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Combat-Related Invasive Fungal Infections: Development
of a Clinically Applicable Clinical Decision Support System

for Early Risk Stratification
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ABSTRACT Introduction: Invasive fungal infections (IFI) are associated with high morbidity and mortality. A better
method of risk stratifying trauma patients for combat-related IFI is needed to improve clinical outcomes while minimizing mor-
bidity related to overtreatment. We sought to develop combat-related IFI clinical decision support (CDS) tools to assist provi-
ders to make treatment decisions both near the point of injury and subsequently at definitive treatment centers. Materials and
Methods: We utilized a training dataset containing information from 227 combat-injured military personnel to build a
Bayesian belief network (BBN) to predict the likelihood of developing IFI using information available at the point of initial
resuscitation (THEATER model) and in the tertiary care setting (MEDCEN model). After selecting BBN models, external
validation used a separate test dataset of 350 wounded warriors. Furthermore, the performance of the BBN models was com-
pared with a “two-rule model” alone (based on physician experience) and combinations of the BBN models plus the two-rule
model. The two-rule model contains plausible IFI criteria, but it has not been formally evaluated, and they are not currently
actual clinical guidelines. Results: We found receiver operating characteristic areas under the curve (AUC) of 0.70 (95% CI:
[0.62, 0.77]) and 0.68 (95% CI: [0.59, 0.76]) for the THEATER and MEDCEN BBN models, respectively, on cross-
validation. External validation with the highest AUC BBN models produced THEATER AUC of 0.68 (95% CI: [0.58,
0.78]) and MEDCEN AUC of 0.67 (95% CI: [0.57, 0.78]). With the incorporation of two-rule model in low IFI-prevalence
populations, external validation AUC increased to 0.77 (95% CI: [0.69, 0.84]) for the THEATER model and 0.76 (95% CI:
[0.68, 0.85]) for the LRMC model. The two-rule model alone has an AUC of 0.72 (95% CI: [0.63, 0.81]). Conclusions:
Overall, the IFI tools produced clinically useful, robust models. However, the clinical utility of these models is highly depen-
dent upon the clinician’s individual risk tolerance. The threshold probability for optimal clinical use of this CDS tool is cur-
rently being evaluated in an ongoing clinical utilization study. CDS tools, such as these, may facilitate early diagnosis of
patients with or at risk for IFI, permitting early or prophylactic treatment with the aim of improving outcomes.

INTRODUCTION
During the recent military conflict in Afghanistan, invasive fun-
gal infection (IFI) emerged as an infectious complication with
surprising incidence (7%) and high morbidity and mortality (8%)
among severely injured military personnel.1,2 Devastating mortal-
ity rates as high as 38–96% have also been reported in civilian
trauma and medical populations.3,4 A primary characteristic of
this disease is recurrent tissue necrosis within the wound despite
serial surgical débridements, straining valuable health care
resources while adding continuous physiologic insult to severely
injured patients. Indeed, combat casualites who develop IFIs
have significantly more surgical amputations and proximal
amputation revisions, a greater number of operative visits,
higher proportion of bacterial coinfections, and a longer
duration to initial surgical wound closure postinjury com-
pared to patients without the disease.5 Sustaining a blast
injury on foot patrol, traumatic transfemoral amputation,
and/or requiring massive (>20 units) blood product transfu-
sions during the first 24 hours postinjury were identified to
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be independent IFI risk factors.6 Treatment recommendation
center on aggressive and frequent débridements and early
initiation of antifungal therapy when there is a high suspi-
cion of IFI.1 However, if we are to prescribe early and
aggressive treatment in a reliable and consistent manner and
avoid unnecessary systemic complications of overtreatment,
a method to estimate the likelihood of IFI using patient- and
injury-specific information is required.

