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ATP synthase uses a rotary mechanism to couple transmem-
brane proton translocation to ATP synthesis and hydrolysis,
which occur at the catalytic sites in the � subunits. In the pres-
ence of Mg2�, the three catalytic sites of ATP synthase have
vastly different affinities for nucleotides, and the position of the
central � subunit determines which site has high, medium, or
low affinity. Affinity differences and their changes as rotation
progresses underpin the ATP synthase catalytic mechanism.
Here, we used a series of variants with up to 45- and 60-residue-
long truncations of the N- and C-terminal helices of the � sub-
unit, respectively, to identify the segment(s) responsible for the
affinity differences of the catalytic sites. We found that each
helix carries an affinity-determining segment of �10 residues.
Our findings suggest that the affinity regulation by these seg-
ments is transmitted to the catalytic sites by the DELSEED loop
in the C-terminal domain of the � subunits. For the N-terminal
truncation variants, presence of the affinity-determining seg-
ment and therefore emergence of a high-affinity binding site
resulted in WT-like catalytic activity. At the C terminus, addi-
tional residues outside of the affinity-determining segment were
required for optimal enzymatic activity. Alanine substitutions
revealed that the affinity changes of the catalytic sites required
no specific interactions between amino acid side chains in the �
and �3�3 subunits but were caused by the presence of the helices
themselves. Our findings help unravel the molecular basis for
the affinity changes of the catalytic sites during ATP synthase
rotation.

F1Fo-ATP synthase catalyzes the final step of oxidative phos-
phorylation and photophosphorylation, the synthesis of ATP

from ADP and Pi. F1Fo-ATP synthase consists of the mem-
brane-embedded Fo subcomplex with, in most bacteria, a sub-
unit composition of ab2c10 and the peripheral F1 subcomplex
with a subunit composition of �3�3���. The energy necessary
for ATP synthesis is derived from an electrochemical trans-
membrane proton (or, in some organisms, sodium ion) gradi-
ent. Proton flow, down the gradient, through Fo is coupled to
ATP synthesis on F1 by a unique rotary mechanism. The pro-
tons flow through (half) channels at the interface of a and c
subunits, which drives rotation of the ring of c subunits. The c10
ring, together with F1 subunits � and �, forms the rotor. Rota-
tion of � leads to conformational changes in the catalytic nucle-
otide-binding sites on the � subunits where ADP and Pi are
bound. The conformational changes result in formation and
release of ATP. Thus, ATP synthase converts electrochemical
energy, the proton gradient, into mechanical energy in the form
of subunit rotation and back into chemical energy as ATP. In
bacteria, under certain physiological conditions, the process
runs in reverse. ATP is hydrolyzed to generate a transmem-
brane proton gradient, which the bacterium requires for such
functions as nutrient import and locomotion (1–6).

F1 (or “F1-ATPase”) has three catalytic nucleotide-binding
sites, located on the three � subunits, at the interface to the
adjacent � subunit. The catalytic sites have pronounced differ-
ences in their affinity for Mg2�-nucleotide. In Escherichia coli,
Kd1 for MgATP is in the nanomolar range (“high-affinity site”),
Kd2 is �1 �M (“medium-affinity site”), and Kd3 is �30 –100 �M

(“low-affinity site”) (7, 8). The affinity of a catalytic site at any
given point of time is determined by the position of the central
� subunit. This implies that during rotational catalysis the affin-
ities change. After rotation of � by 120°, the sites have swapped
their affinities. Experimental evidence for the crucial role of � in
determining the affinities of the catalytic sites comes from
observations of the dependence of substrate binding and prod-
uct release on the rotational angle of � (9 –13). Further support
is provided by the discovery of mutations in � at the �/� inter-
face that affect nucleotide binding affinities despite the fact that
these mutations are located in the DELSEED loop in the C-ter-
minal domain (14, 15), �30 Å away from the catalytic binding
site.

