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TIGIT is an inhibitory immune checkpoint receptor and a putative target for novel immune therapies. Here, we analysed two
different types of tissue microarrays of healthy lymphatic and various inflamed tissues, colorectal and lung cancers, as well
as >1700 tumour samples from 86 different tumour entities for TIGIT and/or PD-1 by bright field and/or multiplex
fluorescence immunohistochemistry. TIGIT was detected in CD8+ cytotoxic T cells, CD4+ T helper cells, FOXP3+ regulatory T
cells, and NK cells, but not in CD11c+ dendritic cells, CD68+ macrophages, and CD20+ B lymphocytes. TIGIT expression
paralleled that of PD-1. More than 70% of TIGIT+ cells were PD-1+, and more than 90% of the PD-1+ cells were TIGIT+.
Expression varied between different tissue compartments. TIGIT expression in tonsil gradually increased from the interfollicular
area over the marginal/mantle zone to the germinal centre in all T cell subtypes. In inflammatory diseases, the strongest
expression of TIGIT/PD-1 was found in Hashimoto thyroiditis. TIGIT+ lymphocytes were seen in all 86 different tumour
entities with considerable high variability of TIGIT positivity within and between different cancer entities. Particularly, high
densities of TIGIT+ lymphocytes were, for example, seen in squamous cell cancers of various origins. In summary, the variable
expression levels of TIGIT and PD-1 in cell types and tissue compartments illustrate the high complexity of immune
microenvironments. The high frequency of TIGIT (and PD-1) expressing lymphocytes in cancers highlights considerable
opportunities for cotargeting with checkpoint inhibitors.

1. Introduction

Novel immune therapies using antibodies against immune
checkpoint receptors, such as cytotoxic T lymphocyte
antigen-4 (CTLA-4) and cell death protein-1 (PD-1), have
demonstrated remarkable clinical efficiency in different
tumour types, including metastatic melanoma, lung cancer,
renal, and bladder carcinoma [1–3]. It is anticipated that

blockade of other inhibitory immune checkpoint receptors
will provide further therapeutic options.

T cell immunoglobulin and ITIM domain (TIGIT), a
coinhibitory transmembrane glycoprotein of the poliovirus
receptor (PVR) family, is another interesting checkpoint
receptor. Only recently, it was suggested that anti-TIGIT
drugs might be associated with less autoimmune-like tox-
icity, making TIGIT an appealing target for new cancer
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immunotherapies [4, 5]. TIGIT was first described as a T
cell and natural killer (NK) cell-specific surface protein
in 2009 [6–8]. TIGIT expression is restricted to T lympho-
cytes and highly expressed in effector and regulatory CD4+

T cells, follicular helper CD4+ T cells, effector CD8+ T
cells, and NK cells [6, 7, 9–12]. Tumour infiltrating lym-
phocytes (TILs) expressing TIGIT have been demonstrated
in several tumour types such as nonsmall cell lung cancer,
colorectal carcinoma, melanoma, and acute myeloid leu-
kaemia [9, 13, 14]. Although the downstream signalling
cascade of TIGIT has not been clarified, there is evidence
that TIGIT negatively regulates T cell activity through
downregulation of T cell receptor expression [15–17]. In
mouse models and on-going clinical studies, blockade or
ablation of TIGIT, alone or in combination with blockade
of PD-1, can restore tumour suppressive effects [4, 9, 13,
18, 19]. These findings indicate that TIGIT, similar as
PD-1, has a crucial role in inhibiting the tumour-directed
immune response and, thus, might be a suitable and rel-
evant target for novel immune-modulating therapies.
Several drugs targeting TIGIT are currently under devel-
opment [20].

Previous studies on TIGIT were mostly limited to flow
cytometer-sorted cells [6, 9, 13, 19, 21]. It is likely, however,
that the expression of molecules regulating immune response
does not only depend on the immune cell type but also on the
tissue compartment where the immune cells are located. To
study tissue compartment dependence of TIGIT expression
in normal, inflammatory, and cancerous tissues, we made
use of a new monoclonal antibody capable of detecting
TIGIT in routine formalin-fixed tissue samples. The results
of our study demonstrate high variability of TIGIT expres-
sion levels in inflammatory cells and frequent coexpression
with PD-1 in normal, inflamed, and cancerous tissues.