In response to the 1999 Institute of Medicine report “To Err
is Human”,7 the U.S. health care industry witnessed a steady
rise in the use of clinical decision support (CDS) tools, and
with it, a corresponding improvement in patient outcomes.8,9

Like other CDS tools, one developed to identify acutely trau-
matized patients at risk for IFI must be designed to assist provi-
ders at the point of care. The purpose of this manuscript is to
present our findings with regard to the development, internal
validation, and external validation of such a tool designed to
estimate the likelihood of IFI using information available
shortly after injury. We believe our strategy has robust applica-
bility across those disciplines requiring complex decision-
making such as trauma, critical care, and transplant.

METHODS
Following Institutional Review Board approval, we queried
two separate databases containing deployment-related trau-
matic injury records managed by the Infection Disease
Clinical Research Program – Trauma Infection Disease
Outcomes Study (TIDOS) data, collected during Operations
Enduring Freedom and Iraqi Freedom.

We selected 77 records containing a definite or probable
diagnosis of IFI (cases) from June 2009 to August 2011 and
150 non-IFI control subjects (controls) from within the same
time period using criteria previously described.6,10 These 227
records served as the training set. Table I shows the complete
list of 65 variables (or features) contained in each record. The
injury data in this table include data acquired in theater, at the
Landstuhl Regional Medical Center (MEDCEN), and military
hospitals in the United States after evacuation. A limitation of
this dataset is that there is no variable that indicates specifically
when IFI was diagnosed. Using these data, we created models
that could be used to guide treatment in two settings: at point
of injury (THEATER model) and at the first military hospital
following medevac from Afghanistan to MEDCEN. Data that
would have been available to physicians during the initial
debridement(s) in theater were used to train the THEATER
models, and data available to physicians at MEDCEN were
used to train the MEDCEN models. We also experimented
with adding a two-rule model – derived from the original 66-
variable feature set – to the implementation of these models.

Feature Selection and Model Development
Of the 227 training records, 77 (34%) developed IFI. During
the feature selection process, we excluded those that served
as proxies for other features, due to the fact that they would

confound the Bayesian model by including variables known
to be highly correlated. We further excluded variables where
data were missing in greater than 25% of records. For the
THEATER model, we also excluded data that would not be
acquired until admission to hospitals in the USA. This left 23
candidate features for inclusion in the THEATER model and
35 candidate features for inclusion in the MEDCEN model (see
Table I for variable inclusion lists). This variable set included
six Sequential Organ Failure Assessment (SOFA) scores. These
scores are used to evaluate a patient during an intensive care
unit stay. We summed all individual SOFA11 scores to create
one overall variable for each patient, and also summed the units
of whole blood and packed red blood cells (PRBCs) into a sin-
gle variable (“blood requirement during initial resuscitation”).
The SOFA scores were combined because they are correlated
and make other relationships in the data look weaker by com-
parison. Table II presents a list of patient demographics and all
candidate features.

We used an iterative modeling process to build Bayesian
belief networks (BBNs) using FasterAnalytics v7.0. BBNs
are directed, acyclic probabilistic models that capture joint
probability distributions (JPDs) between variables (how and
under what circumstances the value of one feature may be
described in relation to other features). FasterAnalytics uses
an unsupervised machine-learning algorithm to build BBNs.
This is accomplished by using search heuristics that allow
relevant models to be found earlier in the modeling process
through a scoring method that allows fast and efficient evalu-
ation of putative subject models. The result is a graphical
model, a set of nodes and edges, where the nodes represent
variables in the dataset and the edges (or lack thereof) repre-
sent JPDs.

Feature selection was conducted by identification of first-
and second-degree associates using JPDs within data subsam-
ples. Iterative random sampling of the data, 10 iterations of
90% of the observations, was utilized to identify candidate fea-
tures found to be a first- or second-degree associate of the out-
come IFI in any iteration. An evaluation with all training data
was also used to identify associates. The subsamples of the
data are assumed to be a representative sample of the larger
population and used to further reduce the 23 THEATER and
35 MEDCEN features. All continuous variables were trans-
formed into two bins (≤median and >median). We also tested
four minimum descriptive lengths (MDLs) for each model
using tenfold cross-validation. The MDL is an evaluation met-
ric used to quantify model complexity and balance accuracy or
overfitting of the data depending on the number and quality of
JPDs; a lower MDL implies a more complex model. These
model parameters were empirically shown to yield higher areas
under the curves (AUCs) (>0.7) during feature selection and
were selected to optimize the model AUCs.