The affinity differences and changes seem to be of central
importance for the enzymatic mechanism with respect to cou-
pling between rotation and catalysis as well as catalysis itself.
ATP synthesis and hydrolysis occur only on the high-affinity
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site (16). According to most catalytic models, in ATP synthesis
proton translocation– driven rotation of � forces the high-af-
finity site open, thereby reducing the affinity to “low” so that the
newly formed ATP can be released (2, 17–19). In ATP hydro-
lysis, closing of the low-affinity site around the newly bound
ATP, accompanied by conversion of the site to high-affinity, is
widely believed to push � and make it rotate for the experimen-
tally observed 80° substep. The subsequent 40° substep appears
to be energetically linked to the release of Pi and/or ADP (2, 12,
15, 17, 20 –22).

Although a coherent picture of the general chemomechani-
cal coupling mechanism is emerging, many aspects of the
mechanism on the molecular level are still unresolved. For one,
knowledge of the interactions between � and � (and/or �) that
are responsible for the different affinities of the catalytic bind-
ing sites is fragmentary. The majority of contacts between � and
the �3�3 ring involve the long N- and C-terminal helices of �.

Because of the large number of interactions that might pos-
sibly contribute, the first goal of the present study was to iden-
tify regions of � that play a role in the assignment of affinities. In
search of a screening method that allows looking at multiple
residues at the same time, our approach was based on the obser-
vation that it is possible to generate mutants in ATP synthase
from Geobacillus stearothermophilus (formerly known as
Bacillus PS3) that have portions of the N- and/or C-terminal
helices removed (23–26). We measured binding of MgATP to a
series of N- and C-terminal truncation mutants in the
G. stearothermophilus �3�3� subcomplex. For both helices,
increasing the length of the truncation converted the MgATP
binding behavior from asymmetric and WT-like, with a clearly
present high-affinity site, to (nearly) symmetric, as also ob-
served in the complete absence of �. This approach allowed us
to narrow down the region of � causing the differences in affin-
ity of the catalytic sites to two short segments of �10 residues,
one in each helix.

To possibly identify individual residues responsible for con-
ferring the nucleotide binding asymmetry, we replaced the
amino acids in these two segments in groups of 5– 6 residues by
alanine. MgATP binding experiments with the alanine-replace-
ment mutants all gave the WT-like asymmetric binding pat-
tern. These results suggest that there is no specific residue in �
that causes the pronounced affinity differences of the three cat-
alytic nucleotide-binding sites. Instead, the �-helices of � them-
selves in the identified region appear to be the cause.

Results

Selection of enzyme source

The enzymes from E. coli and G. stearothermophilus (for-
merly Bacillus PS3) are arguably the best-characterized bacte-
rial ATP synthases. They are sufficiently closely related so that
the G. stearothermophilus F1 subcomplex can be reconstituted
with E. coli Fo to give a functional ATP synthase and vice versa
(27). For the present study, we chose the G. stearothermophilus
enzyme because of its higher oligomeric stability. Specifically, it
could be shown that the G. stearothermophilus ATP synthase
can form an �3�3 complex in the absence of � (28) that is stable
enough to be crystallized (29) or monitored in high-speed

atomic force microscopy (30). Under appropriate storage con-
ditions, as ammonium sulfate precipitate at 4 °C, even after sev-
eral years about two-thirds of the complex was still in �3�3 form
with about 20% isolated � and � subunits and the remainder
unidentified degradation products, which are absent directly
after preparation of the enzyme (Fig. S1). Thus, truncations of �
should not affect the stability of the �3�3 complex.

N-truncation mutants of �: an overview

The following N-terminal truncation mutants of the � sub-
unit of G. stearothermophilus ATP synthase �3(�Y341W)3�
subcomplex were generated: ��N4, missing the first 4 residues
of �; ��N9; ��N13; ��N29; and ��N45 (the numbering system
assumes that E. coli, used to express the G. stearothermophilus
enzyme, removes the Met encoded by the start codon as is
observed for the native E. coli ATP synthase). Subcomplexes
with full-length �, and �-less subcomplex were included as con-
trols. The ��N45 mutant eliminates all contacts between the
N-terminal helix of � and the �3�3 cylinder (31–33). The crystal
structures of mitochondrial (31, 32) and E. coli F1 (33) indicate
that the N-terminal helix of � starts immediately at the N ter-
minus. Secondary structure predictions suggest that the same
applies to G. stearothermophilus WT � and to the truncation
mutants investigated here (Fig. 1A) with the possible exception
of the ��N9 mutant. For the ��N9 mutant, the 5th residue is
the first that reaches a probability for formation of an �-helix of
�50%, whereas in all other cases it is the 2nd or 3rd residue;
thus, for a few residues at the extreme N terminus of ��N9, the
helix might be unwound. For ��N4, the predicted probability
for formation of an �-helix by the initial residues is lower than
in the other cases but still �50% (as compared with 90 –100%
for the other truncation mutants).