2. Materials and Methods

2.1. Tissues. Two different types of tissue microarrays
(TMAs) as well as large sections of HIV infected lymph
nodes (n = 2), colorectal (n = 5), and lung cancers (n = 2)
were analysed in this study. The first type of TMAs was
“extra-large” microenvironment tissue microarrays (ME-T-
MAs). Formalin-fixed paraffin embedded tissue samples
were selected from the archives of the Institute of Pathology
of the University Medical Centre Hamburg-Eppendorf,
Germany, for the construction of these arrays. The selection
included normal lymph nodes (n = 3) and tonsils (n = 3),
inflammatory diseases including Hashimoto thyroiditis
(n = 10), sarcoidosis (n = 10), lichen sclerosus of the penis
(n = 2), IgG4 pancreatitis (n = 2), and rheumatoid arthritis
(n = 2). From all tissues, representative areas were selected
for the construction of ME-TMAs specifically designed to
study inflammatory responses. For optimal representation
of the tissue microenvironment in the ME-TMA, a single tis-
sue punch measuring 4mm in diameter was taken from each
donor. Selected areas included lymph follicles and surround-
ing tissue in healthy lymph node and tonsil, lymphocytic
infiltrations, and adjacent epithelium in inflammatory condi-
tions. Two different ME-TMAs were constructed, including a

lymph node, tonsil, and inflammation ME-TMA (14 tissue
spots (1 spot per donor) and 2 tissue spots from one tonsil
sample as reference) and a ME-TMA from sarcoidosis and
Hashimoto thyroiditis samples (10 tissue spots each (1 spot
per donor) and 2 tissue spots from one tonsil sample as refer-
ence). Each ME-TMA contained two punches of the same
tonsil as reference tissue for normalization of the measure-
ment of fluorescence staining intensities. The second type
of TMA was a multitumour array featuring 0.6mm spots,
which has been described before [22]. In brief, the multitu-
mour TMA contained 3899 primary tumours from 99 differ-
ent tumour types and subtypes distributed among 10
different TMA blocks each containing between 350 and
680 samples. A detailed list of the analysable cancers is given
in the results section. The usage of archived diagnostic left-
over tissues for manufacturing of tissue microarrays and
their analysis for research purposes as well as patient data
analysis has been approved by the local laws (HmbKHG,
§12a) and by the local ethics committee (Ethics commission
Hamburg, WF-049/09).

2.2. Bright Field and Fluorescence Immunohistochemistry.
Freshly cut 4μm consecutive tissue sections were used
for immunohistochemistry (IHC) analyses. Specificity of
the anti-TIGIT antibody clone TG1 (Dianova, Hamburg,
Germany) was validated by Western blot, ELISA, and pre-
absorption of the primary antibody with TIGIT protein.

For bright field IHC, tissue sections were dewaxed and
incubated in antigen retrieval solutions (Table 1) prior to
blocking of endogenous peroxidase and incubation of the
primary and secondary antibodies. Bound antibody was
detected with the DAB kit (DAKO, Santa Clara, United
States), and slides were counterstained and sealed in Eukit.
Dilution series were performed in individual experiments to
validate perceived expression differences on ME-TMAs.

For fluorescence multiplex IHC, the OPAL dye kit (Cat.
#OP7DS1001KT, Perkin Elmer, Waltham, Massachusetts,
United States) was used. Details on the used antibodies, anti-
body retrieval procedures, and OPAL dyes are given in
Table 1. The experimental procedure was performed accord-
ing to the manufacturer’s instructions [23]. Slides were ini-
tially boiled in a microwave (15 minutes at 100°C) for
antigen retrieval. Three different primary antibodies were
combined with DAPI staining in each experiment. One circle
of antibody staining included peroxidase blocking, applica-
tion of the primary antibody, detection with a secondary
HRP-conjugated antibody, fluorescence dye detection, and
removal of the bound antibodies by microwave treatment
(15 minutes at 100°C). This cycle was repeated two times
for the remaining antibodies. Slides were subsequently coun-
terstained with diamidinoino-2-phenylindole (DAPI) and
mounted in an antifade solution.

