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SUMMARY

Disparities in cancer care have been a long-standing challenge. We estimated the genetic ancestry 

of The Cancer Genome Atlas patients, and performed a pan-cancer analysis on the influence of 

genetic ancestry on genomic alterations. Compared with European Americans, African Americans 

(AA) with breast, head and neck, and endometrial cancers exhibit a higher level of chromosomal 

instability, while a lower level of chromosomal instability was observed in AAs with kidney 

cancers. The frequencies of TP53 mutations and amplification of CCNE1 were increased in AAs 

in the cancer types showing higher levels of chromosomal instability. We observed lower 

frequencies of genomic alterations affecting genes in the PI3K pathway in AA patients across 

cancers. Our result provides insight into genomic contribution to cancer disparities.

In Brief

By analyzing TCGA cohorts, Yuan et al. show that breast, head and neck, and endometrial cancers 

of African Americans (AA) have higher levels of chromosomal instability than those of European 

Americans whereas the frequency of genetic alternations in the PI3K pathway in AA patients is 

lower across cancers.

Graphical Abstract
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INTRODUCTION

Cancer is a genomic disease involving multi-step changes in the genome. Disparities in 

cancer defined by self-identified race or ethnicity (SIRE) have been a long-standing and 

persistent challenge (Daly and Olopade, 2015; DeSantis et al., 2016; Powell, 2007; Torre et 

al., 2016; Zeng et al., 2015). Certain racial and ethnic populations in the United States 

experience increased incidence in total, and of aggressive disease for specific cancer. For 

example, compared with other racial groups, African Americans (AA) exhibit higher rates of 

colorectal cancer incidence and death, AA women have higher mortality rates from breast 

and endometrial cancer, and AA men have higher incidence and mortality rates from 

prostate and lung cancers. However, the genomic causes of cancer disparities are still poorly 

understood. Genetic ancestry reflects the history of human migration, providing background 

information about genetic variation that is essential for inference about the genetic 

association of diseases (Royal et al., 2010). Due to shared continental ancestry, individuals 

of the same genetic ancestry group share common genetic variants. This shared genetic 

background may confer similarities in cancer incidence and outcomes in populations. Recent 

large-scale genomic profile studies in individual cancer types, such as prostate (Huang et al., 

2017; Petrovics et al., 2015; Powell et al., 2013; Wang et al., 2017), breast (Ademuyiwa et 

al., 2017; Huo et al., 2017; Keenan et al., 2015; Loo et al., 2011), colon (Guda et al., 2015), 

lung (Araujo et al., 2015; Campbell et al., 2017; Kytola et al., 2017), gastric (Schumacher et 

al., 2017), esophageal (Deng et al., 2017), and kidney (Krishnan et al., 2016) cancers have 

robustly demonstrated that genomic differences in cancers exist among distinct racial and 

ethnic populations. Consistently, it has been reported that the genetic background of patients 

may influence specific somatic alterations in cancer genomes during tumorigenesis (Carter 

et al., 2017). The Cancer Genome Atlas (TCGA) data resource contains multi-omic profiles 

and clinical annotations of large-scale samples across 33 cancer types, and therefore serves 

as an excellent resource for pan-cancer analyses to evaluate the relationship between genetic 

ancestry and genomic alterations in cancers. The TCGA data portal provides SIRE 

information by: (1) race categorized as White, Black, Asian, American Indian/Alaska 

Native, and Native Hawaiian/Other Pacific Islander; and (2) ethnicity categorized as 

Hispanic/Latino and non-Hispanic/Latino. However, a large percentage of patients(12.36%; 

n = 1,375) lack race information in TCGA. For example, in the cohort of prostate cancer, a 

cancer type showing significant health disparities, race information is unavailable in68.67% 

(342/498) of patients. Rapid advances in high-density genotyping technology allow precise 

and quantitative estimation of genetic ancestry in recently admixed populations (Liu et al., 

2013; Price et al., 2006; Pritchard et al., 2000; Sankararaman et al., 2008). Thus, we propose 

to estimate the genetic ancestry of each TCGA patient through a computational analysis of 

genome-wide genotyping data generated by TCGA, aiming to assign each individual to an 

ancestral population and to make this information available through a publicly accessible 

resource.
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RESULTS

Estimation of Global Genetic Ancestry

We integrated multiple computational algorithms to estimate the global and local genetic 

ancestry of each TCGA patient (n = 11,122, involving 33 cancer types from 27 primary 

sites, Table S1), and assigned each individual to an ancestral population. EIGENSTRAT 

(Price et al., 2006) was applied to infer the global genetic structure of TCGA patients. 

Unrelated individuals from the International HapMap Project and the America panel of the 

Human Genome Diversity Project were used as reference populations (Table S2). 

Eigenvectors were estimated using all reference populations and then projected onto TCGA 

patients (Figure 1A). The first three principal components explained9.35%, 4.45%, and 

0.96% of genetic variance, respectively. Self-identified Blacks from TCGA (n = 922) 

clustered with African descendants from HapMap and distinguished themselves from other 

SIRE groups on the first axis (Figure 1B). The second and third axes separated self-

identified Asians (n = 672) and American Indians and Alaska Natives (n = 27), respectively. 

Using individuals of known ancestry from HapMap and HGDP, a k-nearest neighbors (k-

NN) classifier was trained and applied to categorize each patient from TCGA into one of 

five genetic ancestry groups (European American [EA], n = 8,951, 80.5%; AA, n = 1,019, 

9.2%; East Asian American [EAA], n = 677,6.1%; Native American [NA], n = 397, 3.6%; 

and Others [OA], n = 78, 0.7%). Similar results were obtained when the 1000 Genomes 

Project and the HGDP served as the reference panels (Figure S1A). To avoid confusion, in 

this manuscript, we categorize genetic ancestry as EA, AA, EAA, and NA, and self-

identified race from TCGA as White, Black, Asian, and American Indians, and Alaska 

Natives. For patients with race information in TCGA, we observed that 95.6% of 

categorizations based on the k-NN algorithm following principal-component analysis (PCA) 

were consistent with race, suggesting that race and genetic ancestry identified by our 

approach appear to be highly correlated across TCGA patients. We inferred genetic ancestry 

for all TCGA specimens with SNP array genotype data, including those with unreported 

SIRE (Figures 1C and S1B). Notably,59.4% and 32.8% of self-identified Hispanic/Latino 

individuals were assigned into NA and EA groups according to genetic ancestry, 

respectively. Next, given that a substantial proportion of the US population is represented by 

admixed populations, STRUCTURE (Pritchard et al., 2000) was used to quantitatively 

determine the ancestral composition for each patient. To this end, unrelated individuals from 

CEU/TSI (European), YRI (West African), CHB/JPT (East Asian), and the America panel 

from HGDP (Native American) were used as proxies for “continental” ancestral populations 

(Table S2). As expected, a large percentage of the TCGA specimens showed genetic 

diversity (Figures 1D and S2). Importantly, the global genetic ancestry estimation by 

STRUCTURE allowed us to treat the genetic ancestry data as a continuous variable for 

downstream analyses.

Estimation of Local Genetic Ancestry

Although a down-sampling test demonstrated that a small number of SNPs was sufficient for 

estimation of global ancestry (Figures S3A and S3B), the high-density SNP data generated 

by TCGA provided a powerful resource to estimate local ancestry (locus-specific ancestry) 

for each individual patient. To estimate the genetic ancestry at a particular chromosomal 
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locus, LAMP (Sankararaman et al., 2008) was applied to the genotype data of TCGA. 

Specifically, LAMP inferred genetic ancestry separately within overlapping windows using a 

likelihood model, allowing us to assign a label of genetic ancestral origin to each locus 

defined by an SNP for a given individual genome (Figures 1E and 1F). As expected, local 

genetic ancestry estimation by LAMP yielded estimates of the individual admixture, which 

were comparable with global quantitative ancestry estimates by STRUCTURE (Figure 1G). 

However, the local genetic ancestry structures largely differed between patients with similar 

global genetic ancestral composition (Figure 1H). Consistent with a previous study (Bhatia 

et al., 2014), we did not observe significant deviation from the genome-wide average of 

ancestral contributions, indicating no selection influencing ancestry after admixture. In AA 

patients, the average proportion of African ancestry over all genomic segments with unique 

ancestry status was 0.786 (SD = 0.010, Figure 1I). The average proportions of East Asian 

and Native American ancestry were 0.945 (SD =0.047) and 0.224 (SD = 0.024) in EAA and 

NA patients, respectively.

Development of the Cancer Genetic Ancestry Atlas

After estimating both global (as a categorical variable and a continuous quantitative 

variable) and local genetic ancestry for each patient of TCGA (Figure 2A), we integrated our 

analyses and TCGA clinical annotations and multidimensional genomic profiles (Figure 2B) 

to develop a comprehensive academic research database: The Cancer Genetic Ancestry Atlas 

(TCGAA). The TCGAA data portal provides six modules (Summary, Search, Analysis, 

Visualization, Integration, and Download) by integrating genetic ancestry, clinical 

annotations and genomic profiles of the TCGA project (Figure 2C). The patient information 

was also directly linked to the data portals of the Genomic Data Commons and the TCGA. 

The TCGAA database contains information for 11,122 cancer patients across 27 primary 

sites (33 cancer types, Figure 3A). Across all cancer types, 80.5% (n = 8,951) were EA, 

9.2% (n = 1,019) were AA,6.1% (n = 677) were EAA, and 3.6% (n = 397) were NA. Breast 

cancer and liver cancer had the largest number of AA (n = 183;16.7%) and EAA (n = 163; 

43.2%) patients, respectively (Figure 3B). In 16 cancer types, the number of patients with 

AA ancestry estimated by EIGENSTRAT is larger than 20, while eight cancer types have 

>20 EAA patients and seven cancer types have >20 NA patients (Figure 3B and Table S3). 

We also analyzed the cancer types that show evidence of racial disparities, and found that 

race and ethnicity were considered during the sample collection of TCGA for most of these 

cancer types (Figure 3B). For example, higher incidence or mortality rates from stomach, 

liver, and thyroid cancers are reported in Asian American patients; correspondingly, greater 

numbers of EAA samples were collected in the TCGA specimens for these cancer types. 

Taken together, although the sample sizes of racial minorities in TCGA may still not be 

sufficient for de novo identification of racial group-specific genomic alterations at a cancer 

type-specific level (Huang et al., 2017; Spratt et al., 2016), TCGA provides one of the 

largest sample cohorts across most common adult cancer types, with comprehensive clinical 

information and multidimensional genomic profiles for studies of the effects of genetic 

ancestry on genomic alterations. Using the same computational approaches, we also 

estimated global and local genetic ancestry for 1,251 cancer cell lines, derived from 29 

primary sites (Table S4), whose SNP array genotyping data were retrieved from the Cancer 

Cell Line Encyclopedia and the Genomics of Drug Sensitivity in Cancer. For the cell lines 
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with SIRE information in ATCC (n = 378), we observed that 94.71% of categorizations 

based on the k-NN algorithm following PCA analysis were consistent with SIRE, suggesting 

that SIRE and genetic ancestry identified by our approach appear to be highly correlated 

across cell lines. This information is provided to the public via the Cancer Cell Line Genetic 

Ancestry Atlas (CCGAA, http://52.25.87.215/CCGAA, Figure 2B).