C-truncation mutants of �: an overview

The C-terminal � truncation mutants generated for this
study were as follows: ��C14, eliminating 14 residues from the
C terminus; ��C20; ��C27; ��C36; and ��C60. In the ��C60
mutant, the C terminus is outside of the �3�3 cylinder. Accord-
ing to the crystal structures of the mitochondrial and E. coli
enzymes (31–33), the C-terminal helix starts 73 and 76 resi-
dues, respectively, upstream of the C terminus and runs unin-
terrupted to the C terminus. Secondary structure predictions
(Fig. 1B) suggest similar behavior for the C-terminal helix of the
G. stearothermophilus enzyme, although for the terminal 6 –7
residues the probability to form a helix is only about 50%.
According to the predictions, also in the truncation mutants
the helix reaches close to the respective C terminus.

Stability and ATPase activity of the �3�3� subcomplexes

An �3�3� subcomplex could be isolated from each of the five
N-terminal truncation mutants and from four of five C-termi-
nal truncation mutants. Of the N-terminal truncation mutants,
based on Western blotting using an antibody against the glob-
ular portion of �, the ��N4 and ��N9 mutants contained a full
complement of �. In the mutants with longer N-terminal trun-
cations, the amount of � was substoichiometric. Obviously,
these truncations reduce the stability of the interactions of �
with the �3�3 cylinder. Still, even for the ��N45 mutant in
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nearly a half of the enzyme complexes � was still present (Table
1 and Fig. S2A). As to the C-terminal mutants, for the longest
truncation, ��C60, an �3�3� subcomplex could not be isolated.
No � was found in the preparation; instead, an �3�3 subcom-
plex was obtained (data not shown). Thus, this mutant was not
pursued any further. All shorter C-terminal truncations con-
tained stoichiometric amounts of � (Table 1 and Fig. S2B).

Of the �3�3� subcomplexes with N-terminal truncations,
only ��N4 showed an ATPase activity that was similar to that
of the WT enzyme. In the case of the ��N9 and ��N13 �3�3�

subcomplexes, the ATPase activity was about 10% of the WT
value. For ��N29 and ��N45 �3�3� it was even less but still
clearly higher than for a �-less �3�3 subcomplex (Table 1). Of
the C-terminal truncation mutants, again only the shortest one,
��C14, had an ATPase activity in the same range of that of
enzyme with full-length �. The activity of ��C20 was about 10%
of WT; those of ��C27 and ��C36 were 2–3%. Again, even the
C-terminal deletion mutants with the largest functional impair-
ment still had ATPase activities significantly higher than the �-less
enzyme (Table 1). A general decrease of the ATPase activity with

Figure 1. Secondary structure predictions for the � truncation mutants. All secondary structure predictions were obtained using the PredictProtein
server (49). The amino acid sequence is given on top of the figure. The figure plots the probability of formation of an �-helix. The top panels (panels 1;
black) show the prediction for the WT G. stearothermophilus enzyme with full-length �. It should be noted that the prediction for � of mitochondrial ATP
synthase gave very similar results (not shown) with a lower probability of �-helix formation between residues �10 and �15 and a disruption of the helix
between �40 and �45. The crystal structures (31, 32) show the �10 –15 segment as helical and confirm the helix break around �40 – 45. A, N-terminal
truncations. Panels 2– 6 show the predictions for the N-terminal truncation mutants ��N4 (green), ��N9 (red), ��N13 (blue), ��N29 (pink), and ��N45
(cyan). B, C-terminal truncations. Panels 2– 6 show the predictions for the C-terminal mutations ��C14 (green), ��C20 (red), ��C27 (blue), ��C36 (pink),
and ��C60 (cyan).
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the length of the deletion had been described before for N-termi-
nal as well as C-terminal truncations (23, 25, 26).