The models for THEATER and MEDCEN were developed
using all patients from the training dataset and the reduced fea-
ture set and the MDLs (0.7 and 0.8) selected from the tenfold
cross-validation exercise. Records were divided into 10 unique
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TABLE I. List of Potential Features

Variable Name Drop/Keep in Theater Model Drop/Keep MEDCEN Model

Age at injury Keep Keep
Dismounted blast Keep Keep
Blast Drop Drop
Branch of service Keep Keep
Cases Keep Keep
Dismounted status Drop Drop
Gender Drop Drop
Genitourinary injury Keep Keep
IFI class Drop Drop
Initial treatment facility Keep Keep
Initial treatment facility unknown Drop Drop
Injury date Drop Drop
Theater colostomy Keep Keep
MEDCEN ALT at admission Drop Drop
MEDCEN AST at admission Drop Drop
MEDCEN BUN at admission Drop Drop
MEDCEN creatinine at admission Drop Drop
MEDCEN temperature at admission Drop Drop
MEDCEN white blood cell count at admission Drop Keep
MEDCEN admission date Drop Drop
MEDCEN ASPER Drop Keep
MEDCEN base deficit Drop Drop
MEDCEN ISS score Keep Keep
MEDCEN mold presence Drop Keep
MEDCEN MUCOR Drop Keep
MEDCEN other mold presence Drop Keep
MEDCEN PH Drop Drop
MEDCEN pulse Drop Drop
MEDCEN SBP Drop Drop
MEDCEN sepsis indicator Drop Keep
MEDCEN shock index Drop Keep
MEDCEN SIRS indicator Drop Keep
MEDCEN SOFA BILIRUBIN Create SOFA score Create SOFA score
MEDCEN SOFA cardiovascular Create SOFA score Create SOFA score
MEDCEN SOFA coagulation Create SOFA score Create SOFA score
MEDCEN SOFA neurological Create SOFA score Create SOFA score
MEDCEN SOFA renal Create SOFA score Create SOFA score
Max MEDCEN temperature Drop Keep
Max MEDCEN white blood cell count Drop Keep
Military operation Drop Drop
No injury Drop Drop
Number of theater facilities Drop Drop
Pelvis injury Keep Keep
Penetrating abdomen injury Keep Keep
Rectum injury Keep Keep
SOFA SCORE Drop Keep
Theater amputation lower left extremity Drop Drop
Theater amputation upper left extremity Drop Drop
Theater amputation lower right extremity Drop Drop
Theater amputation upper right extremity Drop Drop
Theater base deficit Keep Keep
Theater colostomy Keep Keep
Theater PH Drop Drop
Theater plasma Drop Drop
Theater PRBCs Combine W/THEATER whole blood Combine W/THEATER whole blood
Theater pulse Drop Drop
Theater SBP Drop Drop
Theater shock index Keep Keep
Theater total blood Drop Drop
Theater whole blood Combine W/THEATER PRBC Combine W/THEATER PRBC

(continued)
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training and test sets and the proportion of positive IFI cases
were held constant between sets. Ten models were developed
and then tested using the corresponding test set. For each of the
cross-validation interactions, we then estimated the area under
the “receiver operator characteristic” curve to determine mean
model accuracy and confidence interval.

External Validation and Decision Analysis
External validation of the selected THEATER AND MEDCEN
BBNs was subsequently performed using a separate subset of
the TIDOS database of 350 subjects, 53 of whom (15%) devel-
oped IFI. This subset is comprised of data collected from June
2009 to December 2013.