Pan-cancer Analysis of AA Genetic Ancestry and Genomic Alterations

Given that, across the TCGA sample cohorts, the number of tumor samples from NA 

populations (3.6%; n = 397) is too small for informative statistical analysis, we decided to 

compare the difference in genomic alterations between two genetic ancestry groups. This 

also makes our results comparable with the previous studies in individual cancer types, since 

most of them were performed in two racial populations. In this regard, we chose AA as the 

minority population of interest for this current study, and used EA as a reference population. 

We investigated the relationship between AA genetic ancestry and the genomic alterations of 

cancers by studying tumors from 8 primary sites (10 cancer types), each of which had more 

than 40 AA patients: breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), 

glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney 

renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), lung 

adeno-carcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma 

(PRAD), and uterine Corpus Endometrial Carcinoma (UCEC). We treated the genetic 

ancestry information inferred by EIGENSTRAT as a categorical variable (i.e., AA versus 

EA), and the ancestral population allele frequency estimated by STRUCTURE as a 

continuous quantitative variable(i.e., percentage of AA ancestry).

AA Genetic Ancestry and Somatic Copy-Number Alterations

We deconstructed the copy-number profiles into three different levels of somatic copy-

number alterations (SCNAs) (i.e., focal, arm, and chromosome levels). An overall SCNA 

score was calculated through modification of the methods described by Davoli et al. (2017). 

For each tumor, the overall SCNA score was defined as the unweighted numeric sum of the 

standardized SCNA scores from the above three levels. Adjusting for clinical factors, AA 

patients had a significantly higher overall SCNA score for three cancer types (BRCA, 

UCEC, and HNSC), and a significantly lower score for two kidney cancer types (KIRC and 

KIRP) than EA patients with a false discovery rate (FDR < 10%) (Figure 4A). There were 

no significant differences observed for the other five cancer types examined. Similarly, when 

we treated genetic ancestry as a continuous variable, an identical result was found using 

regression analysis (Figure S3C). Given that the SCNAs in arm/chromosome level and focal 

level may arise through distinct molecular mechanisms, we also analyzed them separately 

(Figures 4A–4D). With FDR < 10%, both focal and arm/chromosomal SCNAs differed 

significantly between AA and EA patients in BRCA, UCEC, and HNSC (Figure 4A). 

Interestingly, in KIRC, SCNAs at focal level were the dominant contributor to the difference 

in overall SCNAs between AA and EA patients, and no significant difference was observed 

at the arm/chromosomal level. The opposite pattern was observed in KIRP, where SCNAs at 

arm/chromosomal level were the dominant source of differences in overall SCNAs between 

AA and EA patients, and no significant difference was observed at the focal level. 

Furthermore, we estimated the whole-genome doubling (WGD) event for each tumor by the 
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ABSOLUTE algorithm (Carter et al., 2012) based on allele-specific copy-number profiles. 

With FDR < 10%, BRCA was the only cancer type that demonstrated different frequencies 

of WGD between AA and EA patients (Figure 4E), with higher frequency among AA 

patients.

The recurrent focal SCNAs of each cancer type were estimated by GISTIC (Mermel et al., 

2011), and recurrent focal SCNAs with significantly different alteration frequencies between 

AA and EA patients were identified at both pan-cancer and cancer type-specific levels. For 

pan-cancer analysis, we analyzed the recurrent focal SCNAs shared by multiple cancer types 

using Stouffer’s Z score (Stouffer et al., 1949). In brief, a Z score was calculated to assess 

whether AA and EA patients differed significantly in the frequency of a given recurrent 

focal SCNA in a certain cancer type, controlling for variations in genomic disruption. Z 
scores contributing to a same genomic region from different cancer types were then 

summarized into a pan-cancer meta-Z score (amplified and deleted SCNAs were considered 

separately). In summary, three recurrent focal SCNAs were identified with significantly 

different alteration frequencies between AA and EA patients at pan-cancer level after 

adjusting for clinical factors (with FDR < 10%, Figure 5A; Table S5). For example, the 

recurrent focal amplification residing within the 19q12 region had a significantly higher 

amplification frequency in AA patients across four cancer types (BRCA, GBM, LUSC, and 

UCEC) compared with EA patients (raw p value = 9.37 × 10−4, corrected p value = 0.072). 

The quantile-quantile plot demonstrated strong deviation of the observed p values from the 

null expectation for the above three recurrent focal SCNAs (Figure S3D). Since analyses of 

the genes in recurrent genomic alterations have led to the successful identification of cancer-

driver genes, we hypothesized that certain genes located in the above three recurrent focal 

SCNAs may play functional roles in the generation of cancer disparities. To identify such 

genes, four criteria were used (Figure 5B). Using these criteria, 60 protein-coding and 115 

non-coding genes were initially mapped into the above 3 recurrent focal SCNAs, and 34 

genes (31 protein-coding and 3 non-coding) fulfilled the four criteria (Figures 5C and 5D; 

Table S6). Two examples of identified genes, CCNE1 and non-coding gene VPS9D-AS1, 

are shown in Figures 5E and 5F, respectively. As the mechanisms driving cancer 

development among cancer types may differ, we also identified recurrent focal SCNAs with 

significantly different alteration frequencies between AA and EA patients at a cancer type-

specific level, based on separate analyses of each individual cancer type. After adjusting for 

clinical factors, five recurrent focal SCNAs differed significantly in frequency between AA 

and EA patients with FDR < 10% (Table S7). In addition, when we relaxed the significance 

threshold (FDR < 25% within each cancer type) to detect “near significance,” we found 16 

additional hits. For example, in prostate cancer, we identified a single recurrent focal SCNA 

located on 10q23.31, which showed significantly lower alteration frequency in AAs 

compared with EAs (raw p value = 3.55 × 10−4, corrected p value = 0.21). Applying the four 

criteria described above, we further identified 30 protein-coding genes and 5 non-coding 

genes potentially contributing to disparities at a cancer-specific level (Table S8).

AA Genetic Ancestry and Somatic Mutations

We analyzed the difference in mutation burden between AA and EA patients. Defining 

tumors of high mutation burden as those in the upper quartile, we found that there was no 
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significant difference in the frequency of tumors with high mutation burden after adjusting 

for clinical factors. Next, we compared the mutational process activity (Alexandrov et al., 

2013) between AA and EA patients adjusting for clinical factors, and no statistically 

significant differences were observed (Table S9). We generated a list of recurrently mutated 

genes for each cancer type by using a combination of four resources (Table S10). The 

recurrently mutated genes with significantly different alteration frequencies between AA and 

EA patients were identified at both pan-cancer and cancer type-specific levels, controlling 

for clinical factors. For pan-cancer meta-analysis, we chose 30 recurrently mutated genes 

whose mutation frequencies were higher than 5% across the 10 cancer types analyzed in this 

study (Figure 6A). At a pan-cancer level, we found that TP53 mutations were significantly 

enriched in AA patients compared with EA patients (raw p value =1.02 × 10−3, corrected p 

value = 3.05 × 10−2, Figure 6A). In addition, when we relaxed the significance threshold 

(FDR < 25%) to detect mutations with near significance, we found four additional hits that 

were less frequently mutated in AA: CREBBP, ARID1A, PIK3CA, and PTEN (Figure 6A). 

Finally, we repeated this analysis within each cancer type utilizing cancer type-specific lists 

of recurrently mutated genes (Table S10). At a cancer type-specific level, five genes were 

identified with FDR < 10% (Figure 6B and Table S11). Consistent with the pan-cancer 

analysis, differential mutation frequencies of TP53 and PIK3CA were observed in more than 

one cancer type (Figure 6B). AA patients had significantly higher TP53 mutation frequency 

in BRCA. COAD fell just below the threshold of significance but also demonstrated the 

trend of TP53 mutation enrichment in AAs (odds ratio [OR] =1.82, p = 0.043). Significant 

enrichment of PIK3CA mutations in EA patients was observed in BRCA. HNSC fell just 

below the significance threshold, but also followed the trend of fewer PIK3CA mutations in 

AAs (OR = 0.29, p = 0.048). Taken together, at both pan-cancer and cancer type-specific 

levels, TP53 showed significantly higher mutation frequency in AA patients compared with 

EA patients, while the genes in the phosphatidylinositol 3-kinase (PI3K) pathways appeared 

to be less frequently mutated in AA patients.

Integrated Analysis of Genomic Alterations in Patients with AA Genetic Ancestry

Across the ten cancer types analyzed, we observed that, compared with EA, AA patients 

showed a significantly higher level of chromosomal instability in BRCA, UCEC, and 

HNSC, which was associated with increased frequencies of TP53 mutations as well as 

CCNE1 amplification (Figure 7A). In contrast, in kidney cancers, AA patients had a 

significantly lower level of chromosomal instability. Supporting this observation, RNA 

sequencing profile analysis from the corresponding cancer specimens of TCGA showed that 

an mRNA expression signature of chromosomal instability (CIN70 signature developed by 

Carter et al., 2006) had a consistent pattern of expression across the ten cancer types 

between AA and EA patients. In AA patients, the CIN70 signature was overexpressed in 

BRCA, UCEC, and HNSC, and was decreased in KIRP and KIRC (Figure 7A). In contrast 

to this varied pattern of chromosomal instability, AA patients showed a uniform decrease in 

alterations in the PI3K pathway relative to EA patients (Figure 7B); i.e., significantly lower 

mutation frequencies of PIK3CA (BRCA), PIK3R1 (UCEC), and PTEN (UCEC), as well as 

significantly lower levels of PTEN copy-number loss (PRAD) in AA patients. Consistent 

with this observation, analysis of reverse-phase protein array data from TCGA showed that 
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the PI3K pathway activity (PI3K score developed by Zhang et al. (2017)) was globally 

decreased in AA compared with EA patients (Figure 7B).

DISCUSSION

We estimated genetic ancestry for patients in TCGA—a large genetically admixed cohort of 

cancer patients with multiple genomic profiles and comprehensive clinical annotations. By 

using integrated computational algorithms, we inferred the genetic ancestry of TCGA 

patients at global and local levels, designated genetic ancestry groups based on genotyping 

data, and developed the TCGAA data portal to make these data widely available to the 

research community. This resource provides a tool to help elucidate the genetic contribution 

to cancer disparities. Given that 33 cancer types from 27 primary anatomic sites were 

analyzed by a standardized genomic-profiling protocol, TCGAA significantly improves our 

ability to perform pan-cancer analyses for genomic mechanisms of cancer disparities across 

multiple cancer types. However, the absolute number of samples from racial minorities in 

each given cancer type is still relatively small, which limits the ability to detect racial group-

specific genomic alterations in specific cancer types (Huang et al., 2017; Spratt et al., 2016). 