2.3. Analysis of Bright Field and Fluorescence Staining.
Conventional bright field staining was used to quantify the
density of TIGIT+ cells in individual TMA cores of the multi-
tumour TMA. All multitumour TMA slides were visually
inspected under a microscope. The number of TIGIT+ cells
per 0.6mm tissue spot was manually counted and converted
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into the density of TIGIT+ cells per square mm. All slides
stained with fluorescent dyes were scanned using Leica’s
Aperio VERSA 8 automated epifluorescence microscope. A
pathologist defined tissue compartments (e.g., tumour area,
stromal area, lymphocytic infiltrations, germinal centres,
and marginal zones of lymph follicles) with sufficient num-
bers of leucocytes (approx. 800 to 6000 cells) for digital image
analysis using the ImageScope software package (Leica
Microsystems, Wetzlar, Germany). The intensity of each
fluorochrome in each individual cell (i.e., a continuous
numerical value indicating the fluorescence signal strength)
was recorded as raw intensity data. Only staining intensities
exceeding a predefined threshold were considered “positive”.
The threshold was individually selected for each marker
(CD3, CD4, CD8, FOXP3, CD11c, CD56, CD68, PD-1, and
TIGIT) according to the following procedure: the fluores-
cence intensity of each marker was measured in 50 to 200
cells with expected lack of expression, and the value of the cell
with highest “false positive”measurement was used to define
the cut-off value for positive expression. For comparison of
expression levels of TIGIT and PD-1 in the defined tissue
compartments, we normalized our measurements to refer-
ence cells. As reference cells, we used the cells located within
the germinal centres of normal tonsil tissues, which showed
the highest expression levels of TIGIT and PD-1 across all
healthy human tissues tested. Accordingly, we placed tonsil
tissue as a reference on each slide, and the mean raw intensity
of the fluorochromes associated with TIGIT and PD-1 in the
germinal centres was set to 100%. The relative expression
(RE) was then calculated as the percentage of mean raw
intensity of the test cells in relation to the 100% mean raw
intensity in the reference cells.

2.4. Statistical Analysis. JMP Pro 12 software package (SAS
Institute Inc., NC, USA) and R version 3.4.3 (the R founda-
tion) [24] were used to plot the data, to perform analysis of
variance (ANOVA), and to calculate compartment-specific
expression differences of PD-1 and TIGIT.

3. Results

3.1. Patterns of TIGIT Expression in Lymph Nodes and
Tonsils. In lymph nodes and tonsils, TIGIT+ cells were seen
in the interfollicular area, the marginal/mantle zone sur-
rounding lymph follicles, and the germinal centre. Multiplex
immunofluorescence analysis of TIGT on CD20+ B lympho-
cytes, CD3+ T lymphocytes, various T cell subtypes (CD4+,
CD8+, FOXP3+; Figures 1(a)–1(c)), CD56+ natural killer cells
(Figure 1(d)), CD11c+ dendritic cells (Figure 1(e)), and
CD68+ macrophages (Figure 1(f)) revealed that TIGIT
expression is most frequently detected in T lymphocytes
and also in a subset of NK-cells. At the selected threshold,
52% of CD3+ T cells were TIGIT positive, while no unequiv-
ocal staining was seen in CD20+ lymphocytes. TIGIT positiv-
ity was detected in 47% of CD4, 53% of CD8, and 72% of
FOXP3+ T cells. The highest level of TIGIT expression was
found in T cells located in the germinal centre periphery ori-
entated towards the tonsil surface epithelium (Figures 1(g)
and 1(h)). These were predominantly CD4+ follicular T
helper cells but also T cells of other subtypes (i.e., CD8
and FOXP3). Second highest levels of TIGIT were found
in CD8+ cytotoxic lymphocytes located in the interfollicular
area. Overall, TIGIT expression gradually increased from
the interfollicular area over the marginal/mantle zone to
the germinal centre in all T cell subtypes, particularly in
CD4+ and FOXP3+ T cells (Figure 2). Also, the fraction
of TIGIT+ CD4+ cells varied markedly between these com-
partments; while the vast majority (>95%) of CD4+ T cells
in the lymph follicles showed TIGIT expression, this was
true for only about 47% of the CD4+ T cells in the interfol-
licular compartment.

3.2. Relationship between TIGIT and PD-1 in Lymph Node
and Tonsils. Expression patterns of TIGIT and PD-1 were
highly congruent; more than 70% of all TIGIT+ cells also
expressed PD-1, and more than 90% of the PD-1 positive
cells were also TIGIT positive. Similarly, as for TIGIT, there
was a strong increase of PD-1 expression levels from outside

Table 1: List of the used antibodies, antigen retrieval (AR), dilutions, and Opal dyes.