The BBNs were also combined with a “two-rule model.”
Previous experience5 has suggested IFI risk factors of (A) trans-
femoral amputation and (B) receive >10 units of whole blood
or PRBCs; subsequently these will be referred to as (A) and
(B). The potential predictive ability of the two-rule model was
assessed with three different approaches: (1) two-rule model
satisfied (TRMS): if both components (A) and (B) were met,
the patient was assigned a probability of 1 for having IFI, and
otherwise, a probability of 0 was assigned, (2) BBN + TRMS:
if both components (A) and (B) were met, the patient was
assigned a probability of 1 for having IFI, and otherwise, a
probability was obtained from the BBN, (3) BBN + two-rule
model not satisfied (BBN + TRMNS): if both components
(A) and (B) were not met, the patient was assigned a

probability of 0 for having IFI, and otherwise, a probability
was obtained from the BBN.

For both THEATER and MEDCEN, a bootstrap procedure
was used to compare the performance of all four modeling
approaches ((1) BBN (2) TRMS (3) BBN + TRMS (4) BBN +
TRMNS). Since the external validation dataset consisted of 350
patients with 51 cases of IFI, bootstrap samples were generated
by randomly selecting 102 patients (51 cases and 51 controls).
For each bootstrap sample, the following performance metrics
were evaluated: AUC, sensitivity/specificity (at probability
threshold where product of sensitivity and specificity is maxi-
mized), sensitivity/specificity (at a probability threshold where
sensitivity is maximized while specificity is closest to 0.5, but
not less). One hundred and fifty bootstrap iterations were
performed because it was determined to be sufficient num-
ber of iterations for convergence of the cumulative AUC
mean – additional iterations did not change the AUC by greater
than 0.01. Confidence intervals for performance metrics were
obtained by calculating the 2.5% and 97.5% quantiles.

RESULTS
The THEATER BBN model (Fig. 1A) demonstrates two
first-degree associates of IFI cases (probability of IFI), the
number of units of blood (whole blood or PRBCs) used dur-
ing resuscitation (≤10, >10), and whether the patient
required a diverting colostomy. First-degree associates are
variables most closely related to our outcome variable and

TABLE I. Continued

Variable Name Drop/Keep in Theater Model Drop/Keep MEDCEN Model

Theater whole blood and PRBCs Keep Keep
TIDOS injury cause Drop Drop
Transfemoral amputation Keep Keep
UNIQUE ID Drop Drop

TABLE II. Demographics of Initial Patient Dataset for Model Creation of Cross-Validation

Statistic N Mean Std. Dev. Min Max

Age 227 24.623 4.883 19.200 47.200
Transfemoral amputation (binary, 0 = no, 1 = yes) 227 0.463 0.500 0 1
Marine status (binary, 0 = not a marine, 1 = a marine) 224 0.585 0.494 0 1
Genitourinary injury (binary, 0 = no, 1 = yes) 227 0.485 0.501 0 1
Theater colostomy (binary, 0 = no, 1 = yes) 225 0.169 0.375 0 1
White blood cell count (cells/ml3) 224 8.396 2.753 1.800 19.700
ISS 227 21.233 8.346 4 50
MEDCEN shock index 226 0.811 0.190 0.061 1.558
Pelvis injury (binary, 0 = no, 1 = yes) 227 0.308 0.463 0 1
Penetrating abdomen injury (binary, 0 = no, 1 = yes) 227 0.141 0.349 0 1
Rectal injury (binary, 0 = no, 1 = yes) 227 0.115 0.319 0 1
SOFA score 226 6.049 3.975 0 19
Theater base deficit 186 6.430 5.652 0 27
Theater whole blood and PRBC (Units) 227 18.432 18.336 0 126
Theater shock index 197 1.068 0.469 0.418 3.120

ISS = Injury severity score.
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are defined graphically as variables that are connected by
one arc to our outcome. Similar to the THEATER BBN
model, the MEDCEN BBN model (Fig. 1B) shows that the
first-degree associates of IFI cases are the number of units of
blood used during resuscitation, and whether the patient
required a diverting colostomy. While first-degree associates
are the most closely related to our outcome, the rest of the
model becomes very important when data are missing from
the first-degree associates. For example, in our test dataset,
we did not know whether a subject had in theater colostomy
for 292 out of 350 subjects. In these cases, the rest of the
variables in the model predict the outcome.