In addition, as information about the socioeconomic status of TCGA patients is unavailable, 

we were unable to adjust for this important variable when comparing racial differences in 

genomic alterations. Therefore, additional efforts are still urgently needed to identify large 

samples of underrepresented patients with comprehensive clinical information such as 

socioeconomic status to better understand the genomic basis for disparities across all racial/

ethnic groups.

Leveraging the resources of TCGA, which profiles multiple cancer types by a unified 

genomic platform and standardized pipeline, we performed a pan-cancer analysis to 

investigate the relationship between AA genetic ancestry and genomic alterations in cancers. 

We observed that AA patients with BRCA, HNSC, or UCEC exhibit a higher level of 

chromosomal instability compared with EA patients, while a lower level of chromosomal 

instability was observed in AA patients with KIRP or KIRC. Interestingly, the frequencies of 

TP53 mutations and amplification of CCNE1 were significantly higher in AA patients in the 

cancer types that show higher levels of chromosomal instability. Tumor-igenesis is a multi-

step process in which normal cells accumulate acquired genomic alterations. These 

alterations in cancer genomes dominantly and intrinsically influence the transcriptional 

phenotypes of cancers, such as gene expression signatures (e.g., PAM50 signature in breast 

cancer). TP53 somatic mutations are one of the well-demonstrated early driving genomic 

alterations during tumor development. As a transcription factor, both loss-of-function and 

gain-of-function mutations in the TP53 gene will have large effects on the transcriptome, 

such as the expression of ER and ER-regulated/associated genes in breast cancer (Angeloni 

et al., 2004; Borresen-Dale, 2003; Troester et al., 2006). TP53 mutant breast tumors are 

enriched for the triple-negative (basal-like) transcriptional pheno-type, providing a potential 

explanation for higher prevalence of the basal-like subtype (PAM50) in AA patients with 

breast cancer. In addition, we found that genomic alterations of the genes in the PI3K 

pathway were less frequent in AA patients compared with EA across most cancer types. 

These pan-cancer findings are consistent with previous results from studies based on a single 

cancer type. For example, recent studies on breast cancer from the TCGA cohort 
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(Ademuyiwa et al., 2017; Huo et al., 2017; Keenan et al., 2015) demonstrated that AAs had 

more TP53 mutations and fewer PIK3CA mutations. These observations not only further our 

understanding of the contributions of genetic ancestry to cancer disparities, but may also 

inform personalized treatment of cancer patients from racial/ethnic minority groups.

In a pan-cancer meta-analysis, three recurrent focal SCNAs were identified with 

significantly different alteration frequencies between AA and EA patients. We hypothesized 

that certain genes located in these three recurrent focal SCNAs may play functional roles in 

cancer disparities, and that identification and characterization of such genes may provide 

molecular insight into the understanding of cancer disparities. Supporting this hypothesis, 

CCNE1, located within the recurrent focal amplification SCNA locus on 19q12, showed 

significantly different alteration frequencies between AA and EA patients, and was 

identified as a potential contributor to cancer disparities. The correlation between 

chromosomal instability and the amplification of CCNE1 further supports the idea that it 

may play biological roles in cancer disparities. Finally, five recurrently mutated genes at a 

pan-cancer level and six at a cancer type-specific level were identified with significantly 

different alteration frequencies between AA and EA patients. Genomic instability, epigenetic 

regulation and PI3K were the major molecular pathways implicated by the 39 genes found to 

be altered (either through SCNA or mutation) with significantly different frequency between 

AA and EA patients at a pan-cancer level. Notably, many genes with unknown functions 

were identified in our study; therefore, further characterization of the biological functions of 

these genes is urgently needed.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Lin Zhang M.D. (linzhang@upenn.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In this research, we used data collected by the Cancer Genome Atlas (TCGA) Research 

Network. Under the direction of the National Cancer Institute (NCI) and the National 

Human Genome Research Institute (NHGRI), TCGA collected both tumor and non-tumor 

bio-specimens from more than 10,000 human samples with informed consent under that 

authorization of local Institutional Review Boards (https://cancergenome.nih.gov/abouttcga/

policies/informedconsent). These steps ensured that patients were exposed to no unnecessary 

risks and that the resulting research is legal, ethical, and well designed.

METHOD DETAILS

Data Collection and Processing

SNP Array Data: TCGA Affymetrix Human SNP Array 6.0 raw data in CEL format 

(n=11,122, across 33 cancer types; Table S1) were downloaded from the Cancer Genomic 

Cloud of the TCGA project (http://www.cancergenomicscloud.org/). The probe-level signal 

intensities of CEL files were combined, calibrated, and normalized for each cancer type 

separately using Affymetrix Power Tools version 1.18.2 (https://www.affymetrix.com/
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support/developer/powertools/changelog/index.html). Birdseed (Korn et al., 2008) version 2 

was used for genotype-calling of SNP arrays. Segmented copy number profiles from 

Affymetrix Human SNP Array 6.0 (n=5,580, across 10 cancer types) were downloaded from 

the Cancer Genomic Cloud of the TCGA project. For each patient, a pair of segmentation 

files of tumor and matched control (if available) was selected for somatic copy number 

alteration analysis. If multiple aliquot barcodes existed for one patient, one single pair of 

tumor/matched control sample was kept following the rules: (1) sample type: for tumor 

tissues, primary > recurrent > metastatic (Sample Type code: 01 > 02 > 06); for normal 

control tissues, blood > solid (Sample Type code: 10 > 11); (2) molecular type of analyte for 

analysis: prefer D analytes (native DNA) over G, W, or X (whole-genome amplified); (3) 

order of sample portions: higher portion numbers were selected; and (4) order of plate: 

higher plate numbers were selected.

Whole-exome Sequencing Data: Mutation annotation files (MAFs) across 10 cancer types 

of TCGA, which were generated by the MuTect2 pipeline, were downloaded through the 

Genomic Data Commons (GDC) Data Transfer Tool (gdc-client_v1.2.0_Ubuntu14.04_x64) 

from the GDC Data Portal (https://portal.gdc.cancer.gov/). If multiple aliquot barcodes 

existed for one patient, one single pair of tumor/matched control sample was kept following 

the rules: (1) sample type: for tumor tissues, primary > recurrent > metastatic (Sample Type 

code: 01 > 02 > 06); for normal control tissues, blood > solid (Sample Type code: 10 > 11); 

(2) molecular type of analyte for analysis: prefer D analytes (native DNA) over G, W, or X 

(whole-genome amplified); (3) order of sample portions: higher portion numbers were 

selected; and (4) order of plate: higher plate numbers were selected. We excluded all 

mutations that were not labelled with “PASS” on the “FILTER” column. Additionally, 

mutations were considered as low-confidence calls and also excluded if there were: 1) less 

than 20 reads covering the variant site in tumor sample (t_depth < 20); or 2) less than 4 reads 

supporting the variant allele in tumor sample (t_alt_count < 4); or 3) more than one read 

supporting the variant allele in normal sample (n_alt_count > 1).

Recurrently Mutated Gene (RMG) List: To define the recurrently mutated genes (RMGs), 

gene lists from the following four complementary resources were combined: 1) Mut-Sig2CV 

analysis from the GDAC Firehose standard analysis pipeline (http://gdac.broadinstitute.org) 

(accessed January 28, 2016); 2) Cancer genes database by Iorio et al. (Iorio et al., 2016), 

which is a combination analysis of MutSigCV, OncodriveFM, and Oncodrive-CLUST; 3) 

Mutational driver gene database from Intogen (Rubio-Perez et al., 2015) (http://

www.intogen.org/downloads), which is a database containing information on genes obtained 

by a method designed to detect complementary signals of positive selection in the pattern of 

somatic mutations; and 4) RMGs identified from the MuSiC algorithm by Kandoth et al. 

(Kandoth et al., 2013). For a given cancer type, if an RMG was identified by more than one 

of the above methods, it was considered a “confident” RMG. For KIRP, RMGs defined by 

the only resource GDAC Firehose (MutSig2CV) were adopted. Collectively, we identified a 

total of 173 RMGs for the 10 cancer types included in this study (Table S10).

RNA-sequencing Data: Gene-level RNA expression from TCGA RNA-seq profiles was 

downloaded through the Genomic Data Commons (GDC) Data Transfer Tool (gdc-
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client_v1.2.0_Ubuntu14.04_x64) from GDC Data Portal (https://portal.gdc.cancer.gov/). In 

the GDC RNA-seq analysis pipeline, reads were aligned to the GRCh38 reference genome, 

and then gene level expression was measured from HT-Seq raw read count using 

GENCODE v22 for gene annotation. Subsequently, RNA-Seq expression level read counts 

were normalized using FPKM (Fragments per Kilobase of transcript per Million mapped 

reads). A gene expression matrix was created for each cancer type. For expression analysis 

of tumor samples, one single aliquot barcode for each patient was kept following the rules: 

(1) sample type: primary > recurrent > metastatic (Sample Type code: 01 > 02 > 06); (2) 

molecular type of analyte for analysis: prefer R analytes (RNA) over T (Total RNA); (3) 

order of sample portions: higher portion numbers were selected; and (4) order of plate: 

higher plate numbers were selected. To maintain an expression value of zero for 

untranscribed genes, the FPKM data was log2 scaled after adding a small constant, i.e. exp = 

log2(FPKM + 1).

Reverse Phase Protein Array (RPPA) Data: The RPPA data (level 4 data) were 

downloaded from The Cancer Protein Atlas website (http://tcpaportal.org/tcpa/

download.html). For each protein in a given cancer type, the RPPA data were median-

centered and normalized across all samples to yield a relative protein level. The proteins 

chosen to estimate the PI3-kinase score were selected based on the method by Zhang et al. 

(Zhang et al., 2017). The PI3-kinase score was defined as the sum of normalized protein 

levels of selected proteins involved in the PI3-kinase pathway (Zhang et al., 2017), including 

AKT (S473 and T308 features), GSK3 (S9 and S21/S9 features), PRAS40, and phospho-

TSC2.

Clinical Data: Clinical and biospecimen annotation files in XML format (n=11,160, across 

33 cancer types) were downloaded by the GDC Data Transfer Tool (gdc-

client_v1.2.0_Ubuntu14.04_x64) from the GDC Data Portal (https://portal.gdc.cancer.gov/) 

on July 26, 2017. R package XML was used to access clinical information and convert it to 

tabular text.

Health Disparities for Each Cancer Type: Cancer health disparities refer to differences in 

the cancer health status of different racial/ethnic groups in the US: i.e. some racial/ethnic 

groups have higher incidence and/or mortality rates of certain cancers compared to others. 