Antibody Target
Bright field Fluorescence

AR Dilution AR Dilution Order1 Dye

DAKO #IR503 CD3 pH9 1 : 1 pH9 1 : 1 1st Opal 520

DAKO #IR649 CD4 pH9 1 : 1 pH9 1 : 1 1st Opal 520

DAKO #IR623 CD8 pH9 1 : 1 pH9 1 : 1 1st∗ Opal 520∗∗

BioLegend #320102 FOXP3 pH 9 1 : 50 pH9 1 : 50 1st Opal 520

DAKO #IR604 CD20 pH 9 1 : 1 pH9 1 : 10 1st∗ Opal 520∗∗

DAKO #IR613 CD68 pH 6 1 : 1 pH6 1 : 1 1st Opal 520

DAKO #IR628 CD56 pH 9 1 : 1 pH9 1 : 1 1st Opal 520

Abcam#ab52632 CD11c pH 9 1 : 450 pH9 1 : 450 1st Opal 520

Dianova #DIA-TG1 TIGIT pH7.8 1 : 70 pH9 1 : 150 2nd Opal 570

Abcam #ab52587 PD-1 pH 6 1 : 50 pH6 1 : 50 3rd Opal 690

AR: antigen retrieval; 1order refers to the sequence of antibodies in multiplex fluorescence immunohistochemistry experiments; ∗antibody was used at third
position when stained in combination with CD3, CD4; ∗∗with Opal 690 dye.
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to inside of the lymph follicles (Figure 2). Expression of both
proteins was therefore jointly assessed (and compared) for
subsequent analyses. For this purpose, MF-IHC analysis
was performed for each cell type of interest (CD4+, CD8+,
and FOXP3+), and the findings were recorded for every indi-
vidual tissue compartment (interfollicular area, marginal/-
mantle zone, and germinal centre; Figure 2). Interestingly,
these analyses revealed differences in the TIGIT : PD-1
expression ratio depending on the T cell type and tissue com-
partment. While the TIGIT : PD-1 ratio in CD8+ T cells
remained constant inside and outside the germinal centres
(Figure 2(b)), this ratio changed in CD4+ (Figure 2(a)) and
FOXP3+ (Figure 2(c)) T cells towards higher relative expres-
sion of TIGIT outside the germinal centres.

3.3. TIGIT and PD-1 in Lymph Nodes of Patients with Human
Immunodeficiency Virus (HIV) Infection. Patients in early
phase HIV infection often have severe follicular hyperplasia
in their lymph nodes [25]. These morphological changes
were accompanied by a loss of the characteristic orientation
of TIGIT+ and PD-1+ T helper cells towards the lymph node
surface. Instead, TIGIT/PD-1 positive CD4+ T cells were
evenly distributed across the germinal centre in two analysed
lymph nodes from HIV-infected patients. However, fluores-
cence measurements and serial dilutions revealed that the
architectural changes had no impact on the expression levels
of TIGIT and PD-1, since these were comparable to the

staining levels found in normal tonsil and lymph node
(Supplementary Figure S1).

3.4. TIGIT and PD-1 in Hashimoto Thyroiditis and
Sarcoidosis.We selected Hashimoto thyroiditis and sarcoido-
sis because they reflect inflammatory conditions associated
with germinal centre formation (thyroiditis) or destruction
(sarcoidosis). Strikingly, the highest levels of TIGIT and
PD-1 expression among all tissues included in this study
were found in lymph follicles of Hashimoto thyroiditis. Fluo-
rescence measurements in 10 cases revealed that the expres-
sion level of TIGIT and PD-1 was about 2-3 times higher
than in the comparable areas of lymph follicles in normal
tonsil or lymph node. This applied for all three T cell sub-
types analysed (Figure 3). The strikingly high TIGIT and
PD-1 expression was confirmed by conventional bright field
IHC analysis employing serial dilutions of the primary anti-
bodies (Supplementary Figure S2 and S3). In contrast to the
largely balanced TIGIT : PD-1 expression ratio in
thyroiditis, sarcoidosis was characterized by relative
overexpression of TIGIT. In sarcoidosis, fluorescence
measurement further revealed compartment-specific
differences of TIGIT, but not of PD-1 expression; TIGIT
levels were significantly higher in T cells (including CD4+,
CD8+, and FOXP3+) in the intergranulomatous area as
compared to the granulomas (p < 0 05, Figure 3). It is of
note that both Hashimoto thyroiditis and sarcoidosis
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Figure 1: Representative pictures of TIGIT staining in human tonsils by multiplex immunohistochemistry in combination with (a) CD4, (b)
CD8, (c) FOXP3, (d) CD56, (e) CD11c, and (f) CD68. (g) Bright field image and (h) fluorescence photograph showing TIGIT staining at the
periphery of the germinal centre. Note the orientation of the stained cells towards the loosened epithelium of the tonsil (arrowhead).
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Figure 2: IntensitydifferencesofTIGIT(green)andPD-1 (red)expression in (a)CD4+helperTcells, (b)CD8+cytotoxicTcells, and(c)FOXP3+

regulatory T cells between the interfollicular area (Ia), the marginal zone (Mz), the germinal centre periphery (Gcp), and the germinal centre
(Gcc) of human tonsils. Relative expression refers to the fluorescence measurement in the tonsil germinal centre periphery set to 100%.
Columns indicate the relative expression levels of TIGIT (green) and PD-1 (red). The black bar shows the TIGIT : PD-1 expression ratio.