Effect of truncations on MgATP binding

The fluorescence of residue �Trp341 in the �3�3� subcom-
plex was used to determine the MgATP binding properties of
the truncation mutants. The results are compiled in Fig. 2, A
(N-terminal truncations) and B (C-terminal truncations), and
in Table 1. MgATP binding data for the WT �3�3� subcomplex
and the �-less subcomplex, �3�3, are shown as controls. �3�3�
shows the well-established MgATP binding asymmetry with a
Kd1 below 10 nM, a Kd2 of about 4 �M, and a Kd3 of about 30 �M.
For the �3�3 subcomplex, in the absence of �, it had been shown
previously that it has a highly symmetrical structure (29) and
has lost its ability to bind MgTNP-ATP5 and MgTNP-ADP
with high affinity (34). Here, we confirmed the “functional sym-
metry” of the �3�3 subcomplex. High-affinity binding was not
observed, and the three catalytic binding sites had very similar
affinities for MgATP. An optimal fit was obtained using a model
with three different sites; the fit suggested that one of the three
sites might still have a slightly higher affinity than the remain-
ing two sites. However, as can be seen from Fig. 2 (best visible in
C), the difference between this fit (solid black line through the
open circles) and the fit for a model with three identical sites
(dotted black line) is minimal. In the latter case, Kd123 � 6.1 �M.

In the nucleotide binding experiments, both series of trunca-
tion mutants showed the same tendencies, from a WT-like
asymmetrical pattern with a clearly expressed high-affinity
binding site for the shorter truncations to a symmetrical bind-
ing behavior with a loss of the high-affinity site for the longer

truncations. Of the N-terminal truncation mutants, only ��N4
displayed strong asymmetric behavior (Fig. 2A); of the C-termi-
nal truncations, both ��C14 and ��C20 did (Fig. 2B). In con-

5 The abbreviations used are: TNP, trinitrophenyl; CDTA, trans-1,2-diaminocy-
clohexane-N,N,N�,N�-tetraacetic acid.

Table 1
ATPase activities and ATP-binding properties of � truncation mutants
The content of � in the subcomplex preparations was measured by Western blotting
using an antibody against the globular portion of �. Each Western blot contained an
�3�3� control, set as 100%, and an �3�3 control, set as 0%. ATPase activities were
determined in duplicate at 42 °C and pH 8.0 by the amount of Pi released. Nucleotide
binding to the three catalytic sites was measured at 23 °C and pH 8.0 using the
fluorescence of residue �Trp341 as signal. This technique does not allow resolving Kd
values below 0.01 �M with confidence. All values given in this table represent the
average from at least two independent experiments with two different enzyme prep-
arations with standard deviations in parentheses.

Enzyme/
mutation

Content
of �

ATPase
activity

MgATP binding
Kd1 Kd2 Kd3

% units/mg �M
�3�3� 100 17 (3) �0.010 4.4 (0.7) 29 (6)
�3�3 0 0.09 (0.08) 2.2 (0.7) 10 (2) 11 (2)
��N4 99 (5) 25 (5) �0.010 1.9 (0.6) 54 (22)
��N9 103 (6) 2.2 (0.2) 0.41 (0.12) 13 (2) 13 (2)
��N13 67 (10) 1.7 (0.4) 2.2 (0.8) 13 (2) 13 (2)
��N29 53 (8) 0.30 (0.03) 1.4 (0.5) 15 (3) 16 (3)
��N45 46 (9) 0.55 (0.12) 1.2 (0.2) 11 (2) 11 (2)
��C14 95 (8) 11 (2) 0.015 (0.003) 4.0 (1.0) 23 (7)
��C20 104 (12) 1.4 (0.3) 0.012 (0.003) 3.0 (0.8) 16 (5)
��C27 114 (20) 0.48 (0.13) 1.1 (0.3) 11 (2) 11 (2)
��C36 110 (22) 0.43 (0.13) 1.8 (0.3) 13 (2) 13 (2)
�A5–10 NDa 13 (2) �0.010 3.7 (0.9) 16 (4)
�A10–15 ND 18 (2) �0.010 4.8 (1.3) 15 (5)
�A256–260 ND 31 (6) �0.010 3.4 (0.7) 25 (6)
�A260–265 ND 30 (6) �0.010 2.8 (0.8) 17 (6)