The racial/ethnic group-specific incidence and mortality rates for each cancer type were 

retrieved from two related cancer statistics reports. 1) The United States Cancer Statistics 

(USCS) Incidence and Mortality Web-based Report, which presents the official federal 

statistics on cancer incidence from registries and cancer mortality statistics (1999–2014) 

produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer 

Institute (NCI) (https://nccd.cdc.gov/uscs/cancersbyraceandethnicity.aspx#Footnotes). 2) 

Cancer Statistics for racial/ethnic minority groups (African American, Asian Americans, 

Native Hawaiians, and Pacific Islanders) in 2016 (De-Santis et al., 2016; Siegel et al., 2016; 

Torre et al., 2016), reported by the American Cancer Society. A PubMed-based literature 

search was also performed to confirm the disparities of individual cancer types.
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Genotype Data for Reference Populations: Genotype files of the International HapMap 

project (Phase III) were downloaded from the Hapmap ftp site (ftp://ftp.ncbi.nlm.nih.gov/

hapmap/genotypes/2010–05_phaseIII/hapmap_format/polymorphic/). Of the 1,397 

individuals from 11 populations in phase III data of HapMap, known relationships were 

described when the data were released (ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2010–

05_phaseIII/relationships_w_pops_041510.txt). Furthermore, Pemberton et al. (Pemberton 

et al., 2010) identified additional previously unidentified pairs with close relatives through 

evaluation by both the software package RELPAIR and allele sharing. Based on this 

information, we selected 1,117 unrelated individuals as reference populations from HapMap 

(Table S2). The populations used in our study included: ASW (African ancestry in 

Southwest USA, n=52), CEU (Utah residents with Northern and Western European ancestry 

from the CEPH collection, n=112), CHB (Han Chinese in Beijing, China, n=137), CHD 

(Chinese in Metropolitan Denver, Colorado, n=106), GIH (Gujarati Indians in Houston, 

Texas, n=97), JPT (Japanese in Tokyo, Japan, n=113), LWK (Luhya in Webuye, Kenya, 

n=99), MXL (Mexican ancestry in Los Angeles, California, n=54), MKK (Maasai in 

Kinyawa, Kenya, n=105), TSI (Toscani in Italia, n=102), and YRI (Yoruba in Ibadan, 

Nigeria, n=140).

Because there are no reference samples for Native Americans in the HapMap reference 

panel, samples from the American population from the Human Genome Diversity Project 

(HGDP) were chosen as a reference for a population of Native American ancestry. Genotype 

files of HGDP were downloaded from http://www.hagsc.org/hgdp/files.html. Of the 1,043 

individuals successfully geno-typed in HGDP, 940 were from the recommended unrelated 

subset (H952), defined by Rosenberg (Rosenberg, 2006). 64 individuals from 5 populations 

(7 Colombians, 14 Karitiana, 21 Maya, 14 Pima and 8 Surui) were pooled as a reference 

population of Native American ancestry. Mitochondrial markers were removed since it has 

been reported that there are very limited associations between mitochondrial and autosomal 

population structures (Biffi et al., 2010).

We took SNPs shared by HapMap and HGDP (Native American panel), flipped strands for 

HGDP SNP genotypes if alleles showed discordance with HapMap, and re-formatted the 

data to the HapMap standard. To this end, we collected a total of 655,113 SNPs which were 

shared by HapMap and HGDP (Native American panel). Then, we applied a set of quality 

control criteria. First, 195,643 SNPs with call rates across the 1,181 reference samples < 

95% or minor allele frequency (MAF) < 1% were filtered out. Then an exact test of Hardy-

Weinberg equilibrium (HWE) was performed by the HWExactMat() function of R package 

HardyWeinberg (Graffelman, 2015) for the reference populations separately (11 populations 

from HapMap and 5 populations from HGDP). To be excluded on the basis of Hardy-

Weinberg disequilibrium, a SNP had to have at least four copies of the minor allele in the 

population in which it was being assessed and possess at least one of the following 

properties: (1) an exact test p value < 10−5 in at least one population; 2) an exact test p value 

< 10−3 in at least two populations. This excluded an additional 4,578 SNPs. In all, 454,892 

SNPs remained as effective markers for reference populations.

Genotype Data for TCGA Specimens: After combining all genotype data from TCGA, a 

total of 22,072 non-redundant samples for 33 cancer types were obtained (if multiple aliquot 
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barcodes existed for one patient, one single file was chosen following the pre-defined criteria 

for tumor sample and matched normal sample respectively, see also section ‘SNP Array 

Data’). Of the 909,622 SNPs genotyped on Affymetrix Human SNP Array 6.0, 133,322 

SNPs overlapped with the processed genotype data of the two reference population 

resources (HapMap and HGDP [Native American panel]). Quality control processes were 

applied to the overlapping SNPs on TCGA: 1) SNP call rate across all TCGA was > 95% 

and 2) MAF was > 1%. This yielded 103,991 SNPs effective and useful in both reference 

populations and the TCGA cohort. SNPs on sex chromosomes were further removed as the 

different variance for males complicates proper theoretical treatment (Reinhold and 

Engqvist, 2013). Finally, a total of 100,611 SNPs were kept for analysis, all of which were 

bi-allelic SNPs. Based on this set of overlapping SNPs, we combined the genotype data of 

TCGA and the reference populations as input data for the three independent downstream 

genetic ancestry analysis pipelines (EIGENSTRAT, STRUCTURE and LAMP). TCGA 

genotypes were flipped if necessary. Input files were prepared according to software 

requirements.

Genetic Ancestry Assessment

Genetic Ancestry Assessment by EIGENSTRAT: EIGENSTRAT (Price et al., 2006) is a 

method to study human diversity based on Principal Component Analysis (PCA), which 

reduces the information contained in SNP frequencies to components that capture most 

genetic variability. The EIGENSOFT package (EIGENSTRAT algorithms included) version 

6.1.4 was downloaded from GitHub (https://github.com/DReichLab/EIG). The smartpca 

program was applied to run PCA on the combined genotype data of TCGA and the reference 

populations. All 16 reference populations (11 from HapMap and 5 from HGDP, Table S2) 

were used to compute eigenvectors (by supplying a poplist file using the parameter -w). 

Given that EIGENSTRAT results are not sensitive to the number (K) of axes of variation 

used (Price et al., 2006), we adopted the default value K=10 for running the smartpca 

program. The program then outputs the positions of each individual (either from TCGA or 

from reference populations) on the top ten axes of variation into a file with the 

extension .evec. This allows visualization of the population structure as well as estimation of 

relative distance between individuals or populations. To categorize the TCGA patients into 

genetic ancestry groups, we attempted to train a k-nearest neighbor (k-NN) classifier. We 

first grouped the 16 reference populations into 7 populations according to continental 

distribution and migration history: West Africans (YRI), European (CEU and TSI), East 

Asian (CHB, CHD and JPT), Native American (Pima, Maya, Colombians, Karitiana and 

Surui), South Asian (GIH), African American (ASW, LWK and MKK), and Mexican 

(MXL). Before we built a k-NN classifier on the 7 grouped populations, we performed a 

grid search with a nested leave-one-out validation to determine the optimal combination of 

two parameters: the number of eigenvectors (n) to be used to calculate distance between 

individuals and the number of neighbors (k) to take votes from. With candidate values from 

3 to 10 for n and k, we found that all possible combinations achieved near perfect 

performance on reference populations (accuracy > 99%). However, the combination of k=6 

and n=7 was the most robust when applying the trained classifier to TCGA patients (priority 

of sample type was blood > solid normal > tumor). Finally adopting this set of parameters 
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for model training and prediction with k-NN, we observed a great consistency (95.6%) of 

genetic categorization with self-reported race from TCGA clinical annotation.

Genetic Ancestry Assessment by EIGENSTRAT Using Different Numbers of SNPs: To 

determine the effect of number of SNPs used on global ancestry estimation, we repeated our 

approach using subsampled SNP sets ranging from 500 to 50,000 SNPs. In each cycle, a 

specified number of SNPs was randomly selected from the total of 100,611 SNPs. To train a 

k-nearest neighbor (k-NN) classifier to categorize the TCGA patients into genetic ancestry 

groups, we re-defined the two parameters: the number of eigenvectors (n) to be used to 

calculate distance between individuals and the number of neighbors (k) to take votes from. A 

grid search with a nested leave-one-out validation was performed to determine the optimal 

combination of the two parameters (n and k). The final combination was determined as the 

one observed to be the most robust when applying the trained classifier to TCGA patients 

(priority of sample type is blood > solid normal > tumor). Overall, the number of patients 

classified into the four genetic ancestry groups (EA, AA, EAA and NA) remained stable, 

suggesting that a small number of SNPs is sufficient to assess global ancestry (Figures S3A 

and S3B).

Genetic Ancestry Assessment by EIGENSTRAT Using Alternative Reference 
Cohort: Since the 1000 Genomes Project could also serve as reference populations, we 

applied EIGENSTRAT to estimate genetic ancestry for all patients of TCGA using the 1000 

Genomes Project as an alternative reference cohort. To use the phase 3 data of the 1000 

Genomes Project as a reference panel, the VCF (Variant Call Format) files of the 1000 

Genomes were downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502/. It has been reported that the American populations of the 1000 Genomes Project 

were admixed populations (Gravel et al., 2013) (i.e., CLM [Colombians from Medellin, 

Colombia], MXL [Mexican Ancestry from Los Angeles USA], PEL [Peruvians from Lima, 

Peru], PUR [Puerto Ricans from Puerto Rico]). Therefore, we chose the American 

population from the Human Genome Diversity Project (HGDP) as the reference for a 

population of Native American ancestry. Of the 84,805,772 variants characterized by the 

1000 Genomes Project, 640,638 were shared with the HGDP (Native American panel). The 

genotypes of samples from the 1000 Genomes Project were formatted (i.e. 0 for AA, 1 for 

AB, 2 for BB and 9 for missing) before pooling with those of samples from the HGDP 

(Native American panel). Then, we applied a set of quality control criteria: first, a set of 

4,592 SNPs whose call rate across the reference samples was < 95% were excluded. A 

further set of 1,550 SNPs whose minor allele frequency (MAF) was < 1% were filtered out. 

Then an exact test of Hardy-Weinberg equilibrium (HWE) was performed by the 

HWExactMat function of R package HardyWeinberg (Graffelman, 2015) for the reference 

populations separately. To be excluded on the basis of Hardy-Weinberg disequilibrium, a 

SNP had to have at least four copies of the minor allele in the population in which it was 

being assessed and possess at least one of the following properties: (1) an exact test p value 

< 10−5 in at least one population; 2) an exact test p value < 10−3 in at least two populations. 

This excluded an additional 841 SNPs. In all, 633,655 SNPs remained as effective markers 

for the alternative reference populations (the 1000 Genomes Project and HGDP [Native 

American panel]).
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Of the 909,622 SNPs genotyped on Affymetrix Human SNP Array 6.0 for the TCGA cohort, 

181,946 SNPs overlapped with the processed genotype data of the alternative reference 

populations (the 1000 Genomes Project and HGDP [Native American panel]). Quality 

control processes were applied to the overlapping SNPs on TCGA: 1) SNP call rate across 

all TCGA was > 95% and 2) MAF was > 1%. This yielded 150,128 SNPs effective and 

useful in both reference populations and the TCGA cohort. All of the 150,128 SNPs were 

located on autosomal chromosomes. TCGA genotypes were flipped if necessary. Based on 

this set of overlapping SNPs, we combined the genotype data of TCGA and the alternative 

reference populations as input data for the EIGENSTRAT algorithm.