5Disease Markers



0

1

2

3

4

5

6

0%

50%

100%

150%

200%

250%

300%

350%

P1-10 P1-10 P1-10 P1-10 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 Ref.
In. Gc. Gra. Interg. Intraepithelial Subepithelial Connective

tissue
Lympho-
cytic in.

Connective
tissue 

Lympho-
cytic in.

Gc.

Hashimoto
thyroiditis

Sarcoidosis Lichen sclerosus IgG4 pancreatitis Rheumatoid arthritis To

TI
G

IT
:P

D
-1

-r
at

io

Re
la

tiv
e e

xp
re

ss
io

n

TIGIT
PD-1
TIGIT:PD-1-ratio

PD-1 [⁎⁎⁎]

TIGIT [⁎]

PD-1 [⁎]

TIGIT [⁎⁎⁎]
CD4

(a)

TIGIT
PD-1
TIGIT:PD-1-ratio

0

1

2

3

4

5

6

0%

50%

100%

150%

200%

250%

300%

P1-10 P1-10 P1-10 P1-10 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 Ref.
In. Gc. Gra. Interg. Intraepithelial Subepithelial Connective

tissue
Lympho-
cytic in.

Connective
tissue

Lympho-
cytic in.

Gc.

Hashimoto
thyroiditis

Sarcoidosis Lichen sclerosus IgG4 pancreatitis Rheumatoid arthritis To

TI
G

IT
:P

D
-1

-r
at

io

Re
la

tiv
e e

xp
re

ss
io

n

PD-1 [⁎⁎⁎]

TIGIT [⁎]

PD-1 [n.s.]

TIGIT [⁎⁎⁎]

CD8

(b)

TIGIT
PD-1
TIGIT:PD-1-ratio

0

1

2

3

4

5

6

0%

50%

100%

150%

200%

250%

300%

P1-10 P1-10 P1-10 P1-10 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 Ref.
In. Gc. Gra. Interg. Intraepithelial Subepithelial Connective

tissue 
Lympho-
cytic in.

Connective
tissue

Lympho-
cytic in.

Gc.

Hashimoto
thyroiditis

Sarcoidosis Lichen sclerosus IgG4 pancreatitis Rheumatoid arthritis To

TI
G

IT
:P

D
-1

-r
at

io

Re
la

tiv
e e

xp
re

ss
io

n

PD-1 [⁎]

TIGIT [⁎]

PD-1 [n.s.]

TIGIT [⁎⁎⁎]
FOXP3

(c)

Figure 3: Interindividual variations of TIGIT (green) and PD-1 (red) in 10 patients (P1-10) each with Hashimoto thyroiditis and sarcoidosis;
two patients (P1 and P2) each with lichen sclerosus, IgG4 pancreatitis, and rheumatoid arthritis of (a) CD4+ helper T cells, (b) CD8+ cytotoxic
T cells, and (c) FOXP3+ regulatory T cells. Relative expression refers to the fluorescence measurement in the tonsil germinal centre periphery
(Ref. Gc. To.) set to 100%.The black bar shows theTIGIT : PD-1 expression ratio. In.: interfollicular area; Gc.: germinal centre; Gra.: granuloma;
Interg.: intergranuloma; Lymphocytic in.: lymphocytic infiltration; To: tonsil; ∗p ≤ 0 05; ∗∗p ≤ 0 001; ∗∗∗p ≤ 0 0001; [n.s.]: not significant
(p > 0 05).
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showed only little variation of the TIGIT and PD-1
expression levels between the 10 analysed individuals each
(Supplementary Figure S4).

3.5. TIGIT and PD-1 in Other Types of Inflammation. The
analyses of two cases each of selected inflammatory diseases,
including lichen sclerosus, IgG4-pancreatitis, and rheuma-
toid arthritis revealed detectable TIGIT and PD-1 expression
in all analysed samples (Figure 3). Also in these conditions
expression of TIGIT largely paralleled the pattern of PD-1
expression. A comparison of the normalized TIGIT and
PD-1 expression levels in CD4+, CD8+, and FOXP3+ cells
of different types of inflammation is given in Figure 3. In all
these samples, it appeared that the expression of TIGIT and
PD-1 depended on the T cell density. In lymphocyte-dense
compartments, such as areas of lymphocytic infiltration in
IgG4 pancreatitis or rheumatoid arthritis, levels of TIGIT
and PD-1 were higher than in areas containing fewer and
scattered lymphocytes. Interestingly, PD-1 appeared to be
more highly upregulated than TIGIT in the lymphocyte-rich
areas ofmost inflammations (except sarcoidosis), as indicated
by the TIGIT : PD-1 ratio< 1.0.