a ND, not determined; as all alanine replacement mutants showed wildtype-like
activities and MgATP binding pattern, measurement of the � content seemed
unnecessary.

Figure 2. MgATP binding to the catalytic sites of the � truncation and
alanine-replacement mutants. MgATP binding to the three catalytic sites of
the �3�3� subcomplex of G. stearothermophilus ATP synthase was measured
as described under “Experimental procedures.” In all panels, WT �3�3� with
full-length � is represented by black filled circles, and �3�3 (no �) is repre-
sented by white open circles. Each plot shows a representative experiment,
combining data from four independent titrations, with the MgATP concen-
tration increased by an order of magnitude in each step (8). The solid lines are
fitted binding curves based on a model with three different, independent
sites. Kd values are given in Table 1. For the �-less �3�3 subcomplex, the fit
based on a model with identical sites is also shown (dotted black lines). A,
N-terminal truncation mutants: ��N4, green; ��N9, red; ��N13, blue; ��N29,
pink; ��N45, cyan. B, C-terminal truncation mutants ��C14, green; ��C20,
red; ��C27, blue; ��C36, pink. C, alanine-replacement mutants: �A5–10, green;
�A10 –15, red; �A256 –260, blue; �A260 –265, pink.
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trast, ��N13, ��N29, and ��N45 exhibited the (nearly) sym-
metrical binding pattern of the �-less enzyme as did ��C27 and
��C36. Whereas for the C-terminal truncations the binding
pattern went directly from WT-like in ��C20 to �-less-like in
��C27, among the N-terminal truncations ��N9 presented a
transition case. The affinity of site 1 in ��N9 appeared to be
slightly higher than in the mutants with longer truncations.

As noted above, in ��N13, ��N29, and ��N45, the amount
of � was substoichiometric. Nevertheless, as these mutants dis-
play binding characteristics that are virtually indistinguishable
from those of �3�3, correction of the binding curves for “con-
tamination” by �-less enzyme did not change the results signif-
icantly. However, this correction assumes that the amount of �
in the �3�3� subcomplex remains constant during the binding
assay. To test whether this assumption is valid, we concentrated
the assay mixture after the binding assay using a Centricon
centrifugal filter device with an exclusion limit of 50,000 Da,
which would let isolated � pass through. Immunoblot analysis
of the concentrate indicated that for ��N29 and ��N45 the
amount of � in the �3�3� subcomplex was indeed further
reduced by 30 –50%. However, the ��N13 �3�3� subcomplex
showed the same amount of � as before the binding experiment
(Fig. S2C). Thus, there is no doubt that ��N13 displays a sym-
metrical binding pattern, just as �-less enzyme. Although the
precise amount of � in the �3�3� subcomplex of ��N29 and
��N45 at the exact moment of the binding assay is not known
and therefore a correction for the contamination by �-less
enzyme is not straightforward, it appears highly unlikely that
these truncation mutants would revert to an asymmetric
pattern.

The segments of � responsible for the nucleotide binding
asymmetry of the catalytic sites: N terminus

At the N terminus, truncation of just 4 residues preserved the
asymmetric WT binding pattern. Truncation of 13 or more

residues resulted in the symmetric pattern seen in the absence
of �. Truncation of 9 residues showed intermediate character-
istics with a higher degree of asymmetry than observed for the
longer truncations but no pronounced high-affinity binding
site. Based on the results, one might conclude that the segment
most important for determination of the affinities of the three
catalytic sites consists of residues �5–9. However, it is possible
that the failure of the ��N9 truncation mutant to give a WT-
like binding pattern (like ��N4) could be due to failure to form
an �-helix immediately at its N terminus (see “Results” and Fig.
1). In contrast to ��N9, secondary predictions for ��N13 indi-
cate that this mutant reaches �-helical conformation within
2–3 residues. Thus, the affinity-determining segment on the
N-terminal helix should not extend beyond residue �15, giving
it the sequence �5DIKTRINATKK15.