Model evaluation with the external validation dataset
indicates that the highest AUCs (THEATER mean: 0.77,
MEDCEN mean: 0.76) are displayed by the model BBN +
TRMNS (Tables III and IV). Kruskal–Wallis and Bonferroni-
corrected Wilcoxon-rank sum tests were used to determine that
the differences in AUC are significant.

Regarding sensitivity and specificity, Table III displays
performance metrics when the probability threshold for IFI
classification is chosen to maximize the product of sensitiv-
ity and specificity. For a probability threshold of 0.42, both
THEATER and MEDCEN models have a mean sensitivity
of 0.72 and mean specificity of 0.8. Table IV provides per-
formance metrics after choosing a probability threshold
where sensitivity is maximized while specificity is closest to
0.5 but not less. For a probability threshold of 0.42, both

THEATER and MEDCEN models have a mean sensitivity
of 0.74 and mean specificity of 0.68.

DISCUSSION
Trauma-related IFIs are recognized for their devastating
impacts on patients in both military1,2,6,10,13–16 and civilian
populations.3,4,17–21 In addition to substantial morbidity result-
ing from recurrent wound necrosis, the disease is also associ-
ated with high mortality.1,5,10 Within the civilian literature,
mortality ranges from 10% with localized cutaneous infections
to 96% mortality with disseminated infections.4 Following the
Joplin, Missouri tornado, 13 patients were diagnosed with
trauma-related IFIs, of which five died (38% crude mortality
rate).3 Among the 77 IFI patients in the military cohort, there
were six deaths (8%); however, many of the deaths could not
be directly attributable to the IFI due to their complex, severe
multisystem injuries.1,10 As part of the effort to improve clinical
outcomes within future similar populations, we developed a
pair of CDS tools to aid in the prediction of IFI in combat-
wounded personnel. Overall, our models demonstrated good
performance on internal and external validation. The
THEATER model may permit point-of-care CDS, allowing
early risk stratification, so patients deemed high risk for IFI can
be identified and treated with systemic intravenous and/or local
antifungal therapies to mitigate downstream morbidity and mor-
tality, in some cases accelerating formal treatment by more

FIGURE 1. Visual representation of the nodes (associates) included for both the THEATER and MEDCEN Bayesian Belief Network models for predict-
ing the risk of invasive fungal infections.
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than a week. Importantly, this approach can be scaled for other
emerging diseases using existing data sources provided those
sources are accurate.

Following development and validation, the models were
deployed on the Surgical Critical Care Initiative (SC2i) website
and incorporated into the U.S. Army Institute of Surgical
Research Clinical Practice Guidelines22 to accelerate distribu-
tion within the Military Health System (MHS). Presently, the
IFI tool is only available to military providers. The decision to
target the release was in response to the incidence of IFI being
far greater for combat-related injuries, and the desire by SC2i
to have the model tested and validated by MHS “early adopters
and innovators” before attempting to test or adapt the tool for
use in civilian treatment facilities. These models have not been
validated in a civilian patient population and many of the
model variables identified are unlikely to be present following
civilian injuries.23 To ensure the tool continues to perform opti-
mally throughout its life cycle,24 we are further using the
“crowd sourcing” approach to solicit online feedback from mil-
itary users via an embedded survey on the output page. A face-
validity test is currently being performed on the four qualitative
and quantitative questions asked of the user: who they are,
where the model was used, which platform was utilized, and

how they rated the performance of the tool. Ultimately, our
intent is to propose standards and/or best practices for the bene-
fit of the medical community.25