3.6. TIGIT Expression in Human Cancers. Interpretable
results could be obtained from 86 of the 99 cancer types rep-
resented in our multitumour TMA. All interpretable cancer
types had at least one case with TIGIT+ lymphocytes. The
density of TIGIT+ T cells was highly variable within all ana-
lysed cancer types. Considerable differences were found,
however, in the average number of TIGIT+ cells per cancer
entity. As expected, the highest densities of TIGIT+ lympho-
cytes were found in tumours characterized by high num-
bers of tumour-associated lymphocytes such as Hodgkin’s
lymphoma (average: 852± 380 cells/mm2), Warthin’s
tumours (average: 305± 195 cells/mm2), medullary breast
cancer (average: 302± 363 cells/mm2), or seminoma (aver-
age: 268± 177 cells/mm2). Other cancers with particularly
high fractions of TIGIT+ cells included intestinal stomach
cancer (average: 283± 316 cells/mm2) and squamous cell
cancers of various origins (average 228-112 cells/mm2).
Tumour types with lowest TIGIT+ lymphocyte densities were
renal oncocytoma, papillary and chromophobic renal cell
cancer, desmoid tumour, neuroendocrine pancreatic cancer,
and cancer of the adrenal cortex (average all <6 cells/mm2).
All data are summarized in Figure 4.

3.7. T Cell Density and TIGIT/PD-1 Expression in Colorectal
and Lung Cancers. To study the differences of TIGIT expres-
sion between the invasive margin and the tumour centre, we
selected large sections of lung (2 cases) and colorectal cancer
(5 cases) for multiplex fluorescence immunohistochemistry.
There was a markedly higher density of TIGIT+ T cells
(e.g., 59± 49 CD8+TIGIT+ cells per 0.1mm2) at the invasive
margin as compared to the tumour centre (10± 13 cells per
0.1mm2) for almost all analysed cancers. PD-1 was included
to search for coexpression patterns. Comparison of TIGIT
expression levels with that of PD-1 revealed a relative pre-
dominance of TIGIT or PD-1, which varied between individ-
ual cancers. The TIGIT : PD-1 ratio ranged between 0.75 and

4.0 in individual cases. Moreover, compartment-specific dif-
ferences were also found for TIGIT and PD-1 expression
levels in these tumours. In colorectal cancers, expression of
TIGIT and PD-1 was considerably higher in T cells located
at the invasive margin as compared to T cells in the tumour
centre. This was particularly true for CD8+ lymphocytes,
which showed the highest TIGIT and PD-1 expression levels
on average (Figure 5). Representative images showing TIGIT
and PD-1 expression by bright field immunohistochemistry
in the examined tissues are given in Figure 6.

4. Discussion

Many previous studies on TIGIT were limited by the lack of
antibodies suitable for detecting TIGIT in routinely
formalin-fixed paraffin embedded tissues. Consequently,
current knowledge on TIGIT expression in human immuno-
logical tissues comes almost exclusively from the analysis of
disintegrated tissues by means of flow cytometry or mRNA
analysis [6, 9, 13, 19, 21]. The data from this study demon-
strate that TIGIT expression varies between tissue compart-
ments and cell types in normal lymphatic tissues and
various inflammatory and cancerous conditions.

Our analysis of a variety of normal and inflamed human
tissues identified variable fractions of TIGIT expressing
CD8+ cytotoxic T cells, CD4+ T helper cells, FOXP3+ regula-
tory T cells, and NK cells, while unequivocal TIGIT staining
was not seen in CD11c+ dendritic cells, CD68+ macrophages,
and CD20+ B lymphocytes. The limitation of TIGIT expres-
sion to specific leucocyte subtypes is in line with earlier data
[15, 26] and confirms the validity of our multiplex immuno-
histochemistry approach.

