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Abstract
Mechanical ventilation is an essential intervention for intensive care unit patients with acute

lung injury. However, the use of controlled mechanical ventilation in both animal and human

models causes ventilator-induced diaphragm dysfunction, wherein a substantial reduction

in diaphragmatic force-generating capacity occurs, along with structural injury and atrophy

of diaphragm muscle fibers. Although diaphragm dysfunction, noted in most mechanically

ventilated patients, is correlated with poor clinical outcome, the specific pathophysiology

underlying ventilator-induced diaphragm dysfunction requires further elucidation.

Numerous factors may underlie this condition in humans as well as animals, such as

increased oxidative stress, calcium-activated calpain and caspase-3, the ubiquitin–protea-

some system, autophagy–lysosomal pathway, and proapoptotic proteins. All these alter

protein synthesis and degradation, thus resulting in muscle atrophy and impaired contrac-

tility and compromising oxidative phosphorylation and upregulating glycolysis associated

with impaired mitochondrial function. Furthermore, infection combined with mechanical

stretch may induce multisystem organ failure and render the diaphragm more sensitive to

ventilator-induced diaphragm dysfunction. Herein, several major cellular mechanisms asso-

ciated with autophagy, apoptosis, and mitochondrial biogenesis—including toll-like recep-

tor 4, nuclear factor-jB, Src, class O of forkhead box, signal transducer and activator of

transcription 3, and Janus kinase—are reviewed. In addition, we discuss the potential therapeutic strategies used to ameliorate

ventilator-induced diaphragm dysfunction and thus prevent delay in the management of patients under prolonged duration of

mechanical ventilation.

Keywords: Acute lung injury, mitochondria, nuclear factor-jB, endotoxemia, toll-like receptor 4, ventilator-induced diaphragm

dysfunction

Experimental Biology and Medicine 2018; 243: 1329–1337. DOI: 10.1177/1535370218811950

Clinical prevalence of ventilator-induced
diaphragm dysfunction

Although mechanical ventilation (MV) is life saving for

patients with acute lung injury (ALI), it causes weaning

failures in approximately 20% of patients due to rapid

deterioration of diaphragm muscle endurance and strength;

this condition is called ventilator-induced diaphragm

dysfunction (VIDD).1–4 In most of the intensive care unit
(ICU) patients (80%), diaphragmatic dysfunction can occur
on admission or during subsequent stay.4–6 Accumulating
clinical evidence has revealed that VIDD aggravates
ventilator-associated pneumonia, extubation failure, in-
hospital mortality, ventilator dependence, and health
costs.4–6 VIDD has a pathophysiology similar to ventilator-
induced lung injury (VILI), which is characterized by diffuse

Impact statement
Mechanical ventilation (MV) is life-saving
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inflammation and increased oxidative stress, ultimately
leading to impaired gas exchange.7 However, the mecha-
nism underlying VIDD—potentially involving a multistep
process including oxidative stress, muscle weakness (arising
from caspase-3, calpain, ubiquitin–proteasome system
(UPS) activation, and autophagy-lysosomal pathway
(ALP)), structural damage, and myofiber remodeling8–10—
requires further elucidation. Therefore, a detailed knowl-
edge of the molecular mechanisms underlying VIDD is
crucial for designing potential strategies and reducing
prolonged MV use, ICU stay, and thus ICU mortality.

Pathophysiology of VIDD

Diaphragmatic atrophy

A study on VIDD in humans demonstrated a substantial
reduction (�53%–57%) in the diameters of both slow-twitch
and fast-twitch muscle fibers in 14 adults who met the
brain-dead criteria for 18–69 h.11 Notably, in these patients,
the pectoralis muscle was unaffected during the same
period of dysfunction, suggesting that the rapid weakness
was related to the diaphragm. Recent studies on ICU
patients revealed that diaphragm thickness measured by
ultrasound is associated with a lower daily probability of
successful weaning, prolonged ICU stay, and high risk
of ventilator-associated complications.4,6,12 In previous
studies, the clinical impact of diaphragm atrophy was dem-
onstrated, revealing that MV caused rapid onset of sarco-
meric disarray, disuse atrophy, and impaired contractility
in the diaphragm.11–14 Studies have indicated that dia-
phragm dysfunction causes diaphragm atrophy, whereas
excess inspiratory efforts aggravate VILI and damage the
diaphragm.13–15