As it relates to the deployment and use of the IFI tool in
the civilian health care system, the U.S. Food and Drug
Administration has provided general guidance, which ulti-
mately delegates the onus of responsibility onto treatment facil-
ities to make their own determination regarding the proper
vetting and use of this technology.26 This determination stems
from the fact the IFI models are characterized as knowledge-
based CDS tools, which rely on clinical and physiologic inputs,
and use an inference model to provide the user with an estimate
of the likelihood of IFI. As they are relied upon to assist in
medical decision-making, these models will be considered a
software as a medical device (SaMD), category II, belonging
between the National Surgical Quality Improvement Program27

or Acute Physiology and Chronic Health Evaluation II,28

which are both SaMD category I, or the Breast Cancer Risk
Assessment Tool Gail models (SaMD III).29 Where the IFI tool
differs is in its use of machine-learning techniques to generate
the likelihood of a patient developing an IFI, and that it can
thus function in the presence of missing or incomplete input
data. As such, it can guide clinical intervention, rather than

TABLE III. Model Performance for External Validation Dataset (Product of Sensitivity and Specificity Is Maximized)

Models AUC Threshold Sensitivity Specificity

THEATER BBN 0.68 [0.58,0.78] 0.53 [0.49,0.58] 0.66 [0.43,0.88] 0.66 [0.45,0.88]
THEATER TRMS 0.72 [0.63,0.81] 1 0.74 [0.64,0.85] 0.69 [0.55,0.82]
THEATER BBN + TRMS 0.71 [0.63,0.80] 0.89 [0.58,1.0] 0.76 [0.67,0.86] 0.69 [0.55,0.82]
THEATER BBN + TRMNS 0.77 [0.69,0.84] 0.42 [0.12,0.49] 0.70 [0.58,0.82] 0.83 [0.70,0.94]
MEDCEN BBN 0.67 [0.57,0.78] 0.51 [0.48,0.53] 0.64 [0.47,0.85] 0.69 [0.49,0.86]
MEDCEN TRMS 0.71 [0.63,0.81] 1 0.74 [0.63,0.87] 0.68 [0.53,0.80]
MEDCEN BBN + TRMS 0.70 [0.61,0.80] 0.90 [0.53,1] 0.76 [0.65,0.87] 0.67 [0.53,0.807]
MEDCEN BBN + TRMNS 0.76 [0.68,0.85] 0.42 [0.11,0.50] 0.70 [0.58,0.82] 0.82 [0.70,0.92]

BBN = Bayesian Belief Network (produces a probability for having IFI); TRMS = Two-rule Model Satisfied (assigns 1 if satisfied, and 0 otherwise); BBN +
TRMS = Bayesian Belief Network plus Two-rule Model Satisfied (assigns 1 if TRM is satisfied, otherwise BBN produces a probability for having IFI); BBN +
TRMNS = Bayesian Belief Network plus Two-rule Model Not Satisfied (assigns 0 if TRM is not satisfied, otherwise BBN produces a probability for having IFI).

TABLE IV. Model Performance for External Validation Dataset (Sensitivity Is Maximized While Specificity Is Closest to 0.5 But
Not Less)

Models AUC Threshold Sensitivity Specificity

THEATER BBN 0.68 [0.58,0.78] 0.51 [0.29,0.58] 0.68 [0.41,0.88] 0.63 [0.51,0.86]
THEATER TRMS 0.72 [0.63,0.81] 1 0.74 [0.64,0.85] 0.69 [0.55,0.82]
THEATER BBN + TRMS 0.71 [0.63,0.80] 0.60 [0.49,0.74] 0.80 [0.69,0.90] 0.59 [0.51,0.69]
THEATER BBN + TRMNS 0.77 [0.69,0.84] 0.12 [0.12,0,12] 0.74 [0.64,0.85] 0.69 [0.55,0.82]
MEDCEN BBN 0.67 [0.57,0.78] 0.48 [0.25,0.50] 0.71 [0.54,0.87] 0.57 [0.51,0.69]
MEDCEN TRMS 0.71 [0.63,0.81] 1 0.74 [0.63,0.87] 0.68 [0.53,0.81]
MEDCEN BBN + TRMS 0.70 [0.61,0.80] 0.56 [0.49,0.75] 0.80 [0.69,0.90] 0.55 [0.51,0.65]
MEDCEN BBN + TRMNS 0.76 [0.68,0.85] 0.12 [0.12,0.12] 0.74 [0.63,0.87] 0.68 [0.53,0.81]

