Peer.

Submitted 14 May 2018
Accepted 10 December 2018
Published 25 January 2019

Corresponding author
Michael F. Gensheimer,
mgens@stanford.edu

Academic editor
Jun Pang

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peer;j.6257

© Copyright

2019 Gensheimer and Narasimhan

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A scalable discrete-time survival model
for neural networks

Michael F. Gensheimer' and Balasubramanian Narasimhan?

! Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America
2 Department of Statistics, Stanford University, Stanford, CA, United States of America

ABSTRACT

There is currently great interest in applying neural networks to prediction tasks in

medicine. It is important for predictive models to be able to use survival data, where
each patient has a known follow-up time and event/censoring indicator. This avoids
information loss when training the model and enables generation of predicted survival
curves. In this paper, we describe a discrete-time survival model that is designed to be
used with neural networks, which we refer to as Nnet-survival. The model is trained
with the maximum likelihood method using mini-batch stochastic gradient descent

(SGD). The use of SGD enables rapid convergence and application to large datasets

that do not fit in memory. The model is flexible, so that the baseline hazard rate and
the effect of the input data on hazard probability can vary with follow-up time. It

has been implemented in the Keras deep learning framework, and source code for the
model and several examples is available online. We demonstrate the performance of
the model on both simulated and real data and compare it to existing models Cox-nnet
and Deepsurv.

Subjects Data Mining and Machine Learning, Data Science
Keywords Survival analysis, Neural networks, Machine learning

INTRODUCTION

With the popularization of deep learning and the increasing size of medical datasets, there
has been increasing interest in the use of machine learning to improve medical care. Several
recent papers have described use of neural network or other machine learning techniques
to predict future clinical outcomes (Rajkomar et al., 2018; Kwong et al., 2017; Miotto et al.,
20165 Avati et al., 2017). The outcome measure is generally evaluated at one follow-up time
point, and there is often little discussion of how to deal with censored data (e.g., patients
lost to follow-up before the follow-up time point). This is not ideal, as information about
censored patients is lost and the model would need to be re-trained to make predictions at
different time points. Because of these issues, modern predictive models generally use Cox
proportional hazards regression or a parametric survival model instead of simpler methods
such as logistic regression that discard time-to-event information (Cooney, Dudina ¢
Graham, 2009).

Several authors have described solutions for modeling time-to-event data with neural
networks. These are generally adaptations of linear models such as the Cox proportional
hazards model (Cox, 1972). Approaches include a discrete-time survival model with

How to cite this article Gensheimer MF, Narasimhan B. 2019. A scalable discrete-time survival model for neural networks. Peer] 7:¢6257
http://doi.org/10.7717/peerj.6257

https://peerj.com
mailto:mgens@stanford.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.6257
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.6257

Peer

a heuristic loss function (Brown, Branford ¢ Moran, 1997), a parametric model with
predicted survival time having a Weibull distribution (Martinsson, 2016), and adaptations
of the Cox proportional hazards model (Faraggi ¢ Simon, 1995; Ching, Zhu ¢ Garmire,
2018; Katzman et al., 2018). Most of the models assume proportional hazards (the effect
of each predictor variable is the same at all values of follow-up time). This is not a very
realistic assumption for most clinical situations. In the past, when models were typically
trained using dozens or hundreds of patients, it was often not possible to demonstrate
violation of proportional hazards. However, in the modern era of datasets of thousands or
millions of patients, it will usually be possible to demonstrate violation of the proportional
hazards assumption, either by plotting residuals or with a statistical test.

In this paper, we describe Nnet-survival, a discrete-time survival model that is
theoretically justified, naturally deals with non-proportional hazards, and is trained rapidly
by mini-batch gradient descent. It may be useful in several situations, especially when
non-proportional hazards are known to be present, for very large datasets that do not fit in
memory, or when predictor data is a good fit for a neural network approach (such as image
or text data). We have published source code for the use of the model with the Keras deep
learning library, which is available at http://github.com/MGensheimer/nnet-survival.

MATERIALS & METHODS

Relationship to prior work
In this section we describe prior approaches to the problem and illustrate some pitfalls that
are addressed with our model.

Several authors have adapted the Cox proportional hazards model to neural
networks (Faraggi ¢ Simon, 1995; Ching, Zhu ¢ Garmire, 2018; Katzman et al., 2018).
This is potentially attractive since the Cox model has been shown to be very useful and
is familiar to most medical researchers. One issue with this approach is that the partial
likelihood for each individual depends not only on the model output for that individual,
but also on the output for all individuals with longer survival. This would preclude the use
of stochastic gradient descent (SGD) since with SGD only a small number of individuals
are visible to the model at a time. Therefore, the entire dataset would need to be used for
each gradient descent step. This is undesirable because it slows down convergence, cannot
be applied to datasets that do not fit into memory (“out-of-core learning”), and could
result in getting stuck in a local minimum of the loss function (Bottou, 1991).

An alternative approach that avoids the above issue is to use a fully parametric survival
model, such as a discrete time model. See Section 7.5 of Rodriguez (2016) for a brief
overview of discrete time survival models. Brown et al. proposed a discrete-time survival
model using neural networks (Brown, Branford ¢ Moran, 1997). This model can easily be
trained with SGD, which is attractive. Follow-up time is divided into a set of fixed intervals.
For each time interval the conditional hazard probability is estimated: the probability of
failure in the interval, given that the individual has survived at least to the beginning of the
interval. For each time interval j, the neural network loss is defined as (adapted from Eq.