Contractile dysfunction

Diaphragm strength is crucial in weaning patients from
MV and transferring them to long-term care facilities; it
also determines ICUmortality.16,17 A recent study indicated
that during their ICU stay, approximately 80% of mechan-
ically ventilated ICU patients demonstrated various pat-
terns of ICU-acquired diaphragm weakness after the
initial use of MV.4 In addition, diaphragm inactivity is
found two times as frequent as limb inactivity in critically
ill patients.16 Multimodal evaluation of the diaphragm
(magnetic stimulation of the phrenic nerve, ultrasound
measurement of the diaphragm excursion and thickening
fraction, and maximal inspiratory pressure) in ICU patients
revealed that diaphragm dysfunction is often in patients
with ICU-acquired inactivity and is associated with a
higher rate of weaning failure and ICU mortality.6

Oxidative stress

MV-induced oxidative stress in the diaphragm may impair
diaphragm contractility and is a crucial signaling event
leading to proteolytic pathway activation.13,18–21 During
ALI, reactive oxygen species (ROS) are the primary oxi-
dants in the diaphragm; they occur in mitochondria, sarco-
lemma, sarcoplasmic reticula, transverse tubes, and cytosol

within 6 h of MV.10,18,19,22 Oxidative loads inactivate skele-
tal muscles through the interaction of different oxidant pro-
duction pathways: (1) superoxide radical generation in
mitochondria, (2) generation of hydroxyl radicals because
of elevated cellular reactive iron levels, (3) NO production
by nitric oxide synthase (NOS), and (4) ROS generation by
xanthine oxidase.23,24 ROS disassembles proteins from the
muscle fibers by activating calcium-activated proteases,
such as caspase-3 and calpain, and degrades muscle pro-
teins through the UPS.23,24 Elevation in intracellular calci-
um is a prerequisite for calpain activation. Oxidative stress
can augment calpain cleavage of Z line-related proteins,
such as titin and nebulin in diaphragmatic myofibers by
dampening the activity of plasma membrane Ca2þ-
ATPase.25,26 These modifications may desensitize muscle
fiber to calcium and increase intracellular calcium accumu-
lation. Caspase-3, a cysteine protease upregulated by oxi-
dative loads, can increase calpain activity and upregulate
proapoptotic proteins to elicit intrinsic apoptosis correlated
with mitochondrial abnormalities.27,28 Furthermore, the
UPS deteriorates monomeric muscle fibers, which are
liberated from actomyosin complexes after caspase-3 and
calpain breakdown.29 However, there are contradictory
findings regarding the mechanisms of developing
diaphragm dysfunction in a clinical study of ventilated crit-
ically ill patients undergoing surgery.30 van den Berg et al.30

found that diaphragm muscle biopsies from these patients
exhibited substantial atrophy and reduced contractility
triggered by a redox imbalance, but lacked upregulated
oxidative markers and impairedmitochondrial biogenetics.
The authors explained the inconsistencies between their
results and those from ventilated animals and brain-dead
organ donors were attributed to different clinical features.
Further clinical investigations are warranted to clarify
the causative role of oxidative stress involved in the path-
ogenesis of VIDD.

Changes in proteolytic protein synthesis

The major proteases in the skeletal muscle include (1)
lysosomal enzymes, (2) calcium-related proteases, and (3)
the UPS.3,31 The lysosomal pathway is specific for the
degradation of cytosolic proteins and organelles, including
mitochondria and peroxisomes, whereas the last two
are responsible for myofilament protein degradation.31