BBN = Bayesian Belief Network (produces a probability for having IFI); TRMS = Two-rule Model Satisfied (assigns 1 if satisfied, and 0 otherwise); BBN +
TRMS = Bayesian Belief Network plus Two-rule Model Satisfied (assigns 1 if TRM is satisfied, otherwise BBN produces a probability for having IFI);
BBN + TRMNS = Bayesian Belief Network plus Two-rule Model Not Satisfied (assigns 0 if TRM is not satisfied, otherwise BBN produces a probability
for having IFI).
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merely predict (generally poor) clinical outcomes, and be vetted
not only by measures of accuracy but also by decision analysis
to ensure the tool is and remains suitable for clinical use.

CDS tools based on probabilistic theory have proven use-
ful in a variety of clinical settings. For example, Bayesian
network models were developed for use in patients with
operable skeletal metastases to estimate the probability of
survival up to 12 months postsurgery.12,30 Bayesian models
have also been used to predict mortality among patients with
end-stage heart failure to determine who would benefit from
left ventricular assist device therapy. The latter model was
employed in the development of web-enabled Cardiac
Health Risk Stratification System, which provides patient-
specific prediction of mortality at five different time points
following device implantation.31 A Bayesian decision sup-
port system has also been used to aid in diagnosis of
ventilator-associated pneumonia and predict the likelihood
of survival and recurrence in relation to high-risk node-nega-
tive colon cancer.32,33

Models based on probability have a variety of advantages in
the clinical setting. First, they afford the opportunity to account
for uncertainty within datasets, such as the presence of missing
or incomplete data. The BBN produces a graphical representa-
tion of the probabilistic relationship between the factors, allow-
ing for greater understanding of how and under what
conditions the features relate to one another. Lastly, the tech-
nique lends itself well to interval improvements as new data,
evidence, or treatments become available.

The present study possesses limitations. The models were
constructed and tested based upon two retrospectively collected
datasets. The two datasets differ in IFI incidence: ~34% (77/
227) (internal validation data) vs. ~15% (51/350) (external vali-
dation data). The difference in incidence could be related to
changes in military injury patterns and geography of more
intense operations during these two periods. While data verifi-
cation has been performed on a large portion of this informa-
tion, no retrospective database contains perfect and complete
data. Furthermore, these CDS models were developed based on
data gathered from combat-injured military personnel for use in
similar circumstances and patient populations. The applicability
to other populations (e.g., civilian trauma patients) is unknown
and, for these reasons, clinical use in these other populations is
actively discouraged at the present time (civilian access to the
functioning model is actively restricted). We know that as sam-
ple size increases, the gap between reality and the represented
data closes. Our validation set, which has a higher number of
records than our training set, has a much lower rate of IFI.
Therefore, increasing our sample size may help us more accu-
rately represent the full population.

CONCLUSIONS
We developed two robust, clinically useful models for risk
stratification of IFI following combat-related injuries, and these
CDS tools may expedite treatment and improve outcomes for

severely injured patients. Clinicians may vary the risk threshold
depending on the need to maximize sensitivity, specificity, or
both together. This highlights both the need for utilization of
such CDS tools only under appropriate clinical circumstances
and potential limitations. These tools have already been
deployed within the MHS22 to reduce undesirable variation in
care in the combat setting and improve outcomes as a result.34

The optimal threshold is currently being determined within an
ongoing MHS deployment. Future research is necessary to con-
firm that early systemic and/or local interventions can prevent
IFI infections or improve outcomes in wounded warriors at
high risk for IFI. This approach may be utilized for emerging
diseases using existing data sources and, as such, this approach
provides a flexible method in which to respond to unmet needs.
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