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 219

https://peerj.com
http://github.com/MGensheimer/nnet-survival
http://dx.doi.org/10.7717/peerj.6257

Peer

17 in Brown, Branford & Moran 1997):

d; rj

1 i i\2 1 : i\2

52—k D7 (k) (1)
=1 l:d]'+l

where h;: is the hazard probability for individual i during time interval j, there are r;
individuals “in view” during the interval j (i.e., have not experienced failure or censoring
before the beginning of the interval) and the first d; of them suffer a failure during this
interval. The overall loss function is the sum of the losses for each time interval.

The authors note that in the case of a null model with no predictor variables, minimizing
the loss in Eq. (1) results in an estimate of the hazard probabilities that equals the Kaplan—
Meier maximum likelihood estimate: h] = % While this is true, the equivalence does not
hold once each individual’s hazard depends on the value of predictor variables.

A more theoretically justified loss function, which we use in our model, would be
the negative of the log likelihood function of a statistical survival model. This likelihood
function has been well studied for discrete-time survival models in a non-deep learning
context. Adapting Eq. (3.4) from Cox ¢ Oakes (1984) and Eq. (2.17) from Singer ¢» Willett
(1993), the contribution of time interval j to the overall log likelihood is:

d; 7j
> In(h)+ > In(1—H). (2)
i=1 i=d;j+1

This is similar but not identical to Eq. (1) and can be shown to produce different values
of the model parameters for anything more complex than the null model (for an example,
see the file brown1997_loss_function_example.md in our GitHub repository).

The proposed model using Eq. (2) naturally incorporates time-varying baseline hazard
rate and non-proportional hazards if each time interval output node is fully connected to
the last hidden layer’s neurons. The neural network has n-dimensional output where 7 is
the number of time intervals, giving a separate hazard rate for each time interval.

There are several attractive features of the proposed model:

1. Itis theoretically justified and fits into the established literature on survival modeling

2. Theloss function depends only on the information contained in the current mini-batch,
which enables rapid training with mini-batch SGD and application to arbitrary-size
datasets

3. It is flexible and can be adapted to specific situations. For instance, for small sample
size where we wish to minimize the number of neural network parameters, it is easy
to incorporate a proportional hazards constraint so that the effect of the input data on
the hazard function does not vary with follow-up time.

Model formulation

Follow-up time is divided into n intervals which are left-closed and right-open. Let
[t1,%2,...,1,] be the times at the upper limit of each interval. The conditional hazard
probability h; is defined as the probability of failure in interval j, given that the individual
has survived at least to the beginning of the interval. h; can vary per individual according to

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 3119

https://peerj.com
http://dx.doi.org/10.7717/peerj.6257

Peer

the input and the weights of the neural network. The predicted probability of an individual
surviving at least to the end of interval j is:
J
si=][a—h. (3)
i=1

The model likelihood can be divided either by time interval as in Eq. (2), or by individual.
For a neural network trained with mini-batches of individuals, the latter formulation
translates more easily into computer code. For an individual with failure during interval
j (i.e., uncensored), the likelihood is the probability of surviving through intervals 1
through j— 1, multiplied by the probability of failing during interval j:

j—1
lik=h [T —h) (4)
i=1
j—1
loglik =In(hj)+ Y _In(1—hy). (5)

i=1
For a censored individual with a censoring time . which falls in the second half of
interval j — 1 or the first half of interval j (i.e., %(tj_z +to1) St < %(tj_l +1)), the
likelihood is the probability of surviving through intervals 1 through j — I:

j—1
lik=]Ja—m) (6)
i=1
j—1
loglik =) "In(1—h). (7)

=1

It can be seen that individuals with a censoring time in the second half of an interval are
given “credit” for surviving that interval (without this, there would be a downward bias
on the survival estimates (Brown, Branford ¢ Moran, 1997).

The full log likelihood of the observed data is the sum of the log likelihoods for each
individual. In the neural network survival model, we wish to maximize the likelihood, so
we set the loss to equal the negative log likelihood and minimize the loss by by stochastic
gradient descent or mini-batch gradient descent.

Determination of hazard probability
For each time interval, the hazard probability will vary according to the input data. We
have implemented two approaches to mapping input data to hazard probabilities:

With the flexible version, the final hidden layer (e.g., the “Max pooling” layer in Fig. 1)
is densely connected to the output layer (the “Fully connected” layer in Fig. 1). The output
layer has n neurons, where # is the number of time intervals. The log odds of surviving each
time interval is equal to the dot product of the incoming values and the kernel weights,
plus the bias weight. Then, using a sigmoid activation function, log odds are converted to
the conditional probability of surviving this interval. With this approach, both the baseline

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 4/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.6257

Peer

hazard rate and the effect of input data on the hazard rate can vary freely with follow-up
time. This approach is most appropriate for larger datasets or when the proportional
hazards assumption is known to be violated.