The strong overlap of TIGIT and PD-1 expands the
results of earlier studies demonstrating the coexpression of
both proteins [9, 13], but also other checkpoint receptors
such as Lag3 [27] and Tim3 [28, 29], in tumour infiltrating
lymphocytes and is consistent with recent reports describing
comparable properties for the TIGIT/CD155/CD226 regula-
tory pathway and the PD-1/PD-L1-immune checkpoint [16,
17, 30, 31]. Both PD-1 and TIGIT are increasingly upregu-
lated in activated T lymphocytes, most likely to prevent
overly excessive immune responses [15, 32].

The most significant finding of our study was that expres-
sion levels of both TIGIT and PD-1 varied not only according
to cell types but also according to the cellular localization and
context. In some instances, tissue compartment-specific
TIGIT and/or PD-1 expression patterns may be linked to
specific cell functions. The striking polar expression of TIGIT
and PD-1 in normal lymph node and tonsil colocalizes with
the “light zone” of the lymph follicle, where T helper cell
mediated B-cell maturation and immunoglobulin class
switching occurs [33]. It is intuitive that the expression of
TIGIT (and PD-1) in these follicular T helper cells is part
of the regulation network fine-tuning T cell activity. Distor-
tion of the polar orientation of TIGIT+ and PD-1+ follicular
T helper cells in lymph follicles from HIV-infected patients
may indicate lymphocyte dysfunction. This finding fits well
to the concept that T helper cells inside the germinal centres
represent a reservoir for HIV infection where they are
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Figure 5: Interindividual variations of TIGIT (green) and PD-1 (red) of (a) CD4+ helper T cells, (b) CD8+ cytotoxic T cells, and (c) FOXP3+
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TIGIT : PD-1 expression ratio.
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shielded from engagement by cytotoxic T cells [34]. It has
been shown that these HIV-infected T cells express high
levels of PD-1 [35].

Inflammatory tissues do not only provide a valuable
microenvironment for T cell research but also represent the
site of immunotherapy-related adverse events. The number
of inflammatory conditions analysed in this study was lim-
ited, but it was conspicuous that the ratio between TIGIT
and PD-1 expression was comparable in most types of
inflammations. This might suggest that the interplay between
these pathways is rather similar across different types and
causes of inflammation. The generally higher expression of
TIGIT and PD-1 in lymphocyte-dense areas of inflammatory
diseases than in less densely populated areas (i.e., connective
tissues, intraepithelial areas) fits well to the concept of com-
pensatory downregulation of excessive inflammatory reac-
tions through immune checkpoint upregulation [36, 37]. It
is of note that among all analysed tissues, the highest levels
of TIGIT (and PD-1) expression were constantly seen on T
helper cells in lymph follicles of Hashimoto thyroiditis. Thy-
roiditis is the most frequent endocrine immune-related
adverse event of anti-PD-1 therapy [38]. A recently pub-
lished study analysing anti-PD-1 therapy-induced Hashi-
moto thyroiditis describes an increased fraction of follicular
T helper cells in peripheral blood [39]. It is possible that these
T helper cells origin from the germinal centres of Hashimoto
thyroiditis. Sarcoidosis differed from all other inflammatory
conditions analysed in this study in its higher relative levels
of TIGIT as compared to PD-1. This observation suggests

that the relative role of individual checkpoint molecules
may considerably vary between different inflammatory dis-
eases. It will be interesting to see whether expression patterns
of immunoregulatory proteins may have diagnostic utility
and perhaps assist treatment decisions in some inflammatory
diseases in the future.

Finding TIGIT+ lymphocytes in all analysed 86 different
tumour entities in an analysis of 1700 individual cancer tis-
sues identified TIGIT expression as a general feature of
tumour-associated lymphocytes. As expected, there was a
high variability of TIGIT positivity both within different
samples of individual tumour types and also between differ-
ent cancer entities. This variability parallels the variability
seen in the number of tumour-infiltrating lymphocytes and
may be due to differences in quantity and quality of immuno-
genic neoantigens [40, 41], variable mechanisms for immune
evasion [42, 43], and probably other factors. A high variabil-
ity of immune checkpoint proteins has been reported from a
multitude of studies on different cancer types [44–46] and
has eventually led to the definition of immune “-cold” and
“-hot” cancer [47, 48]. That highest TIGIT+ lymphocyte den-
sity was found in tumours which are characterized by high
number of lymphocytes such as Hodgkin’s lymphoma,
Warthin’s tumour, seminoma, and medullary breast cancer
that represents an indirect validation of our experimental
approach. Other tumour types with conspicuously high den-
sities of TIGIT+ lymphocytes included, for example, intesti-
nal type stomach cancer and squamous cell cancers of
various origins. It is tempting to speculate that these tumour

Figure 6: Representative pictures of TIGIT (−1) and PD-1 (−2) staining in (a) normal human tonsil, (b) Hashimoto thyroiditis, (c)
sarcoidosis, (d) rheumatoid arthritis, and (e) colorectal cancer.
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types may benefit better from future anti-TIGIT therapies
than those with lower amounts of TIGIT+ lymphocytes.
However, our findings must be considered cautiously,
because the 0.6mm tissue cores of the used multitumour
TMA may be too small for a reliable assessment of the lym-
phocytic infiltration in a tumour and its microenvironment.