For k-nearest neighbor (k-NN) classifier training to categorize the TCGA patients into 

genetic ancestry groups, we re-defined the two parameters: the number of eigenvectors (n) to 

be used to calculate distance between individuals and the number of neighbors (k) to take 

votes from. A grid search with a nested leave-one-out validation was performed to determine 

the optimal combination of the two parameters (n and k). The combination of k=9 and n=6 

was observed to be the most robust when applying the trained classifier to TCGA patients 

(priority of sample type was blood > solid normal > tumor). Finally adopting this set of 

parameters for model training and prediction with k-NN, we observed a high consistency 

(99.6%) of genetic categorization with that reported using HapMap and HGDP as the 

reference cohort (Figure S1A).

Genetic Ancestry Assessment by STRUCTURE: STRUCTURE (Pritchard et al., 2000) is 

an algorithm using multi-locus genotype data to infer population structure utilizing a model-

based clustering method. The STRUCTURE algorithm (version 2.3.4) was downloaded from 

http://web.stanford.edu/group/pritchardlab/structure.html. The USEPOPINFO model was 

applied in our analysis. Briefly, we chose individuals from the following reference 

populations as continental ancestors: Northern Europeans from Utah (CEU, n=112) and 

Tuscans from Italy (TSI, n=102) represented European ancestry; West Africans (YRI, 

n=140) represented African ancestry; East Asians (CHB, n=137 and JPT, n=113) 

represented East Asian ancestry, and Native Americans (Colombians, n=7, Karitiana, n=14, 

Maya, n=21, Pima, n=14 and Surui, n=8) represented Native American ancestry. Using the 

STRUCTURE algorithm, we calculated the proportion of an individual’s genome that 

originates from the assumed ancestral population. To facilitate STRCTURE efficiency and 

reproducibility, the STRUCTURE analysis procedure was repeated 10 times on 10 separate 

sets of 3,000 randomly chosen SNPs, and the final ancestry was the average of the 10 

estimates. In the input file (genotype file), the ancestral reference samples were labeled as 1 

in the POPFLAG column. In contrast, the other samples were labeled as 0. NUMLOCI was 

set to 3000 by the -L option (the number of SNPs used in each run of genetic ancestry 

estimation). A maximum of 4 ancestries (European, African, East Asian, and Native 

American) were assumed for any individual (MAXPOPS was set to 4 by the -K option). For 

each ancestry estimation run, we performed 10,000 iterations (BURNIN=10,000). Both 

USEPOPINFO and PFROMPOPFLAGONLY were set to 1.

Genetic Ancestry Assessment by LAMP: The LAMP (Sankararaman et al., 2008) 

algorithm (Release 2.5; http://lamp.icsi.berkeley.edu/lamp/) was used to estimate ancestries 
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at each SNP locus for TCGA patients. To determine the local ancestry for TCGA patients, 

the priority of sample type was blood > solid normal > tumor. LAMP-ANC was used in our 

analysis. Individuals from the following reference populations were used to derive prior 

knowledge of population-specific allele frequencies: CEU (n=112) and TSI (n=102) 

represented European ancestry; YRI (n=140) represented African ancestry; CHB (n=137) 

and JPT (n=113) represented East Asian ancestry; HGDP (Colombians, n=7; Karitiana, 

n=14; Maya, n=21; Pima, n=14; Surui, n=8) represented Native American ancestry. Starting 

estimates of a (the mixture proportion for each population) were designated according to 

STRUCTURE results. Local ancestry at SNPs across 22 autosomes inferred by LAMP for 

each individual were averaged to yield estimated proportions of global ancestry, which were 

then compared with estimates by STRUCTURE. Given that local ancestry is highly 

correlated between neighboring SNPs due to admixture linkage disequilibrium (Tang et al., 

2010), we determined chromosomal segments with unique ancestry status (or ancestry 

blocks). Briefly, adjacent SNPs having identical ancestry status in >95% of patients (AAs, 

EAAs and NAs separately) were considered within the same ancestry block. We finally 

determined 638, 81, and 3,976 genomic segments with independent ancestry status based on 

1,019 AAs, 677 EAAs, and 397 NAs, respectively. The average proportion of West African 

ancestry over all AAs in TCGA and all ancestry blocks determined was 0.786 (SD=0.010 

across all ancestry blocks). Similarly, the average proportions of East Asian ancestry over 

EAAs, and Native American ancestry over NAs were 0.945 (SD=0.047) and 0.224 

(SD=0.024), respectively. Estimation using local ancestry at SNPs yielded similar results. 

Visualization of average ancestry contributions against genomic position of ancestry blocks 

revealed an even distribution of local ancestry across genomes.

Association of AA Ancestry with Genomic Features

Adjustment for Clinical Factors: For all analyses comparing genetic characteristics 

between AA and EA patients, clinical factors were taken into account. Clinical factors 

considered included age at diagnosis, gender, pathologic stage, neoplasm histologic grade, 

smoking habits and alcohol consumption. Age (mean, 61.9 years; range, 10–90 years) was 

treated as a dichotomous variable (according to the median value specific for each cancer 

type). Gender was treated as a categorical variable (female, 52.0%; male, 48.0%). Pathologic 

stage was treated as an ordinal categorical variable (stage I, 22.4%; stage II, 22.1%; stage III 

14.5%; stage IV 8.7%). Neoplasm histologic grade was also treated as an ordinal categorical 

variable (G1/low grade, 3.2%; G2/intermediate grade, 11.9%; G3.G4/high grade, 13.1%). 

Pack-years of cigarette smoking was used as a continuous variable (mean, 45.9 pack-years; 

range, 0.02–300 pack-years) while history of cigarette smoking was treated as a categorical 

variable (nonsmokers, 7.5%; smokers, 18.8%). Alcohol consumption was treated as a 

categorical variable (NO, 3.0%; YES, 6.3%). In order to maintain the sample size, only 

factors with less than 10% missing data were considered for each cancer type.

For each cancer type, the difference between AAs and EAs with respect to confounding 

clinical factors was estimated by propensity score (Rosenbaum and Rubin, 1983) which was 

later supplied as a covariate to regression models testing the association between AA 

ancestry status (AA as 1 while EA as 0) and genetic characteristics (e.g., overall SCNA 

scores, alteration status of somatic events and expression levels). To be specific, a 
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multivariable logistic regression model was fit to regress AA ancestry status (AA as 1 while 

EA as 0) on all confounding clinical factors. The multivariable logistic regression analysis 

produced an empirically-derived formula (by weighting confounding clinical factors), which 

could best discriminate between the two racial groups. Applying this formula to the 

observed values of confounding clinical factors yielded a propensity score for each patient. 

Propensity scores range from 0 to 1 and reflect the likelihood of being AA given all 

observed clinical characteristics. Differences in propensity scores between AAs and EAs 

indicate imbalance in these clinical factors. Propensity scores were calculated in the context 

of each molecular platform separately.

SCNA Score Analysis: The GISTIC 2.0 algorithm (Mermel et al., 2011) (ftp://

ftp.broadinstitute.org/pub/GISTIC2.0/) was applied to SCNA analysis. The copy number 

profiles of TCGA were deconstructed into three different levels of SCNAs (i.e. focal, arm, 

and chromosome levels). For each tumor, GISTIC 2.0 defined a combination of focal and 

broad (>70% of a chromosomal arm) events. Broad events were further divided into arm 

events and chromosomal events. Among the broad events, all cases where both arms of a 

chromosome had the same copy number change (in value and sign) were considered as 

chromosome SCNA events, while all the others were considered as arm SCNA events. Each 

event was then classified into one of the following according to both the sign and amplitude 

of its log2 copy number

ratio: below threshold (0), amplified (1),  highly amplified (2),  deleted ( − 1) and highly deleted ( − 2):C =
2 c ≥ 1
1 0.25 ≤ c < 1
0 −0.25 ≤ c < 0.25
1 −1 ≤ c < − 0.25

−2 c < − 1

,

in which c is the actual change in copy number for each event provided by GISTIC 2.0 and 

C defines the thresholded/weighted copy number change. Adopting a modification of 

methods described by Davoli et al. (Davoli et al., 2017), SCNA scores were calculated for 

each tumor at focal, arm and chromosome levels separately as the sum of thresholded/

weighted copy number changes of all events, considering amplification and deletion equally.

S f ocal  = ∑
i ∈   f ocal 

Ci ,

Sarm = ∑
i ∈ arm

Ci ,

Schrom  = ∑
i ∈  chrom 

Ci .
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Rank-based normalization was then performed for SCNA scores at focal, arm and 

chromosome levels separately for each cancer type:

S  f ocal * =
r  f ocal 

n ,

Sarm* =
rarm

n ,

Schrom * =
r chrom 

n .

Here we denote S f ocal* , Sarm * , Schrom *  as the normalized counterparts of Sfocal, Sarm, Schrom 

while rfocal, rarm, rchrom is the rank of each patient in the cancer type to which he/she 

belongs, and n is the total number of patients in the cancer type. Normalized SCNA scores at 

focal, arm and chromosome levels were summed to represent an overall SCNA score:

S = S f ocal* + Sarm* + Schrom* .

Clinical factors were taken into account when comparing the differences in the overall 

SCNA score between AA and EA patients. SCNA scores were rank-scaling transformed as a 

conservative measure to avoid results driven by outliers. Effect size was defined as the 

coefficient of the regression model, representing the expected change in SCNA score 

percentile, given AA ancestry status (AA as 1 while EA as 0). The Benjamini and Hochberg 

(BH) procedure (Benjamini and Hochberg, 1995) was applied to control for false discovery 

rate (FDR) control. When comparing SCNA scores at different levels, arm-level and 

chromosomal-level were considered together.

Weighted Genome Instability Index (wGII) Analysis: To assess chromosomal instability, 

a weighted Genome Instability Index (wGII) was calculated based on segmentation files 

(Burrell et al., 2013). We first determined the ploidy of each tumor as the median copy 

number accounting for the length of segments. For each chromosome, GII was calculated as 

the fraction of the genome presenting aberrant copy numbers (differing more than 0.3) 

relative to the baseline ploidy. The wGII of the tumor was calculated as the mean fraction 

aberration across all 22 chromosomes (so that large chromosomes would not have greater 

effect on the score than small chromosomes).

Recurrent Focal SCNA Analysis: The recurrent focal SCNAs (peak regions) of each 

cancer type were identified by GISTIC 2.0 (Mermel et al., 2011). Significant peak regions 

were identified with q value < 0.25. Tumors which had more than 2,000 segments were 

excluded from our analysis. The confidence level used to calculate the region containing a 

driver was set to 0.95 (by the –conf option). The total number of recurrent focal SCNAs 

(called by GISTIC 2.0) varied among cancer types, with UCEC having the most (105 
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recurrent focal SCNAs) and kidney cancers having the fewest (27 and 29 recurrent focal 

SCNAs for KIRC and KIRP, respectively). An average number of 65 was observed for the 

ten cancer types included in our analysis. We carefully examined the location of each peak 

region. Peaks located entirely in centromeres and telomeres (within 1 Mb) were filtered out 

due to the poor coverage across such regions by probes of Affymetrix SNP6.0. Similar 

criteria were also applied by other published studies related to copy number analysis. A total 

of 57 peaks called by GISTIC2.0 were removed in this way, leaving an average of ~60 peaks 

subjected to subsequent analysis for each individual cancer type. Of all recurrent focal 

SCNAs (called by GISTIC 2.0), some were shared across many cancer types, while others 

were restricted to particular cancer types.