With the proportional hazards version, the baseline hazard probability is allowed to
vary freely with time interval, but the effect of input data on hazard rate does not vary with
follow-up time (if a certain combination of input data results in a high rate of death in
the early follow-up period, it will also result in a high rate of death in the late follow-up
period). This is implemented by setting the final hidden layer to have a single neuron, and
densely connecting the prior hidden layer to the final hidden layer without any bias weights.
The final hidden layer neuron value is X 8, where X is the value of the prior hidden layer
neurons and f is the weights between the prior hidden layer and the final hidden layer. The
X B notation is meant to echo that of the “linear predictor” in standard survival analysis,
for instance section 18.2 of Harrell Jr (2015). The conditional probability of surviving the
interval 7 is (adapted from Eq. (18.13) in Harrell Jr (2015):

1— by = (1= hpgge) P EP) (8)

where hyp, is the baseline hazard probability for this time interval. The hp,q values are
estimated as part of the neural network by training a set of n weights, which are each
transformed by a sigmoid function to convert baseline log odds of surviving each time
interval into baseline probability of survival. These sigmoid-transformed weights, along
with the final hidden layer value, contribute to the n-dimensional output layer according
to Eq. (8). See class PropHazards in file nnet_survival.py in the GitHub repository. The
proportional hazards approach is useful for small datasets where one wishes to reduce
overfitting by minimizing the number of parameters to optimize. It also makes it easier to
interpret the reasons for the model’s predictions. This version is very similar to a traditional
proportional hazards discrete-time survival model using a complementary log-log link
(see Rodriguez (2016), section 7.5.3: “Discrete Survival and the C-Log-Log Link”).

Implementation

We implemented Nnet-survival in the Python language, using the Keras library with
Tensorflow backend (code at http://github.com/MGensheimer/nnet-survival). A custom
loss function is used which represents the negative log likelihood of the survival model. The
output of the neural network is an #-dimensional vector survp..4, where n is the number of
time intervals. Each element represents the predicted conditional probability of surviving
that time interval, or 1 —h;. An individual’s predicted probability of surviving through the
end of time interval j is given by Eq. (3). An example neural network architecture using
the “flexible” version of the discrete time survival model is shown in Fig. 1.

Each individual used to train the model has a known failure/censoring time ¢t and
censoring indicator, which are transformed into a vector format for use in the model.
Vector survs has length 7 and represents the time intervals the individual has survived
through; vector survy also has length #n and represents the time interval during which
failure occurred, if it occurred.

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 519

https://peerj.com
http://github.com/MGensheimer/nnet-survival
http://dx.doi.org/10.7717/peerj.6257

Peer

A

Input: 128x1 feature vector
Output: Survival probability with time intervals (in days):
[0,10), [10,20), [20,30), [30,40), [40,50)

Input (

128x1)

\

y

Conv (2

0 filters)

Output: 64x20

\

y

Max p

ooling

Output: 20x1

A

y

Fully co

nnected

Output: 5x1 = conditional log odds of
surviving each time interval

A

y

e.g. [1.09, 1.09, 0, 1.09, 1.09]

Sigmoid activation

Output: 5x1 = conditional probability of
surviving each time interval

e.g. [0.75, 0.75, 0.5, 0.75, 0.75]

Predicted survival

1.00
]

Proportion surviving
0.00 0.25 0.50 0.75

I
10

I I I I
20 30 40 50

Days

Figure 1 Example neural network architecture (A) and output for one individual (B). Layers in blue

are unique to the example neural network; layers in green are common to all neural networks that use the
“flexible” version of our survival model.

Full-size Gal DOIL: 10.7717/peer;j.6257/fig-1

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257

6/19

https://peerj.com
https://doi.org/10.7717/peerj.6257/fig-1
http://dx.doi.org/10.7717/peerj.6257

Peer

For individuals with failure (uncensored), for time interval j:

. 1, ift>g
_ = 9
survs(j) [0, otherwise ®)
surve(j) = L it =t <t (10)
)= 0, otherwise
For censored individuals:
. 1
s =14 1 HEE Rl) (11)
0, otherwise
and
surve(j) =0. (12)
The log likelihood for each individual is:
" [In(14 survs(i) - (survppeq (i) — 1)
loglik =" (’ e > (13)

i \+In (1 — survy (i) - survp,ed(i))

which is a restatement of Eqs. (5) and (7) to work with the vector encoding of actual and
predicted survival.

The loss function is the negative of Eq. (13). The loss function is minimized using
gradient descent; Keras performs automatic differentiation of the loss function in order to
calculate the gradient. In our experiments, using the custom loss function extended running
time very slightly compared to standard loss functions such as mean squared error.

The cut-points for the time intervals can be varied according to the specific application.
In most of our experiments we have used 15-40 time intervals, spaced out more widely
with increasing follow-up time. This ensures that around the same number of survival
events fall into each time interval, which may help ensure reliable estimates for all time
intervals. Other authors have suggested using at least ten time intervals to avoid bias in the
survival estimates (Breslow ¢ Crowley, 1974). In our experiments we have found that the
model’s performance is fairly robust to choice of specific cut-points.

Performance evaluation: simulated data
We ran several experiments with simulated data to assess correctness of the model. The
code is available in nnet_survival_examples.py in the GitHub repository.