To further explore the role of TIGIT in the tumour centre
and at the invasive margin, we selected 7 cases of lung and
colorectal cancers with representative tissue compartments.
That the sparse and scattered CD8+ lymphocytes located in
the tumour centre had lower levels of TIGIT (and PD-1) as
compared to the densely clustered CD8+ lymphocytes at the
invasive margin would again be consistent with the concept
of compensatory upregulation of TIGIT and PD-1 in exces-
sive inflammatory reactions. It cannot be excluded that these
differences in the expression level indicate functional differ-
ences such as higher degrees of anticancer activity of
tumour-infiltrating CD8+ cells as compared to CD8+ cells
at the invasive tumour margin. Our findings support the idea
that lymphocytes located at the invasive margin are the major
targets of immune checkpoint therapies directed against the
PD-1/PD-L1 axis [49–52], and that this may also hold true
for potential future drugs targeting TIGIT. Several antibodies
directed against TIGIT are currently being tested in phase I
trials (OMP-31M32, MK-7684, AB154) and II (MTIG7192A,
BMS-986207), but data on the clinical benefit are not avail-
able as to yet [4, 5, 20].

This study is an example for the importance of antibodies
suitable for the analysis of formalin-fixed tissues. Our find-
ings strongly support the view that it may be not only neces-
sary to characterize the expression of multiple parameters per
cell but also relevant to incorporate topographical aspects of
inflammatory cells and their “target” cancer cells. For exam-
ple, in a recent study onmalignant melanomas, the proximity
of the CD8+ PD-1+ cells and the PD-L1+ tumour cells at the
invasive margin was associated with response to immune
checkpoint inhibitors [49]. If novel therapies aiming at the
immune environment of cancer hold their promises, the
evaluation of the immune response to individual cancers
may become a highly demanded routine application in diag-
nostic pathology. Multicolour imaging and image analysis
systems will be indispensable for such analyses, although
even the use of sophisticated image analysis systems does
not prevent from analysis errors due to imperfect immuno-
staining. We thus used a tissue microarray approach to
achieve the best possible standardization of the experimental
parameters (including the reference tissue on the same slide),
validated all relevant observations in this study by conven-
tional bright field immunostainings, and used dilution series
for confirmation of expression differences.

5. Conclusions

In summary, the data demonstrate that TIGIT expression is
highly prevalent in T lymphocytes and that TIGIT expression
largely parallels the expression pattern of PD-1. A simulta-
neous interruption of PD-1 and TIGIT signalling might thus
have an additive effect on antitumour immunity. The vari-
ability of PD-1 and TIGIT expression between different

cellular compartments underscores the importance of in situ
analysis of patient tissues.
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Supplementary 1. Figure S1: representative images at 100x
magnification of lymph node staining in a healthy person
and a HIV patient with serially diluted TIGIT antibody.

Supplementary 2. Figure S2: representative images at 100x
magnification of a human tonsil and a thyroid gland with
Hashimoto thyroiditis stained with serially diluted TIGIT
antibody.
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Supplementary 3. Figure S3: representative images at 100x
magnification of a human tonsil and a thyroid gland
with Hashimoto thyroiditis stained with serially diluted
PD-1 antibody.

Supplementary 4. Figure S4: TIGIT (black) and PD1 (grey)
expression levels in (a-c) sarcoidosis and (d-f) Hashimoto
thyroiditis. Relative expression refers to the fluorescence
measurement in the tonsil germinal centre periphery (Ref.
Gc. To.) set to 100%. The black bar shows the TIGIT : PD-1
expression ratio. Gc.: germinal centre; To: tonsil; P: patient.
Figure S4 TIGIT (black) and PD1 (grey) expression levels
in (a-c) sarcoidosis and (d-f) Hashimoto thyroiditis. Relative
expression refers to the fluorescence measurement in the
tonsil germinal centre periphery (Ref. Gc. To.) set to 100%.
The black bar shows the TIGIT : PD-1 expression ratio.
Gc.: germinal centre; To: tonsil; P: patient.
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