The frequency of focal SCNA events at each peak region was compared between AAs and 

EAs at both pan-cancer and cancer-specific levels, adjusting for clinical factors. At the 

cancer-specific level, in order to control the overall level of genomic disruption when 

comparing the alteration frequencies for each SCNA event between AA and EA patients, we 

performed a controlled permutation test in which both the fractions of the genome affected 

by each of the amplifications and deletions in each sample (column-wise) and the alteration 

frequency of each recurrent focal SCNA (row-wise) were maintained in the permuted data. 

We first constructed a binary matrix X ∈ Rn × m denoting the recurrent focal SCNA profile 

across all tumors for a specific cancer type, where n is the number of tumors, m is the total 

number of recurrent focal SCNAs and the (i,j)th element of the matrix X, Xij is determined 

following:

Xi j =

1 ci j ≥ 0.25 and  jth  f ocal SCNA is recurrent ampli f ied 

1 ci j ≤ − 0.25 and  jth  f ocal SCNA is recurrent deleted 

0  other 

,

in which cij is the actual change in copy number for jth recurrent focal SCNA in ith tumor. 

We then permutated the matrix 10,000 times by the function permatswap() in the R package 

vegan. During the permutation, genomic disruption level of each tumor (row-wise sum of the 

matrix) as well as each recurrent focal SCNA (column-wise sum of the matrix) were 

maintained by supplying the parameters: method=“quasiswap”, fixedmar=“both”, 

shuffle=“both” and mtype=“prab”. For each permutated recurrent focal SCNA profile, a test 

statistic for the association with AA patients relative to EA patients for each recurrent focal 

SCNA was generated by a logistic regression model, which aimed to regress AA ancestry 

status (AA as 1, while EA as 0) using the binary alteration status as the independent variable 

with the clinical factor-derived propensity score as a covariate. Subsequently, the 

significance (Z score and raw p value) of the association with AA patients relative to EA 

patients for each recurrent focal SCNA was generated by examining the position of observed 

test statistic among the distribution of all statistics generated from the permutated recurrent 

focal SCNA profiles. Finally, the Benjamini and Hochberg (BH) procedure (Benjamini and 

Hochberg, 1995) was applied to the set of raw p values to control the false discovery rate 

(FDR).
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At the pan-cancer level, the whole genome was divided into tiles by peak boundaries of all 

cancer type-specific focal events (amplification and deletion events were treated separately). 

Neighboring tiles within peak regions shared by at least two cancer types were merged for 

cross-cancer meta-analysis. Since Beroukhim et al. reported that focal SCNAs occur with a 

median length of 1.8 Mb (Beroukhim et al., 2010), we broadly considered peak regions from 

different cancer types with less than 50 kb distance as “overlapping”. In total, we obtained 

158 recurrent focal SCNAs shared by different cancer types (65 for amplification, 93 for 

deletion) for meta-analysis. For a recurrent focal SCNAs under meta-analysis, a meta-Z 

score for the association with genetic ancestry was summarized from Z scores generated on 

individual cancer types, following Stouffer’s method (Stouffer et al., 1949):Z =
∑i = 1

k wiZi

∑i = 1
k wi

2 ,

in which Zi is the Z score in cancer type i and Z is the meta-Z score. wi, the weight for 

cancer type i, was proportional to the squre root of event frequency.

Whole Genome Doubling (WGD) Analysis: The HAPSEG (Carter et al., 2011) algorithm 

(http://archive.broadinstitute.org/cancer/cga/hapseg) and ABSOLUTE (Carter et al., 2012) 

algorithm (http://archive.broadinstitute.org/cancer/cga/absolute) were used to calculate the 

purity, ploidy, and absolute DNA copy numbers of TCGA samples. First, HAPSEG was 

applied to the genotypes and segmented copy number profiles generated from Affymetrix 

SNP6 data to estimate homologue-specific copy ratios (HSCRs) for each tumor. The 

statistical algorithm BEAGLE (https://faculty.washington.edu/browning/beagle/beagle.html) 

was included for genotype imputation, with reference haplotype panel information taken 

from populations inferred by EIGENSTRAT (“CH” and “YOR” as pop code for EAAs and 

AAs respectively, otherwise “CEPH”). A paired normal sample was used if available on the 

Affymetrix SNP6.0 platform. A probabilistic criterion using Bayesian model comparison 

was applied to merge adjacent segments in order to deal with spurious breakpoints (Carter et 

al., 2011). The minimum segment size, outlier probability, and distance threshold for 

merging segments were set to 5, 0.001, and 1e-10, respectively. The output of HAPSEG was 

then passed through ABSOLUTE with the following parameters: sigma.p=0, 

max.sigma.h=0.02, min.ploidy=0.95, max.ploidy=10, max.as.seg.count=1500, 

max.non.clonal=0, max.neg.genome=0, platform=“SNP_6.0”, and 

copy_num_type=“allelic”. The output of ABSOLUTE then provided the absolute allele-

specific copy number of local DNA segments, estimates of purity and ploidy, and inference 

of whole genome doubling status in the tumor. When comparing the frequencies of WGD 

between AA and EA patients, to adjust for potential confounding effects introduced by the 

clinical factors, a propensity score was supplied as a covariate to a regression model which 

aimed to regress WGD status (0 for genomes with no WGD, 1 for genomes with one WGD 

event and 2 for genomes with more than one WGD event) using AA ancestry status (AA as 

1 while EA as0) as the independent variable. The Benjamini and Hochberg (BH) procedure 

(Benjamini and Hochberg, 1995) was applied to control for false discovery rate (FDR).

Correlation Analysis between Copy Number and mRNA Expression: To identify the 

genes whose mRNA expression levels were positively correlated with their SCNAs, the 

putative gene-level copy number was estimated by the GISTIC algorithm. Pearson 
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correlation coefficients between the predicted DNA copy number (log ratio) and mRNA 

expression level (log scaled) of each gene were calculated by R software. When assessing 

the cross-cancer association between copy number and expression, a modified version of the 

Schmidt-Hunter method of meta-analysis was applied (Field, 2001). A weighted average of 

correlation coefficients calculated on each cancer type was used to measure the cross-cancer 

effect size: r =
∑i = 1

k wiri

∑i = 1
k wi

, in which ri was calculated correlation coefficient for cancer type i, 

and wi was the weight, proportional to frequency of tumors with expression values above 

zero in cancer type i. The significance of the mean effect size is obtained by calculating a Z 

score by dividing the mean by its standard error: Z = r
SEr

, in which SEr =
SDr

k  and 

SDr =
∑i = 1

k wi ri − r 2

∑i = 1
k wi

, where k is the number of cancer types involved in meta-analysis. 

The Z score generated could be converted to a p value. Finally, correction for multiple-

hypothesis testing was performed using the Benjamini–Hochberg method.

Somatic Mutation Burden Analysis: Mutation burden was measured as the total number of 

somatic mutations present in a tumor specimen. We defined tumors of high mutation burden 

as those in the upper quartile for each cancer type. A logistic regression model was then 

applied to regress AA status (AA as 1 while EA as 0) using the binary mutation burden 

status (tumors of high mutation burden as 1, otherwise as 0) with the clinical factor-derived 

propensity score as a covariate. The Benjamini and Hochberg (BH) procedure (Benjamini 

and Hochberg, 1995) was applied to control the false discovery rate (FDR).

Somatic Mutation Signature Analysis: Single nucleotide variants (SNVs) of somatic 

mutations generated by the MuTect2 pipeline were obtained from mutation annotation files 

(MAFs), which were downloaded through the Genomic Data Commons (GDC) Data 

Transfer Tool (gdc-client_v1.2.0_Ubuntu14.04_x64) from the GDC Data Portal (https://

portal.gdc.cancer.gov/). All SNVs of somatic mutations that passed quality control were 

used for mutational signature analysis. Each mutation fell into one of the six classes of base 

substitution (C>A, C>G, C>T, T>A, T>C, and T>G). At the same time, the sequence 

context in which a mutation occurred (the bases immediately 5’ and 3’ to the mutated base, 

one of the 16 possible conditions) was also considered. Thus the mutational spectra of a 

tumor could be summarized as a vector of length 96, in which each element represented the 

mutation count at one of the 96 mutated trinucleotides. A set of consensus mutational 

signatures identified from de novo extraction across 10,250 samples was published by the 

Wellcome Trust Sanger Institute (WTSI) Mutational Signature Framework (Alexandrov et 

al., 2013). Using the set of signatures, which they defined as prevalent in specific types of 

tumors, deconstructSigs (Rosenthal et al., 2016) applied a multiple linear regression model 

with a restriction that any coefficient must not be negative to most accurately reconstruct the 

observed mutational spectra. The weights of signatures were normalized between 0 and 1, 

making the sum of normalized weights equal to 1. By default in deconstructSigs, any 

signature contribution with a weight less than 0.06 is discarded. The mutational spectra of 

the original and reconstructed samples were compared using cosine similarity. Any signature 
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that did not improve the cosine similarity by more than 0.02 was removed, and the sample 

was reanalyzed with the remaining signatures.

In the ten cancer types for analysis, we identified nine robust mutational signatures with 

sufficient contributions (more than 5% of the overall mutation tri-nucleotide profile). Age-

associated signatures (signatures 1 and 5) were identified in all ten cancer types. However, 

signature 5 contributed significantly more than signature 1 to kidney and lung cancers. A 

significantly increased prevalence of signatures linked with activation of APOBEC cytosine 

deaminases (signatures 2 and 13) was observed in BRCA, HNSC and lung cancers, 

consistent with previous reports of APOBEC mutational process as a potential driving force 

across a range of cancer types. In terms of exogenous mutational processes, we found that 

signature 4, associated with smoking-induced mutations, was significantly prevalent in lung 

cancers and HNSC. Signature 6, associated with defective DNA mismatch repair, was 

enriched in COAD and UCEC, two cancer types where the hypermutator phenotype has 

been reported. Among the ten cancer types included for analysis, signature 3, associated 

with failure of DNA double-strand break-repair by homologous recombination, was 

predominantly identified in BRCA.

When we compared the difference in the contributions of each mutational signature among 

AA and EA patients, a regression model which aimed to regress the contribution of each 

mutational signature using AA ancestry status (AA as 1 while EA as 0) as the independent 

variable was applied. The clinical factor-derived propensity score was supplied as a 

covariate. As the dependent variable, the contribution of each mutational signature to a 

specific tumor took a value in the standard unit interval (0, 1), thus the beta regression model 

proposed by Ferrari and Cribari-Neto (Ferrari and Cribari-Neto, 2004) was used. Since the 

presence of extreme values (0 and 1), the following transformation (Smithson and Verkuilen, 

2006) was applied to observed contribution percentages: y′ = y × (n − 1) + 0.5
n , where n is the 

sample size of a given cancer type.