Simple model with one predictor variable

We first tested a very simple survival model with one binary predictor variable. Five
thousand simulated patients were created. Half of the patients had predictor variable value
of 0 and were the poor prognosis patients. For this group, survival times were drawn from
an exponential distribution with median survival of 200 days. The other half of the patients
had predictor variable value of 1 and were the good prognosis patients. Their survival

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 719

https://peerj.com
http://dx.doi.org/10.7717/peerj.6257

Peer

times were drawn from an exponential distribution with median survival of 400 days. For
both groups, some patients were censored; censoring time was drawn from an exponential
distribution with median value / half-life of 400 days. This survival model used the flexible
version of nnet-survival (i.e., non-proportional hazards) with no hidden layers and 39 time
intervals spanning the range of 0 to 1,780 days.

To evaluate the correctness of this model, we created calibration curves: we plotted and
compared actual vs. model-predicted survival curves for the two groups. For each of the
two groups, a Kaplan—Meier survival curve was plotted to show actual survival. Then, for
each group, a model-predicted survival curve was generated: for each follow-up time point,
the average of predicted survival for all patients in that group was calculated and displayed.

Optimal width of time intervals

We investigated whether model performance depended on time interval width. Similarly to
the prior example, we simulated a population of 5,000 patients with one binary predictor
variable. Survival time distribution was generated using a Weibull distribution, with scale
parameter depending on the predictor variable value. Median survival time for the overall
population was 182 days. We used the flexible version of nnet-survival to predict survival
time. Four options for time intervals were evaluated:

e Uniform intervals with width of 1 year

e Uniform intervals with width of 1 month

e Uniform intervals with width of 1 week

e Increasing width of intervals with increasing follow-up time, with half-life for interval
width of 1 year. Specifically, the time interval borders were placed at: W for x

in [0.0,0.05,0.10,...,0.95]

Discrimination performance was assessed with Harrell’s C-index.

Convolutional neural network for MNIST dataset
One area in which neural networks have shown clear superiority to other model types is
in analysis of 2D image data, for which convolutional neural networks provide state-of-
the-art results. We wished to demonstrate use of a convolutional neural network as part
of a survival model. For this, we used the MNIST dataset (Lecun et al., 1998). This dataset
includes images of 70,000 handwritten digits with gold-standard labels, divided into a
training set of 60,000 digits and a test set of 10,000 digits. We created a simulated scenario
in which each image corresponds to one patient, and patients with higher digits tend to
have shorter survival. The images could be imagined as an X-ray images of tumors, with
higher digits representing larger, more deadly tumors. The goal of the model is to predict
survival distribution for each test set patient.

We used only images with digits 0 through 4, leaving 30,596 training set images and
5,139 test set images. Image size was 28 x 28 pixels. Patients’ survival times were drawn from
an exponential distribution with scale parameter depending on digit. The scale parameter
(with units of days) was set to

365-exp(—0.9- digit)

In(2) (14)

B=

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 8/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.6257

Peer

—> median survival 365 days

—>» median survival 148 days

—> median survival 25 days

—>» median survival 10 days

0 0 2
PV
A A 2 | —> medansurival 60 days
3 3 3
¢ 4 4

Figure 2 MNIST dataset construction. Images of handwritten digits 0—4 were used as predictor of sur-
vival time (one image per patient). Actual survival time was generated from an exponential distribution
with scale depending on the digit. Lower digits have longer median survival.

Full-size Gl DOL: 10.7717/peerj.6257/fig-2

with the probability density function being:

f(t;%)= %exp(—é» (15)

Therefore, median survival ranged from 365 days for digit 0 down to 10 days for digit 4.
The setup is illustrated in Fig. 2.

A five-layer neural network architecture was used, with two convolutional layers of
kernel size 3 x 3, followed by a max-pooling layer, a fully connected layer of size 4 neurons,
then the output layer. The flexible version of the nnet-survival model was used, so that non-
proportional hazards were possible. The Adam optimizer was used. Model performance
was evaluated using the C-index to measure discrimination, and calibration curves (actual
vs. predicted survival curves) to evaluate calibration. As the Nnet-survival model is flexible
and the predicted survival curve for each patient can have a different shape, there is no
unique ordering of patients by prognosis (i.e., when comparing two patients, one could
have a higher probability of 1-year survival but the other could have a higher probability
of 2-year survival). Therefore, to calculate C-index, the model’s predicted probability of
1-year survival was used to rank the patients.

Performance evaluation: SUPPORT study (real data)
We evaluated the performance of the Nnet-survival model and other similar models using
real patient data. We wished to use a publicly available dataset with time-to-event data
on a large number of patients. With a large sample size, we could use data splitting to
formally test model performance, and would also be able to evaluate for violations of the
proportional hazards assumption of the standard Cox proportional hazards model.

For the real dataset, we chose to use the Study to Understand Prognoses and Preferences
for Outcomes and Risks of Treatments (SUPPORT) (Knaus et al., 1995). In this multicenter
study, 9,105 hospitalized patients had detailed data recorded including diagnoses,

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 9/19

https://peerj.com
https://doi.org/10.7717/peerj.6257/fig-2
http://dx.doi.org/10.7717/peerj.6257

Peer

laboratory values, follow-up time and vital status. The dataset is publicly available on
the Vanderbilt Biostatistics web site. The task for the survival models was to predict each
patient’s life expectancy with good discrimination and calibration.

Some patients had missing values for one or more predictor variables; in this case we
imputed the missing data by using the median value in the sample, or for laboratory values,
using the recommended default value listed on the Vanderbilt Biostatistics web site. If
more than 4,000 patients were missing a value for the variable, that variable was excluded
from analysis. After processing, there were 39 predictor variables. Patients were divided
with a 70%/30% split into training and test sets. The processed dataset is available at our
project’s GitHub page.