The connection of ubiquitin to protein substrates necessi-
tates E1 enzymes, E2 carrier protein, and (in many cases)
specific E3 enzymes.9,32 The 26S proteasome complex, con-
sisting of a core 20S proteasome combined with a pair of
19S regulators, is activated after ubiquitin binding to pro-
tein substrates and labels them for degeneration. However,
if the protein substrate is monoubiquitinated or diubiquiti-
nated, then it is degraded through internalization and lyso-
somal transport. The activation of muscle-specific ubiquitin
E3 ligases F-box protein atrogin-1 and muscle RING-finger
proteins-1 (MuRF-1) is pivotal for the degradation of
monomeric myofibrillar proteins in the diaphragms of ani-
mals and patients withMV; both proteins are modulated by
transcription factor nuclear factor (NF)-jB or class O of
forkhead box (FoxO).33 Moreover, according to a murine
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study, MuRF-1 plays a crucial role in regulating
ALI-associated muscle atrophy.34

Intracellular signaling pathways

Relationships among VIDD, sepsis, autophagy,
and apoptosis

Animal studies have indicated that infection is a primary
cause of impaired diaphragm dysfunction.18,35,36 Sepsis
was demonstrated to be a crucial risk factor for diaphragm
dysfunction in ICU patients.37 A study on diaphragm con-
tractility in mechanically ventilated ICU patients indicated
that the union of infection and ventilator-mediated dia-
phragm weakness might induce sufficient diaphragm
abnormalities to adversely affect patient outcomes, includ-
ing higher mortality and longer weaning periods.17 Sepsis-
enhanced diaphragmatic weakness and VIDD seem to have
several molecular mechanisms, including elevated oxida-
tive loads and mitochondrial dysregulation (mitochondrial
biogenesis inhibition and increased mitochondrial perme-
ability) within the diaphragm myofibrils, indicating that
sepsis may be an accessory contributor for VIDD.17,18,38–40

Moreover, sepsis and MV-mediated oxidative stress may
increase generation of inflammatory cytokines, including
high mobility group box (HMGB) 1, interleukin (IL)-6, mac-
rophage inflammatory protein (MIP)-2, and tumor necrosis
factor (TNF)-a.18,20,27,41–43 These inflammatory mediators
can suppress diaphragmatic contractility and exacerbate
sepsis-induced systemic translocation via mechanisms
including reduced protein synthesis, atrogin-1 and MuRF-
1 induction, and signal transducer and activator of tran-
scription (STAT) 3-myostatin pathway activation.41,44

Autophagy is a catabolic process marked by the expul-
sion of intracellular components, such as mitochondria, in
the muscle fibers, and it is designated to regulate cell pro-
liferation and death (or survival), innate and adaptive
immune responses, and mitochondrial turnover.26,45,46

Mitochondria are a major source of diaphragmatic free rad-
icals, a vital upstream mediator that starts the signaling
pathways leading to diaphragm muscle atrophy during
endotoxemia or mechanical stretch.47,48 The activity of elec-
tron transport chain isoform complexes II, III, and IV was
reduced in mitochondria separated from the diaphragms of
rats with 12 h of MV.49 Autophagy may prevent or promote
the progress of pulmonary diseases by exerting its diverse
functions. Although basal autophagy is crucial for regulat-
ing cell survival, uncontrolled autophagy enhances abnor-
malities, such as intrinsic apoptosis, muscle weakness, and
mitochondrial morphological damage in the diaphragm of
patients with sepsis.32,46 Animal investigations on VIDD
have shown that MV augmented diaphragmatic weakness
through excessive ROS generation by enhancing proteoly-
sis andmicrotubule-related protein light chain (LC) 3.47,50,51

LC3-I becomes autophagosome-bound LC3-II by conjugat-
ing to phosphatidylethanolamine and upregulation of LC3-
II expression is a biomarker of increased autophagosome
formation.45,47 LC3-II accumulation in the diaphragm after
MV could be majorly because of pathological abnormalities
of autophagosome breakdown, rather than activation of

the ALP.52 In particular, recent studies have demonstrated
that increased autophagy is boosted by oxidative stress,
resulting in selective degradation of the endogenous anti-
oxidant catalase by eliminating peroxisomes andmitochon-
dria, thus further increasing both ROS generation and
autophagy.50,51