Signatures known to be associated with certain etiologies were considered together. 

Specifically, signatures 1 and 5 showed a correlation between the number of mutations and 

age of diagnosis (Alexandrov et al., 2015), and were considered together as an age-related 

signature. Additionally, signatures 2 and 13 exhibited predominantly C > T and C > G 

mutations at TpC sites and were associated with the activity of the APOBEC cytidine 

deaminases. Simultaneously, signatures with negligible (average less than 0.05) or dominant 

(average more than 0.95) contributions for a specific cancer type were skipped by the 

regression model. The Benjamini and Hochberg (BH) procedure (Benjamini and Hochberg, 

1995) was applied to control the false discovery rate (FDR).

Recurrently Mutated Gene Analysis: Only the mutations located in gene bodies were 

included in the recurrently mutated gene analysis: i.e. the mutations located in intergenic 

regions, introns, 5’UTRs, 5’Flanks, 3’UTRs, and 3’Flanks were eliminated. Mutations in 

individual patient samples were aggregated to gene-level. We calculated the mutation 

frequency of a gene by dividing the number of patients harboring mutations in the gene body 

by the size of the cohort. For meta-analysis at the pan-cancer level, RMGs were pooled from 
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individual cancer types. Thirty RMGs with overall frequency across cancer types greater 

than 5% were kept for analysis. For each recurrently mutated gene, z value for the 

association between AA ancestry and mutation frequency generated by the regression model 

on individual cancer types were summarized using Stouffer’s method (Stouffer et al., 1949): 

Z =
∑i = 1

k wiZi

∑i = 1
k wi

2 , in which Zi is the z value in cancer type i and Z is the meta-Z score. wi, the 

weight for cancer type i was proportional to the square P root of mutation frequency. The 

meta-Z score was then converted to a p value. At the level of individual cancer types, a list 

of cancer type-specific RMGs was used. Genes with mutation frequency below 5% were 

excluded for a given cancer type. To adjust for potential confounding effects by clinical 

factors, a propensity score was supplied as a covariate to a logistic regression model which 

aimed to regress AA ancestry status (AA as 1 while EA as 0) using the binary alteration 

status as the independent variable. The Benjamini and Hochberg (BH) procedure (Benjamini 

and Hochberg, 1995) was applied to control the false discovery rate (FDR).

Quantile-Quantile (Q-Q) Plot: We used Q-Q plots to examine the distribution of p values 

at both pan-cancer and individual cancer-type levels for the analyses of recurrent focal 

SCNAs and recurrently mutated genes. Under the null hypothesis, a uniform distribution of 

p values within the interval (0, 1) would be expected. Q-Q plots were generated by the 

function stat_qq() of R’s package ggplot2. Moreover, we calculated inflation factors using 

the R/Bioconductor package BACON (van Iterson et al., 2016) to assess whether inflation 

was introduced by the analysis.

Gene Expression Analysis: Differential gene-expression analysis on individual cancer 

types was performed adjusting for potential confounding effects by clinical factors. RNA 

expression level was rank-scaling transformed as a conservative measure to avoid results 

driven by outliers. A propensity score derived from clinical factors was supplied as a 

covariate to a logistic regression model which aimed to regress AA ancestry status (AA as 1 

while EA as 0) using RNA expression level as the independent variable. z values obtained 

from individual cancer types were then summarized using Stouffer’s method (Stouffer et al., 

1949): Z =
∑i = 1

k wiZi

∑i = 1
k wi

2 , in which Zi is the z value in cancer type i and Z is the meta-Z score. 

wi, the weight for cancer type i, was proportional to the fraction of samples with expression 

value above zero for the gene. The meta-Z score was then converted to a p value. The 

Benjamini and Hochberg (BH) procedure (Benjamini and Hochberg, 1995) was applied to 

control the false discovery rate (FDR). For visualization of gene expression across different 

cancer types, a linear model was used to estimate expression adjusting for cancer type.

Gene Expression Signature Analysis: Two independent methods were used to compare 

gene expression signatures of chromosomal instability (CIN70) (Carter et al., 2006) between 

AA and EA patients. First, an output score was defined by quantification of the composite 

expression of the signature in each sample. To this end, the expression of each gene included 

in the signature was scaled across each cancer type to mean 0 and standard deviation 1. The 

output score was then computed as the average of the scaled expression value of all genes 
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for the signature and compared between AA and EA patients using a linear regression model 

with the clinical factor-derived propensity score as a covariate. The Benjamini and Hochberg 

(BH) procedure (Benjamini and Hochberg, 1995) was applied to control the false discovery 

rate (FDR). In addition, we ranked all genes according to the z value obtained from 

differential gene-expression analysis on AA versus EA, adjusting for clinical factors. 

Enrichment analysis was then performed for the signature using the R package fGSEA 

(https://bioconductor.org/packages/release/bioc/html/fgsea.html).

DATA AND SOFTWARE AVAILABILITY

Genetic ancestry assessment of each TCGA patient (n = 11,122) has been made available via 

the Cancer Genetic Ancestry Atlas (TCGAA, http://52.25.87.215/TCGAA).
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Highlights

• The genetic ancestry of TCGA patients was estimated at global and local 

levels

• The Cancer Genetic Ancestry Atlas, a publicly accessible resource, was 

developed

• The frequencies of TP53 mutations and CCNE1 amplification were higher 

among AAs

• The frequencies of the alterations in the PI3K pathway were lower among 

AAs
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Significance

The TCGA patient cohort is ethnically diverse, therefore providing a unique resource to 

understand the genomic basis ofcancer disparities across multiple cancer types. However, 

a large percentage of patients lacked self-identified race orethnicity (SIRE) information 

in TCGA. We integrated multiple computational algorithms to estimate the global and 

local genetic ancestry of each TCGA patient (n = 11,122, involving 33 cancer types from 

27 primary sites) using genome-wide genotyping data, and assigned each individual to an 

ancestral population. We have made this information available in theCancer Genetic 

Ancestry Atlas(TCGAA, http://52.25.87.215/TCGAA),a publicly accessible resource, to 

assist researchers with analyzing, visualizing, and downloading multidimensional genetic 

ancestry information for each patient in TCGA.
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Figure 1. Estimation of Genetic Ancestry across TCGA
(A) Three-dimensional visualization of genetic variation of individuals from the HapMap 

and HGDP reference populations (left) or self-identified Black patients of TCGA (right) on 

the first three principal components (PCs) calculated by EIGENSTRAT. The ellipse defines 

the 95% confidence interval for each genetically related group.

(B) Genetic variation on each PC stratified by reference populations and TCGA self-

identified racial identity. Reference populations were selected and classified according to 

geographical location and genetic origin. Boxplot lines reflect lower quartile, median, and 

upper quartile of PC scores. Whiskers extend 1.5 times the interquartile range from the 

upper and lower quartiles, with points outside representing outliers.

(C) Bar plot showing the numbers of TCGA patients categorized into each of the four 

genetic ancestry groups (EA, NA, EAA, and AA) by EIGENSTRAT across the TCGA 

cohort (left) and in the prostate cancer cohort (right). SIRE information is color-coded by 

green (White), pink (Asian), blue (Black), orange (AI/AN), and gray (unavailable). The 

proportion of SIRE is also represented with a circle plot.

(D) Individual ancestry of TCGA patients inferred by STRUCTURE. Each color represents 

one of the ancestry reference groups. Each patient is represented by a column partitioned 
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into different colors corresponding to the genetic ancestry composition. Patients are ordered 

following a hierarchical clustering by Ward’s methods on distance matrix calculated as 

cosine dissimilarity of genetic composition. SIRE and genetic ancestry categorization as 

estimated by EIGENSTRAT for each patient are shown in the same order at the bottom.

(E) Three-dimensional visualization of reference populations with three patients (TCGA-06–

0167, TCGA-PE-A5DD, and TCGA-VS-A9V2) used as examples for genetic ancestry (AA, 

EAA, and NA, respectively).

(F) Local ancestry across SNPs on 22 autosomes inferred by LAMP for these three patients. 

Each patient was treated as a diploid admixed genome. The colors represent ancestral 

reference groups, and light gray marks genomic regions unassigned because they are 

missing from SNPs shared by reference populations.

(G) Comparison of the percent of West African ancestry inferred from LAMP (based on 

distribution of local ancestry) versus STRUCTURE. TCGA patients are grouped into bins, 

each of which represents an interval of 1% range. The intensity of a bin represents the 

number of patients in the given interval group.

(H) Global (top) and local ancestry (bottom) of two unrelated admixed AA patients. To 

visualize local ancestry, SNPs on 22 autosomes are ordered according to genomic location. 

Each color represents one of the ancestry reference groups. Same color code as in (F).

(I) Genome-wide distribution of average ancestry proportion at each ancestral segment in 

AA patients of TCGA. Top, average proportion of West African ancestry plotted against 

genomic position along the 22 autosomal chromosomes (colors indicate different 

chromosomes). Bottom, average contribution from the four ancestral groups. Each color 

represents one of the ancestry reference groups. Same color code as in (F).

See also Figures S1–S3; Tables S1 and S2.
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Figure 2. The Cancer Genetic Ancestry Atlas
(A) Summary of analysis and integration strategies for genotype data. The global and local 

genetic ancestry for each patient of TCGA was estimated by three algorithms (EIGNSTRAT, 

STRUCTURE, and LAMP). Unrelated individuals from the HapMap and HGDP projects 

were used as reference populations. The genetic ancestry information was integrated with 

genomic profiles and provided through the TCGAA data portal. N, the number of cancer 

types (TCGA) or reference populations (HapMap and HGDP); n, the number of individuals.

(B) Overview of TCGAA data portal. The TCGAA database contains integrated information 

for 11,122 primary cancer specimens across 27 primary sites (33 cancer types). The global 

and local genetic ancestry information for 1,251 established cancer cell lines with a detailed 

genetic and pharmacologic characterization is also provided via a sub-database (CCGAA).

(C) The TCGAA and CCGAA provide six modules (Summary, Search, Analysis, 

Visualization, Integration, and Download) by integrating genetic ancestry, clinical 

annotations, and genomic profiles of the TCGA project.
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Figure 3. The Genetic Ancestry of TCGA Patients
(A) Summary of genetic ancestry of TCGA patients across 33 cancer types. The size of each 

circle corresponds to the number of samples of a given cancer type, and the proportion of 

each genetic ancestry is indicated by color. A color-coded square indicates that the sample 

number of a given minority genetic ancestry group is larger than 20.

(B) Summary of the patient numbers of each minority genetic ancestry group. The cancer 

types in each minority group are ranked by the number of minority patients in the group. 

The cancer types that show evidence for racial disparities are labeled by a color-coded circle 

in each minority group.