We tested four models on the SUPPORT study dataset:

e Our model, Nnet-survival (flexible version, so that non-proportional hazards were
possible)

e Cox-nnet (Ching, Zhu ¢ Garmire, 2018)

e Deepsurv (Katzman et al., 2018)

e Standard Cox proportional hazards model

All three neural network models used a simple multilayer perceptron architecture with
a single hidden layer. The Cox-nnet default parameters specify a hidden layer size of 7
neurons when input dimension is 39, which we felt to be a reasonable choice, so a hidden
layer size of 7 was used for the three models. For all three neural network models, L2
regularization was used to help prevent overfitting. The regularization strength parameter
was chosen using 10-fold cross validation on the training set, using log likelihood as the
performance metric. No regularization was used for the standard Cox proportional hazards
model. For Nnet-survival, 19 follow-up time intervals were used, extending out to 6 years
(around the maximum follow-up time of the SUPPORT study), with larger spacing for
later intervals due to the decreased density of failure events with increasing follow-up time.
The RMSprop optimizer was used for Nnet-survival.

As Cox-nnet and Deepsurv only output a prognostic index for each patient, not a
predicted survival curve, we generated predicted survival curves for these methods by using
the Breslow method to generate a baseline hazard function (Breslow, 1974).

To evaluate the models’ discrimination performance, we used Harrell’s C-index to assess
discrimination. To calculate C-index for Nnet-survival, the model’s predicted probability
of 1-year survival was used to rank the patients.

To evaluate model calibration, we used a published adaptation of the Brier score for
censored data (Graf et al., 1999). This was implemented using the ipred R package. We also
created calibration plots for specific follow-up times (Royston & Altman, 2013).

We tested the running time of each method by fitting each model using a range of
dataset sizes. Simulated datasets ranging from 1,000 to 1,000,000 patients were created by
sampling from the 9,105 SUPPORT study patients with replacement. Each combination
of model and sample size was run three times and the results were averaged. Each model
was trained for 1,000 epochs. An Ubuntu Linux server with 3.6 GHz Intel Xeon E5-1650

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 10/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.6257

Peer

Simulated data, one covariate

1.000

0.875 A1

0.750 A

0.625 A

0.500 A

0.375 A1

0.250 A

0.125 A1

0-000 T T T T T T T rl
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Follow-up time (days)

Figure 3 Simple survival model with one predictor variable. 5,000 simulated patients with exponen-
tial survival distribution. Half of patients have predictor variable value of 0 with median survival of 200
days; the other half have value of 1 with median survival of 400 days. Actual survival for the two groups is
shown in black (Kaplan—Meier curves). The average model predictions for the two groups are shown in
blue and red, respectively. Model predictions correspond well to actual survival.

Full-size & DOI: 10.7717/peerj.6257/fig-3

CPUs and 32GB of RAM was used. The models were constrained to run on one CPU
core. Python version 3.5.2 was used for the Nnet-survival, Cox-nnet, and standard Cox
proportional hazards models; Python version 2.7.12 was used for Deepsurv. R version 3.4.3
was used to calculate Brier scores (R Core Team, 2017). The code for the SUPPORT study
analysis is available in support_study.py in the GitHub repository.

RESULTS

Simulated data
Simple model with one predictor variable

We tested a simple survival model with one binary predictor variable and no hidden layers.
The calibration curves for the two groups of patients are shown in Fig. 3. It can be seen
that calibration is excellent: the actual and predicted survival curves are superimposed.
Model convergence was found to be reliable. The model was optimized repeatedly with
different random starting weights and converged to very similar final loss/likelihood values.

Optimal width of time intervals

The discrimination performance of the survival model was robust to various choices of
time interval width and configuration (constant width, or increasing width with increasing
follow-up time). For each of the four time interval options, discrimination performance
was identical with C-index of 0.66.

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 11/19

https://peerj.com
https://doi.org/10.7717/peerj.6257/fig-3
http://dx.doi.org/10.7717/peerj.6257

Peer

Table 1 Performance of four models on SUPPORT study test set (n = 2,732). Discrimination assessed
with C-index. Calibration assessed with modified Brier score (Graf et al., 1999) at three specific follow-up

times.
Model C-index Brier score: Brier score: Brier score:
6 months 1 year 3 years
Nnet-survival 0.732 0.181 0.184 0.177
Cox-nnet 0.735 0.183 0.185 0.177
Deepsurv 0.730 0.184 0.187 0.179
Cox PH 0.734 0.183 0.186 0.178

Convolutional neural network for MNIST dataset
We used the MNIST dataset of handwritten digits to simulate a scenario where each patient
has an X-ray image of a tumor, and survival time distribution depends on the appearance of
the tumor. Digits 0 through 4 were used, with lower digits having longer median survival.
The model’s task was to accurately predict survival time for each patient. There were 30,596
images in the training set used to train the model’s weights, and 5,139 in the test set used
to evaluate model performance.

The Nnet-survival model produced good performance. C-index for the test set was
0.713, compared to 0.770 for a “perfect” model that used the true digit as the predictor
variable. Calibration was excellent, as seen in Fig. 4.

Support study (real data)
Four survival models (Nnet-survival, Cox-nnet, Deepsurv, and a standard Cox proportional
hazards model) were tested using the SUPPORT study dataset of 9,105 hospitalized patients.

