2. Overexpression of DJ-
1 yielded the opposite effects in astrocytes. Consistent with pre-
vious studies, we found that DJ-1 mediates Nrf2 activation and
eventual nuclear translocation of Nrf2 in astrocytes [7, 16].
However, in non-brain cells, DJ-1 stabilizes Nrf2 by inhibiting
its ubiquitination and promotes Nrf2 nuclear translocation by
preventing its binding with Keapl [7, 41]. Other studies showed
that DJ-1 inhibits CRIF1-mediated Nrf2 degradation to regulate
Nrf2 protein stability and Nrf2 translocation to the nucleus [42,
43]. We found that CRIF1 levels did not change with alterations
in DJ-1 expression. Perhaps different cells have unique sensitiv-
ities to oxidative stress. Nrf2 is a key transcription factor that
binds to ARE to antagonize injury induced by oxidative stress
[44, 45]. Thus, EMSA was used to test Nrf2/ARE binding, and
we noted similar changes with DJ-1. Nrf2 is often the central
signaling switch that regulates expression of phase II detoxifying
enzymes and antioxidants, such as GCLC, GCLM, and GSS,
through the Nrf2/ARE pathway [45-48]. Nrf2 downstream pro-
teins, GCLC, GCLM, and GSS, decreased after DJ-1 interfer-
ence, but overexpression of DJ-1 upregulated expression of
GCLC, GCLM, and GSS in vitro.

In conclusion, DJ-1 may play important roles in neuronal
protection, and these effects may be mediated by the Nrf2/
ARE pathway, which upregulates GSH in vitro. The mecha-
nism is shown in the Fig. 7. This suggests a novel mechanism
of action for astrocytic DJ-1 in OGD/R and that DJ-1 may
provide antioxidant activity after stroke.
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