See also Tables S3 and S4.
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Figure 4. AA Genetic Ancestry and Global Somatic Copy-Number Alterations
(A) Volcano plot of log10 (p value) against effect size (AA versus EA), representing the 

difference in SCNA scores between AA and EA patients across 10 cancer types. Each circle 

corresponds to a cancer type with size proportional to median burden of SCNA: weighted 

genomic instability index at overall level, weighted sum of SCNA events at the focal level or 

the arm/chromosomal level. Significance (y axis) and effect size (x axis) were calculated by 

linear regression adjusting for a clinical factors-derived propensity score. SCNA scores were 

rank-scaling transformed as a conservative measure to avoid results driven by outliers. 

Positive effect size corresponded to elevation of SCNA score in AA patients and negative 

values to reduction. The cancer types with significantly elevated or reduced SCNA scores in 

AA patients (FDR < 10%) are shown in red or blue, respectively. Cancer types with non-

significant results are colored in gray.

(B) Comparison of the alteration frequency for recurrent focal SCNAs in AA versus EA 

patients of BRCA, UCEC, HNSC, and KIRC, respectively. Dots represent recurrent focal 

SCNAs (peak regions) identified by GISTIC. The y and x axes represent the alteration 

frequency for a peak region in AA and EA patients, respectively. The gray line indicates the 

null hypothesis (y = x) that AA patients are affected at an equal rate with EA patients at each 

peak region. A fitted line on all dots is plotted, with slope indicating the overall difference in 

alteration rate at peak regions. The fitted line is colored red if the slope is greater than one 

and blue if the slope is less than one.

(C) Histogram of Z values by logistic regression comparing alteration frequency of recurrent 

focal SCNAs between AA and EA patients, with clinical factors adjusted. For each cancer 

type, boxplot lines reflect lower quartile, median, and upper quartile of Z values. Whiskers 

extend 1.5 times the interquartile range from the upper and lower quartiles, with points 

outside representing outliers. Each point represents a recurrent focal SCNA. Boxes are 

colored red if the lower quartile is above zero and blue if the upper quartile is below zero.
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(D) Comparison of the alteration frequency of arm-level SCNAs across the whole genome in 

BRCA, UCEC, HNSC, and KIRP. An arm-level value of the log2 copy-number change ratio 

larger than 0.25 was considered an arm copy-number alteration. For each chromosome arm 

in a certain cancer type, the frequency of gain (red, above horizontal line) or loss (blue, 

under horizontal line) was calculated and plotted separately. Alteration frequency of each 

chromosome arm in a given cancer type is plotted as lines or filled bars for AA or EA 

patients, respectively.

(E) Frequency of genome doubling stratified by genetic ancestry (AA versus EA) in each 

cancer type. The cancer types with significantly different odds of WGD event in AA patients 

(FDR < 10%) are marked with an asterisk.

See also Figure S3.
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Figure 5. AA Genetic Ancestry and Focal Copy-Number Alterations
(A) Three recurrent focal SCNAs with significantly different alteration frequencies between 

AA and EA patients were identified by a pan-cancer meta-analysis across 10 cancer types. 

The top dot plots show the significance (y axis) of the meta-analysis. Dots represent 

recurrent focal SCNAs (peak regions) identified in at least two cancer types, ordered by 

genomic location. The red or blue dots represent the recurrent focal SCNAs identified to be 

altered at significantly different rates in AA patients compared with EA patients (with FDR 

< 10%) by a pan-cancer meta-analysis across ten cancer types (red represent amplification 

and blue represent deletions, respectively). The bottom heatmaps show schematic 

boundaries of peak regions identified by GISTIC in each cancer type. Cancer types are 

clustered by similarity of independent significance upon analysis on the cancer-specific level 

by controlled permutation test. Significance for each recurrent focal SCNA on the cancer-

specific level is colored with intensity (a higher-intensity color represents a more significant 

difference; orange represents higher alteration rate in AA patients and green represents 

lower alteration rate in AA patients, respectively).

(B) Simplified workflow of the computational approaches used to identify recurrent focal 

SCNAs with significantly different alteration frequencies between AA and EA patients (top), 

and genes potentially contributing to disparity through SCNAs (bottom).

(C) Diagram shows the number of candidate genes during the stepwise filtering depicted in 

(B).

(D) Word cloud of the genes potentially contributing to disparity through SCNAs identified 

by pan-cancer analysis. The size of the font indicates the significance (p value on a negative 

log scale) of differential expression between AAs and EAs after adjusting for clinical 
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factors. Gray indicates the function of the gene in cancer is unknown and the intensity of red 

color indicates prediction score of gene function in cancer.

(E and F) Violin plots showing the cancer type-adjusted RNA expression levels of CCNE1 
(E) and VPS9D1-AS1 (F) across given cancer types, with samples grouped based on gene 

copy number (left) or genetic ancestry (right). The central line within each violin represents 

the median value. Correlations between RNA expression and predicted gene copy numbers 

(left) were calculated by meta-analysis. Tests for differential expression between AA and EA 

tumors (right) were calculated by meta-analysis adjusting for clinical factors.

See also Figure S3; Tables S5–S8.
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Figure 6. AA Genetic Ancestry and Somatic Mutation
(A) Summary of pan-cancer meta-analysis on recurrently mutated genes between AA and 

EA patients across 10 cancer types. The top bar plot shows the significance (y axis) of the 

meta-analysis for each recurrently mutated gene. Red and blue bars represent the genes 

whose mutation frequencies are significantly higher and lower in AAs compared with EA, 

respectively. The middle dot plot shows independent differences in mutation frequency in 

each cancer type. The intensity of color corresponds to effect size of AA ancestry compared 

with EAs (red and blue indicate higher and lower frequencies in AA, respectively). The size 

corresponds to overall mutation frequency of a given gene in a specific cancer type. Cancer 

types are ordered by similarity between statistical measures (Z score based) observed at the 

individual cancer type level and at the pan-cancer level. The bottom bar plot shows the 

mutation frequency of the recurrently mutated genes across 10 cancer types.

(B) Summary of the cancer type-specific analysis on recurrently mutated genes between AA 

and EA patients in ten cancer types. The volcano plot of −log10 (p value) against effect size 

(AA versus EA) represents the difference in mutation frequency between AA and EA 

patients for a given cancer type after adjusting for clinical factors. Each circle corresponds to 

a gene tested in a specific cancer type with size proportional to overall mutation frequency. 

Red and blue circles represent the genes whose mutation frequencies are significantly higher 

and lower in AAs compared with EA, respectively.

See also Tables S9, S10, and S11.
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Figure 7. Integrated Analysis of Genomic Alterations on Patients with AA Genetic Ancestry
(A) Chromosomal instability and associated genes in AA patients. The upper dot plot shows 

the overall SCNA score and genomic alterations (TP53 mutation and CCNE1 amplification) 

for each cancer type. The intensity of circles represents the relative difference between AA 

and EA patients in the individual cancer type, with the size proportional to the significance 

of the association. A circle with an outline indicates a statistically significant difference 

(FDR < 0.1). Red, increased in AA; blue, decreased in AA. The heatmap at the bottom 

shows normalized significance levels (−log[p value]) for the association between AA 

ancestry and the expression of 70 genes correlated with chromosomal instability (CIN70 

signature). For all statistical tests, clinical factors were considered.

(B) PI3K activity and associated genes in AA patients. The dot plot at the top shows the 

PI3K score and genomic alterations (PIK3CA, PIK3R1, and PTEN mutations; PTEN 
deletion) for each cancer type. The intensity of circle represents the relative difference 

between AA and EA patients in the individual cancer type, with the size proportional to the 

significance of the association. A circle with an outline indicates a statistically significant 

difference (FDR < 0.1). Red, increased in AA; blue, decreased in AA. The heatmap at the 

bottom shows normalized significance levels (−log[p value]) for the association between AA 

ancestry and expression of proteins (reverse-phase protein array [RPPA]) correlated with 

PI3K activity. For all statistical tests, clinical factors were considered.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

TCGA Affymetrix SNP6.0 
array data

The Cancer Genomics Cloud http://www.cancergenomicscloud.org/

TCGA whole exome 
sequencing data

Genomic Data Commons https://portal.gdc.cancer.gov/

TCGA RNA sequencing data Genomic Data Commons https://portal.gdc.cancer.gov/

TCGA reverse-phase protein 
array (RPPA) data

The Cancer Proteome Atlas
(http://tcpaportal.org/)

http://tcpaportal.org/tcpa/index.html

TCGA clinical data Genomic Data Commons https://portal.gdc.cancer.gov/

HapMap genotype data International HapMap Consortium
(ftp://ftp.ncbi.nlm.nih.gov/hapmap/)

ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2010–05_phaseIII/hapmap_format/polymorphic/

HGDP genotype data The Human Genome Diversity
Project (http://www.hagsc.org/
hgdp/)

http://www.hagsc.org/hgdp/files.html

1000 Genomes project data, 
phase 3

1000 Genomes project (http://
www.internationalgenome.org/)

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

Cancer Cell Line 
Encyclopedia

The Broad Institute https://portals.broadinstitute.org/ccle

The Genomics of Drug 
Sensitivity in Cancer
Project

The Wellcome Sanger Institute https://www.cancerrxgene.org/

Software and Algorithms

EIGENSTRAT 6.1.4 (Price et al., 2006) https://github.com/DReichLab/EIG

STRUCTURE 2.3.4 (Pritchard et al., 2000) http://web.stanford.edu/group/pritchardlab/structure.html

LAMP 2.5 (Sankararaman et al., 2008) http://lamp.icsi.berkeley.edu/lamp/

GISTIC 2.0 (Mermel et al., 2011) ftp://ftp.broadinstitute.org/pub/GISTIC2.0/

ABSOLUTE 1.0.6 (Carter et al., 2012) http://archive.broadinstitute.org/cancer/cga/absolute

HAPSEG 1.1.1 (Carter et al., 2011) http://archive.broadinstitute.org/cancer/cga/hapseg

deconstructSigs (Rosenthal et al., 2016) https://github.com/raerose01/deconstructSigs

R R https://www.r-project.org/about.html

HardyWeinberg R package https://cran.r-project.org/web/packages/HardyWeinberg/index.html

XML R package https://cran.r-project.org/web/packages/XML/index.html

vegan R package https://cran.r-project.org/web/packages/vegan/index.html

fGSEA R package https://bioconductor.org/packages/release/bioc/html/fgsea.html

ggplot2 R package https://cran.r-project.org/web/packages/ggplot2/index.html

GDC Data Transfer Tool Genomic Data Commons https://gdc.cancer.gov/access-data/gdc-data-transfer-tool

Other

RPPA features to PI3K 
pathway

(Zhang etal., 2017) N/A

CIN70 signature (Carter et al., 2006) N/A

Relatedness among HapMap 
individuals

(Pemberton et al., 2010) N/A

Relatedness among HGDP 
individuals

(Rosenberg, 2006) N/A

TCGAA This paper http://52.25.87.215/TCGAA
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REAGENT or RESOURCE SOURCE IDENTIFIER
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