We found that several predictor variables violated the proportional hazards assumption
of the standard Cox model, with an example given in Fig. 5. This provides an opportunity
for our Nnet-survival model to have improved calibration compared to the other three
models.

All models were trained/fit using the 70% of patients in the training set (n = 6,373).
Then, performance was measured using the remaining 30% of patients in the test set
(n=2,732). Discrimination performance was very similar for all models, with test set
C-index around 0.73 (Table 1). Table 1 also shows calibration performance as measured
by the Brier score (lower is better). Nnet-survival had the best calibration performance at
all three follow-up time points, though the differences were fairly small. Calibration was
also assessed visually using calibration plots (Fig. 6). Our Nnet-survival model appeared
to have the best calibration at the 6 month and 1 year time points, with Cox-nnet and the
standard Cox model tending to under-predict survival probability for the best-prognosis
patients.

We compared running time of the three neural network models for various training
set sizes, with results shown in Fig. 7. Simulated datasets of size 1,000 to 1,000,000 were
created by sampling from the SUPPORT study dataset with replacement. Each model was
run for 1,000 epochs. For sample sizes of 100,000 and higher, the Cox-nnet model ran out
of memory on a computer with 32 GB memory; therefore, for this model running times
could only be calculated for sample sizes of 1,000 to 31,622.

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 12/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.6257

Peer

1.000

=== 0: Actual
—— 0: Predicted
0.875 ~-- 1:Actual
——— 1: Predicted
0.750 === 2: Actual
—— 2: Predicted
o === 3: Actual
s 0.625 ~ —— 3: Predicted
S === 4: Actual
g 0.500 - 4: Predicted
S
o
© 0.375 A
[+
0.250 A
0.125 A
0.000 T T T
200 400 600

Follow-up time (days)

0.750

0.625 A

0.500 +

0.375 A1

Proportion surviving

0.250 A1

0.125 A

Actual
Predicted
Actual
Predicted
Actual
Predicted
Actual
Predicted
Actual
Predicted

PRhRUUWUNMNNMNREHEOOQ

0.000

=I T
200 400 600
Follow-up time (days)

Figure 4 MNIST dataset calibration plots for training set (A) and test set (B). Images of handwritten
digits 0—4 were used as predictor of survival time. Lower digits have longer median survival. For each digit,
actual survival curve plotted with dotted line and mean model-predicted survival plotted with solid line.
Full-size G DOI: 10.7717/peerj.6257/fig-4

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257

13/19

https://peerj.com
https://doi.org/10.7717/peerj.6257/fig-4
http://dx.doi.org/10.7717/peerj.6257

Peer

metastatic
—-other cancer

..---NO cancer

log(-log Survival Probability)

3 4 5 6 7 8

In(follow-up time in days)

Figure 5 Example of violation of proportional hazards assumption in SUPPORT study dataset. For

the “ca” variable, patients with metastatic cancer have a similar risk of early death as other patients, but a

higher risk of late death, as evidenced by non-parallel lines on this plot of log(-log survival) over time.
Full-size Gl DOI: 10.7717/peerj.6257/fig-5

DISCUSSION

We presented Nnet-survival, a discrete-time survival model for neural networks. It is
theoretically justified since the likelihood function is used as the loss function, and
naturally incorporates non-proportional hazards. Because it is a parametric model, it
can be trained with mini-batch gradient descent as the likelihood/loss depends only on
the patients in the current mini-batch. This enables fast training, use on datasets that do
not fit in memory, and can avoid the network getting stuck in a local minimum of the
loss function (Bottou, 1991). This is in contrast to models based on the Cox proportional
hazards model such as Cox-nnet (Ching, Zhu ¢ Garmire, 2018) and Deepsurv (Katzman
et al., 2018), which require the entire training set to be used for each model update (batch
gradient descent). The Nnet-survival model can be applied to a variety of neural network
architectures, including multilayer perceptrons and convolutional neural networks.

In our experiments, the model performed well on both simulated and real datasets. It
was challenging to find a publicly available dataset that would potentially highlight the
advantages of the model. Ideally, such a dataset would have large sample size, predictor data
such as images or text that are well-suited to neural networks, and time-to-event outcome
data. Since no such dataset was available to our knowledge, we used the SUPPORT study
dataset of 9,105 hospitalized patients, which has moderate sample size and time-to-event
outcome data, but has low-dimensional predictor data that may not result in a benefit from
a neural network approach. For this dataset, our model’s discrimination and calibration

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 14/19

https://peerj.com
https://doi.org/10.7717/peerj.6257/fig-5
http://dx.doi.org/10.7717/peerj.6257

Peer

1.0
Nnet-survival
Cox-nnet o &
0.8 Deepsury $ A
Cox PH model i
2 @
e o
5 061 0
a 2
[0.4 »
2
1)
<
0.2 4 oL
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Predicted survival rate
1.0
Nnet-survival
Cox-nnet 'S
0.8 - Deepsurv ¢
Cox PH model A A
Q
s L 4
= 0.6 4o
>
2 4
2
© 0.4 4
g *
()
<
b 2
0.2
Ay
.
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Predicted survival rate
1.0
Nnet-survival
Cox-nnet
0.8 - Deepsurv
Cox PH model A
Qe L 4
(—E 0.6 v
g™ A
2 N
3 &
T 041 $
2 -
< o
A
0.2 A
o X
"
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Predicted survival rate

Figure 6 Calibration of four survival models on SUPPORT study test set. For each model, for each of
three follow-up times, patients were grouped by deciles of predicted survival probability. Then, for each
decile, mean actual survival (Kaplan—-Meier method) was plotted against mean predicted survival. A per-
fectly calibrated model would have all points on the identity line (dashed). Follow-up times: (A) 6 months;
(B) 1 year; (C) 3 years.