MV-induced elevation in mitochondrial ROS level is
associated with oxidation of lipid and protein, inducing
breakdown of mitochondrial structures.19,28,53 Liberation
of cytochrome c frommitochondria to cytosol subsequently
mediates apoptotic cell death.28,53 Sepsis may affect mito-
chondria by (1) generating free radicals and reactive nitro-
gen species, thus increasing lipid peroxidation and protein
oxidation within mitochondria; (2) impairing perfusion of
mitochondria, leading to tissue hypoxia, and triggering the
cell death pathway; and (3) altering hormones and down-
regulating genes transcribing mitochondrial proteins.54

Moreover, myonuclear apoptosis can be induced by (1)
mitochondrial ROS and elevated cellular calcium levels,
(2) Fas ligand- and TNF-a receptor-mediated pathways,
and (3) sarcoplasmic (endoplasmic) reticulum (SR) stress-
induced activation of caspase-3 and calpain.21,28,47

Mitochondrial biogenesis is modulated principally at the
transcriptional level and needs coordinated expression
of both mitochondrial- and nuclear-encoded proteins,
involving mitochondrial transcription factor A, nuclear
respiratory factors 1 and 2, peroxisome proliferator-
activated receptor coactivator (PGC)-1a, and 50-adenosine
monophosphate-activated protein kinase.19,26,54,55 The
downregulation of oxidative phosphorylation but upregu-
lation of glycolysis, reduction in mitochondrial membrane
potential, cytochrome c leak into the cytosol, and constitu-
tive opening of mitochondrial pores have all been associat-
ed with apoptosis pathways.54,55

The NF-jB signaling pathway, a primary transcription
factor for inflammatory cytokines, may increase diaphragm
atrophy through transcriptional regulation of the manifes-
tations of atrogin-1 and MuRF-1.13,21,27 In a murine endo-
toxemia study, transgenic (muscle-specific inhibitor IjBa
super-repressor) mice induced with endotoxemia demon-
strated that skeletal muscle fiber-specific inhibition of
canonical NF-jB signaling prevents lipopolysaccharide
(LPS)-induced diaphragmatic injury.27 In addition, NF-jB
is pivotal in modulation of autophagy and the apoptotic
pathway correlated with mitochondrial abnormalities in
the diaphragm.21,28,47 Toll-like receptor (TLR)4 is the most
thoroughly investigated receptors of the TLR family and is
important for the recognition of damage-associated molec-
ular patterns, involving HMGB1, extracellular matrix
components, and LPS.43,56,57 Recent murine studies on
inflammatory myopathies and Duchenne muscular dystro-
phy in the diaphragm have shown that HMGB1 could be an
early inducer of skeletal muscle dysfunction by activating
the TLR4 signaling pathway.57–59 Studies have revealed that
stimulation of TLR4 pathway by LPS enhances the expres-
sion of cytokines, such as TNF-a, MIP-2, and IL-6 in skeletal
muscles.37,44 Increases in free intracellular calcium levels in
the calcium-dependent calpain and caspase-3 system have
been identified in animal models of endotoxemia to
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amplify proinflammatory cytokines associated with dia-
phragm contractility.29,60

Murine studies on endotoxemia have exhibited that
TLR4 regulates diaphragm inflammation and autophagy
by activating the p38 mitogen-activated protein kinase
(MAPK) or NF-jB pathways.57,59,61 In a myogenic cell line
and murine study of endotoxemia, TLR4 activation
augmented autophagosome generation in a p38 MAPK-
dependent pathway.61 Sepsis-induced systemic inflamma-
tion may sensitize diaphragm stretch-related injuries by
increasing sarcolemma membrane fragility. It may also
increase disturbances in different steps of the muscular
energy supply chain, including hypoxic ischemia and
cytopathic ischemia, and it may directly impair contractile
proteins through inflammatory cytokines.6,16,18 In a murine
study of sepsis, TLR4 homozygous knockout could inhibit
the ALP and attenuate mitochondrial ultrastructural
changes by suppressing TLR4/NF-jB signaling.62