Full-size &l DOL: 10.7717/peerj.6257/fig-6

Gensheimer and Narasimhan (2019), PeerdJ, DOI 10.7717/peer|.6257 15/19

https://peerj.com
https://doi.org/10.7717/peerj.6257/fig-6
http://dx.doi.org/10.7717/peerj.6257

Peer

Training time by method

100000 4
10000 A

S
% 10004 method
g —o— Nnet-survival
‘é., Cox-nnet
E 1001 DeepSurv
=
o

1000 3162 10000 31622 100000 316227 1000000
Sample size

Figure 7 Running time of the three neural network models on SUPPORT study dataset. Each point
represents the average of three runs. Cox-nnet ran out of memory for sample sizes of 100,000 and higher.
Full-size & DOI: 10.7717/peerj.6257/fig-7

performance was similar to several other neural network survival models and a traditional
Cox proportional hazards model. In running time tests, its running time was similar to
Deepsurv (Katzman et al., 2018) and better than Cox-nnet (Ching, Zhu ¢ Garmire, 2018)
for sample sizes >1,000. Interestingly, Cox-nnet ran out of memory for larger dataset sizes,
because it stores an n by n matrix where 7 is the sample size (variable name R_matrix_train
in the Cox-nnet code).

While our model has several advantages and we think it will be useful for a broad range
of applications, it does has some drawbacks. The discretization of follow-up time results
in a less smooth predicted survival curve compared to a non-discrete parametric survival
model such as a Weibull accelerated failure time model. As long as a sufficient number of
time intervals is used, this is not a large practical concern—for instance, with 19 intervals
the curves in Fig. 6 appear very smooth. Unlike a parametric survival model, the model does
not provide survival predictions past the end of the last time interval, so it is recommended
to extend the last interval past the last follow-up time of interest.

The advantages of parametric survival models and our discrete-time survival model
could be combined in the future using a flexible parametric model, such as the cubic
spline-based model of Royston and Parmar, implemented in the flexsurv R package
(Royston & Parmar, 2002; Jackson, 2016). Complex non-proportional hazards models can
be created in this way, and likely could be implemented in deep learning packages.

CONCLUSIONS

Our discrete-time survival model allows for non-proportional hazards, can be used with
stochastic gradient descent, allows rapid training time, and was found to produce good

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 16/19

https://peerj.com
https://doi.org/10.7717/peerj.6257/fig-7
http://dx.doi.org/10.7717/peerj.6257

Peer

discrimination and calibration performance with both simulated and real data. For these
reasons, it may be useful to medical researchers.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

Balasubramanian Narasimhan’s work supported in part by the Clinical and Translational
Science Award 1UL1 RR025744 for the Stanford Center for Clinical and Translational
Education and Research (Spectrum) from the National Center for Research Resource.

Grant Disclosures
The following grant information was disclosed by the authors:
National Center for Research Resource: 1UL1 RR025744.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Michael F. Gensheimer conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, approved the final draft.

e Balasubramanian Narasimhan conceived and designed the experiments, authored or
reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code for this article is hosted at GitHub: https://github.com/MGensheimer/nnet-
survival.

REFERENCES

Avati A, Jung K, Harman S, Downing L, Ng A, Shah NH. 2017. Improving palliative care
with deep learning. ArXiv preprint. arXiv:1711.06402.

Bottou L. 1991. Stochastic gradient learning in neural networks. Proceedings of Neuro-
Nimes 91(8):687—706.

Breslow N. 1974. Covariance analysis of censored survival data. Biometrics 30:89-99.

Breslow N, Crowley J. 1974. A large sample study of the life table and product limit
estimates under random censorship. The Annals of Statistics 2(3):437-453
DOI 10.1214/a0s/1176342705.

Brown SF, Branford AJ, Moran W. 1997. On the use of artificial neural networks for
the analysis of survival data. IEEE Transactions on Neural Networks 8(5):1071-1077
DOI 10.1109/72.623209.

Ching T, Zhu X, Garmire LX. 2018. Cox-nnet: an artificial neural network method for
prognosis prediction of high-throughput omics data. PLOS Computational Biology
14(4):e1006076 DOT 10.1371/journal.pcbi.1006076.

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 17/19

https://peerj.com
https://github.com/MGensheimer/nnet-survival
https://github.com/MGensheimer/nnet-survival
http://arXiv.org/abs/1711.06402
http://dx.doi.org/10.1214/aos/1176342705
http://dx.doi.org/10.1109/72.623209
http://dx.doi.org/10.1371/journal.pcbi.1006076
http://dx.doi.org/10.7717/peerj.6257

Peer

Cooney MT, Dudina AL, Graham IM. 2009. Value and limitations of existing scores for
the assessment of cardiovascular risk: a review for clinicians. Journal of the American
College of Cardiology 54(14):1209-1227 DOI 10.1016/j.jacc.2009.07.020.

Cox D. 1972. Regression models and life-tables. Journal of the Royal Statistical Society.
Series B (Methodological) 34(2):187-220 DOI 10.1111/1.2517-6161.1972.tb00899.x.

Cox D, Oakes D. 1984. Analysis of survival data. In: Monographs on statistics & applied
probability. Boca Raton: Chapman and Hall/CRC.

Faraggi D, Simon R. 1995. A neural network model for survival data. Statistics in
Medicine 14(1):73-82 DOI 10.1002/sim.4780140108.

Graf E, Schmoor C, Sauerbrei W, Schumacher M. 1999. Assessment and comparison of
prognostic classification schemes for survival data. Stat Med 18(17-18):2529-2545
DOI 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5.

Harrell Jr FE. 2015. Regression modeling strategies: with applications to linear models,
logistic and ordinal regression, and survival analysis (Springer series in statistics).
Cham: Springer.

Jackson CH. 2016. flexsurv: a platform for parametric survival modelling in R. Journal of
Statistical Software 70(8):1-33 DOI 10.18637/jss.v070.108.

Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. 2018. Deep-

Surv: personalized treatment recommender system using a Cox proportional
hazards deep neural network. BMC Medical Research Methodology 18(1):24
DOI10.1186/s12874-018-0482-1.

Knaus WA, Harrell FE, Lynn J, Goldman L, Phillips RS, Connors AF, Dawson NV,
Fulkerson WJ, Califf RM, Desbiens N, Layde P, Oye RK, Bellamy PE, Hakim RB,
Wagner DP. 1995. The SUPPORT prognostic model. Objective estimates of survival
for seriously ill hospitalized adults. Annals of Internal Medicine 122(3):191-203
DOI 10.7326/0003-4819-122-3-199502010-00007.

Kwong C, Ling AY, Crawford MH, Zhao SX, Shah NH. 2017. A clinical score for
predicting atrial fibrillation in patients with cryptogenic stroke or transient ischemic
attack. Cardiology 138(3):133-140 DOI 10.1159/000476030.

Lecun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE 86(11):2278-2324 DOI 10.1109/5.726791.

Martinsson E. 2016. WTTE-RNN: weibull time to event recurrent neural network.
Master’s thesis, University of Gothenburg, Sweden.

Miotto R, Li L, Kidd BA, Dudley JT. 2016. Deep patient: an unsupervised representation
to predict the future of patients from the electronic health records. Scientific Reports
6:26094 DOI 10.1038/srep26094.

R Core Team. 2017. R: a language and environment for statistical computing. Version
3.4.3. Vienna: R Foundation for Statistical Computing. Available at https:// www.R-
project.org/.

Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, Liu PJ, Liu X, Marcus J, Sun
M, Sundberg P, Yee H, Zhang K, Zhang Y, Flores G, Duggan GE, Irvine J, Le Q,
Litsch K, Mossin A, Tansuwan J, Wang D, Wexler J, Wilson J, Ludwig D, Volchen-
boum SL, Chou K, Pearson M, Madabushi S, Shah NH, Butte AJ, Howell MD, Cui

Gensheimer and Narasimhan (2019), PeerdJ, DOI 10.7717/peerj.6257 18/19

https://peerj.com
http://dx.doi.org/10.1016/j.jacc.2009.07.020
http://dx.doi.org/10.1111/j.2517-6161.1972.tb00899.x
http://dx.doi.org/10.1002/sim.4780140108
http://dx.doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
http://dx.doi.org/10.18637/jss.v070.i08
http://dx.doi.org/10.1186/s12874-018-0482-1
http://dx.doi.org/10.7326/0003-4819-122-3-199502010-00007
http://dx.doi.org/10.1159/000476030
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1038/srep26094
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.7717/peerj.6257

Peer

C, Corrado GS, Dean J. 2018. Scalable and accurate deep learning with electronic
health records. NPJ Digital Medicine 1(1):18 DOI 10.1038/s41746-018-0029-1.

Rodriguez G. 2016. Lecture notes for WWS 509: generalized linear statistical models.
Princeton University. Available at http:// data.princeton.edu/wws509/ notes (accessed
on 11 May 2018).

Royston P, Altman DG. 2013. External validation of a Cox prognostic model: principles
and methods. BMC Medical Research Methodology 13(1):33
DOI10.1186/1471-2288-13-33.

Royston P, Parmar MK. 2002. Flexible parametric proportional-hazards and
proportional-odds models for censored survival data, with application to
prognostic modelling and estimation of treatment effects. Statistics in Medicine
21(15):2175-2197 DOIT 10.1002/sim.1203.

Singer JD, Willett JB. 1993. It’s about time: using discrete-time survival analysis to study
duration and the timing of events. Journal of Educational Statistics 18(2):155-195
DOI 10.3102/10769986018002155.

Gensheimer and Narasimhan (2019), PeerJ, DOI 10.7717/peerj.6257 19/19

https://peerj.com
http://dx.doi.org/10.1038/s41746-018-0029-1
http://data.princeton.edu/wws509/notes
http://dx.doi.org/10.1186/1471-2288-13-33
http://dx.doi.org/10.1002/sim.1203
http://dx.doi.org/10.3102/10769986018002155
http://dx.doi.org/10.7717/peerj.6257