Relationships among VIDD, hyperoxia, and
mitochondrial dysfunction

The management of ALI often requires the support of MV
with high levels of oxygen to maintain adequate oxygena-
tion of the brain and other vital organs. However, concur-
rent MV and hyperoxia may interact to worsen ALI and
result in generation of inflammatory cytokines, including
MIP-2, TNF-a, and plasminogen activator inhibitor (PAI)-
1.63,64 Src, a critical nonreceptor protein tyrosine kinase
serving in intracellular signal transduction, mediates leu-
kocytes influx and acute inflammatory reactions triggered
by oxidative stress.33,65 Mechanical stretch of C2C12 myo-
blasts upregulates p38 MAPK activity by activating Src-
induced TNF-a-converting enzyme.66 In a murine model
of VILI, Src plays a principal role in the activation of ROS
formation and lung inflammation.67 Moreover, in a murine
Duchenne muscular dystrophy model, persistent Src acti-
vation, which enhanced autophagy through phosphoinosi-
tide 3-OH kinase/serine/threonine kinase/protein kinase
B (Akt) phosphorylation, was noted.68

In skeletal muscle in mdx mice, Src and Rac1 were
shown to play important roles in eliciting ROS production
via NADPH oxidase 2.68,69 The increased ROS in skeletal
muscle unloading may activate the NF-jB and FoxO sig-
naling pathways.13,70 FoxO1 is a mammalian FoxO tran-
scription factor responsible for the regulation of cellular
proliferation, apoptosis, and cell-cycle arrest.26,71–73 FoxOs
activate atrophic proteins (i.e. atrogin-1 and MuRF-1)
and autophagy-related proteins (B cell lymphoma (Bcl)-2
19-kilodalton interacting protein 3, cathepsin L, and
LC3).20,26,50,51 In the unstimulated state, FoxO is phosphor-
ylated by Akt, which inhibits FoxO transcriptional activi-
ty.22,73 However, MV suppresses FoxO1 phosphorylation
mediated by Akt and translocates FoxO1 to the nucleus to
trigger autophagy-related gene transcription in animal and
human diaphragms.33,61 Although the activation of atrogin-
1 and MuRF-1 is substantially upregulated by MV with
hyperoxia, their expression is reduced by suppression of
Src-dependent FoxO1 signaling.33 Moreover, FoxOs aug-
ment apoptotic signaling by upregulating the activity of

Fas ligand and stimulating the members of the Bcl-2
family (e.g. the apoptosis facilitator gene, Bcl2-interacting
mediator (Bim), which controls mitochondrial membrane
permeability), as evidenced by loss of cytochrome c release
and membrane potential in an isolated mitochondrial
study.26,28,72,74 In particular, accumulated lipid level in
human diaphragm during MV implicates accelerated gly-
colysis, which generate fatty acids converted from interme-
diate substances but suppresses fatty acid breakdown due
to impaired mitochondrial function.19 In addition, p62, a
biomarker of protein turnover, binds with polyubiquiti-
nated proteins and LC3, functioning as a cargo receptor
for the autolysosome degradation process.45–47 The role of
mitochondrial dynamics and biogenesis in ALI is complex.
In some studies, reduced mitochondrial membrane poten-
tial, mitochondrial fragmentation, and DNA damage are
demonstrated in the diaphragms of both animals and
patients subjected to MV.24,44,47–49,55 However, no alteration
of mitochondrial bioenergetics and morphology is reported
in a recent study of ICU patients.30 Further clinical trials are
required to delineate this discrepancies.

Other signaling pathways

1. A recent work suggested that infection elicits cytokine
production, resulting in cell-surface neutral sphingo-
myelinase receptors upregulation. The muscle cer-
amide metabolism is altered by the activation of
these receptors, increasing mitochondrial ROS forma-
tion and triggering the generation of oxidative stress.60

2. Murine studies on endotoxemia have revealed that
myostatin may induce muscle atrophy mediated by
Smad3, atrogin-1, and FoxO3 signaling, and blocking
the Akt/mammalian target of the rapamycin (mTOR)
pathway. Furthermore, the muscle fibrosis-related
PAI-1 and the mitochondrial biogenesis-related
PGC-1a were inhibited by Smad3 activtion.55,75–77

3. Intracellular calcium overload in the diaphragm can
trigger proinflammatory cytokine production and
proteolysis in sepsis. Diaphragm contractility was
recovered after curbing the release of HMGB1 by cal-
cium antagonists in the septic diaphragm of mice.29

4. A murine model of cecal ligation puncture-induced
sepsis demonstrated that skeletal muscle calcium-
dependent phospholipase (cPL) A2 is upregulated
by cytokines and connected with mitochondrial
superoxide formation, and that cPLA2-induced ROS
production induces calpain activation in skeletal
muscle fibers.60

5. STAT3 and Janus kinase (JAK), constituting a signal-
ing cascade activated by hormones, growth factors,
and inflammatory cytokines via ligand–receptor
interaction, can be rapidly phosphorylated or upre-
gulated in a ventilated, inactive diaphragm.44 STAT3,
an upstream inducer of mitochondria-derived ROS
generation in the nucleus, can activate the expression
of proteins, including Bim, uncoupling protein, and
Cox5A, which decrease efficiency of ATP formation
and mitochondrial membrane potential. Suppressing
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the JAK/STAT pathway substantially ameliorates
oxidative loads, diaphragm inactivity, and proteoly-
sis in rats.26,44,78,79

6. In both human and murine models of VIDD, MV
promptly modulates the ryanodine receptor on the
SR membrane through oxidation, S-nitrosylation, and
Ser-2844 phosphorylation, causing the instability in the
receptor complex and leading to calcium leakage.25

The dysregulated calcium homeostasis can result in
impaired muscle contractility and reduction of
muscle mass through activation of caspase-3, calpain,
and oxidative stress,.26,35 Persistent elevated level of
cytosolic calcium can also upregulate MAPKs, protein
kinase C, and histone deacetylase (HDAC) 4. Calcium-
dependent upregulation of protein phosphatases,
including calcineurin, can also occur.80

Potential therapeutic strategies

Prolonged MV use can increase the risk of ventilator-
associated pneumonia and lung fibrosis with restrictive
ventilatory impairment; this not only causes physical and
mental suffering but also affects quality of life and increases
financial burden on patients and their families.40,81

Therefore, identifying effective clinical parameters and
molecular mechanisms to facilitate liberating patients
from long-term ventilator use is crucial.

Clinical care

Treating electrolyte imbalances and endocrine disorders,
including hypoalbuminemia, hypophosphatemia, hypocal-
cemia, hypomagnesemia, hyperglycemia, severe untreated
renal failure, and hypothyroidism, as well as avoiding neu-
romuscular blocking reagent overuse and sustained cortico-
steroid administration is of primary importance.39,40 Several
animal and clinical studies have suggested that adjusting
sedation and ventilation mode to keep appropriate levels
of inspiratory muscle effort and reduce patient-ventilator
asynchrony may minimize diaphragm atrophy.12,82

Furthermore, recent investigations have demonstrated that
phrenic nerve stimulation may serve in increasing diaphrag-
matic activity during MV.15,83 A randomized clinical trial
(ClinicalTrials.gov identifier: NCT03096639) is investigating
the use of a temporary diaphragm pacing therapy system to
facilitate liberating ventilated patients who have failed at
least two weaning attempts.83

Antioxidants

In addition to diminishing oxidative loads, antioxidants
may modulate the expression of proteolysis-related genes;
for example, administration of high-dose vitamin E to ani-
mals alleviates the expression of several proteases, such as
caspase-3 and calpain.24,84 Mounting evidence demon-
strates that the use of antioxidants, such as N-acetylcysteine
and trolox can ameliorate the detrimental effects on
respiratory muscle function induced by controlled or
prolonged MV.45,85,86 Treatment of animals with SS-31, a
mitochondria-targeting antioxidant selectively functioned
on the inner mitochondrial membrane, prevented rat

diaphragms from prolonged MV-induced muscle atrophy
by countering oxidative stress and protease activation.24,82

Theophylline

The molecular mechanisms of theophylline include (1)
dilating airway smooth muscles by inhibiting
phosphodiesterase-3 activity and antagonizing adenosine
A1 and A2 receptors; (2) functioning as an anti-
inflammatory agent by augmenting the effect of IL-10 and
blocking the translocation of proinflammatory transcrip-
tion factor NF-jB; and (3) enhancing HDAC2 activity
(which is reduced by oxidative stress) to decrease peroxy-
nitrite radical generation.84 In a rodent study, theophylline
alleviated diaphragm atrophy and recovered the decrease
of transdiaphragmatic pressure resulting from resistive
loaded breathing in newborns.87 It also facilitated dia-
phragmatic perfusion by improving cardiac output and
providing vasodilation in diaphragmatic arterioles.88 A ret-
rospective cohort study disclosed that low-dose theophyl-
line substantially improved contractility in the diaphragm
without significant adverse drug reactions in patients
admitted to medical ICU with VIDD.89

Other pharmacological agents

1. The calcium sensitizer levosimendan, a positive ino-
tropic agent, has been applied to chronic obstructive
pulmonary disease patients. It strengthens the muscle
contractility of the diaphragm by increasing the
calcium sensitivity of the contractile proteins.90,91

The agent may exert and energetically promote
diaphragm contractility and mean that less calcium
is required to maintain force generation.90,91

Furthermore, levosimendan can augment contractile
function of the diaphragm in healthy humans perform-
ing inspiratory loading tasks.92 Further research using
levosimendan to regain respiratory muscle function in
mechanically ventilated patients is currently underway
(ClinicalTrials.gov identifier NCT01727434).

2. The mTOR pathway is essential for the regulation of
adipogenesis and muscle protein synthesis.93,94

Controlled MV increases lipid accumulation and
deteriorates diaphragm contractility. These detrimen-
tal effects are partially blocked by the mTOR inhibi-
tor rapamycin.95

Novel therapy

Considerable research on the use of stem cell therapy for
ALI treatment is underway.64,96 Induced pluripotent stem
cells (iPSCs) derived from human fibroblasts by delivering
four reprogramming factors can differentiate into patient-
specific progenitor cells and tissues for any of the three
germ layers and facilitate personalized therapy in future
clinical application.97 Li et al.33 demonstrated that
hyperoxia-augmented VIDD can be attenuated by iPSC
therapy through suppressing the Src-FoxO1 signaling path-
way. The authors conducted a preclinical investigation by
using iPSCs and iPSC-conditioned media to study the
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mechanisms and beneficial effects of stem cell therapy on
combinatorial MV and hyperoxia-induced oxidative stress,
proteolysis, apoptosis, autophagy, and functional impair-
ment simulating the clinical scenario. Our results indicate
that stem cell therapy may provide a novel therapeutic
option for VIDD.33

Conclusion

Without adequate preventive and therapeutic strategies, a
resting and inactive diaphragm muscle after prolonged
MVmay experience fast morphological and functional alter-
ations, including accelerated protein degradation, muscle
atrophy, and impaired contractile force. Numerous patho-
genic mechanisms underlying the destructive effects of
MV on diaphragmatic structure and contractility have been
demonstrated in animal and human models of VIDD.
However, these studies, performed in healthy animals, did
not consider the effects of risk factors, such as sepsis and
multisystem organ failure, in ICU patients. Because of the
presence of multiple confounding factors, reaching a defin-
itive diagnosis of VIDD in ICU patients is not easy;

nevertheless, physicians should be careful of the occurrence
of VIDD when a ventilated patient demonstrates poor prog-
ress during weaning trials in despite of clinical improve-
ments in underlying diseases.39,40,98,99 Furthermore, the
effort adaptive ventilation should be used as soon as possi-
ble to attenuate the deleterious effects of MV on the dia-
phragm. Further research on the mechanistic framework of
this condition is required to understand themolecular mech-
anisms underlying VIDD (Figure 1), particularly mitochon-
drial dysfunction and increased mitochondrial ROS
emission, and for developing further improved MV strate-
gies, rehabilitative programs, and pharmacological agents to
translate this knowledge into clinical benefits.
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