None of the residues of the �5DIKTRINATKK15 segment is
completely conserved; however, several display exclusively
conservative substitutions (Table S1). In general, positions
�7–�15 show an accumulation of arginine and lysine residues,
between 2 and 5 in the examples shown; the net charge of this
stretch is between �1 and �5. The �5–15 segment comes
close to three subunits of the �3�3 cylinder, �TP,6 �DP, and
�E (Figs. 3A and S3A). In the structure of the E. coli enzyme
(33), �5–15 also has contacts with the C-terminal helix of the
� subunit. Possible interactions with �TP and �DP occur with
the DELSEED loop of these subunits. The multiple nega-
tively charged side chains of the DELSEED loop appear well
suited for interactions with the positive charges of the �5–15

6 The nomenclature of � and � subunits is based on the nucleotide occu-
pancy of the catalytic sites in the original structure of the mitochondrial
enzyme (31). Subunits �TP and �TP contribute to formation of the catalytic
site occupied by a non-hydrolyzable ATP analog, AMP-PNP (5�-adenylyl-
�,�-imidodiphosphate); �DP and �DP contribute to formation of the cata-
lytic site occupied by ADP; and �E and �E contribute to formation of the
empty catalytic site.

Figure 3. Identification of the segments in the N- and C-terminal helices of � responsible for the affinity differences of the catalytic sites. A, side view.
The identified segment in the N-terminal helix, �5–15, is shown in pink; the segment in the C-terminal helix, �256 –265, is shown in cyan; and the remainder of
� is shown in purple. Subunit �TP, which carries the high-affinity nucleotide-binding site, is shown in yellow; subunit �DP with the medium-affinity binding site
is colored green, and subunit �E is orange. Bound nucleotides are shown as “space-filled”; the site on �E is empty in the crystal structure. For clarity, the � subunits
have been removed. B, top view, looking toward the membrane. Color-coding is as in A. Bound nucleotides are shown in “stick” representation. The portion of
the � subunits above the level of the nucleotide-binding sites has been removed. � is represented just by the two segments, �5–15 and �256 –265. Segment
�5–15 makes contact with the DELSEED loop of subunits �TP and �DP; segment �256 –265 makes contact with the catch loop of subunit �E (for further details,
see “Results” and “Discussion”).
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segment. However, it has been shown that the negative
charges of the DELSEED motif can be removed without
affecting enzymatic activity, MgATP binding asymmetry,
and rotational torque (35–38).

The segments of � responsible for the nucleotide binding
asymmetry of the catalytic sites: C terminus

At the C terminus, truncation of up to 20 residues gave the
asymmetric, WT-like binding pattern, whereas removal of 27
or more residues resulted in the symmetric pattern, lacking a
high-affinity binding site, also observed in the absence of �.
Thus, the affinity-determining segment of the C-terminal helix
should, at the minimum, consist of residues �259TLSYNRA265,
which are present in ��C20 but absent in ��C27. Taking into
account that the terminal residues of ��C27 might not be in
quite the same helical confirmation as in full-length �, a reason-
able estimate for the C-terminal affinity-determining segment
appears to be �256RTLTLSYNRA265. Of these residues, �Asn263

is conserved; several other positions contain exclusively con-
servative substitutions (Table S2).

Is it possible to identify the residue(s) responsible for the
nucleotide binding asymmetry?

To answer this question, all residues in the two identified
segments were replaced by alanine. We made two alanine
mutants per segment by replacing 5– 6 residues at a time by
alanine because making longer alanine mutants was chal-
lenging. Thus, we generated the mutations �A5–10, �A10 –15,
�A256 –260, and �A260 –265 for N- and C-terminal segments,
respectively.

The results of the functional assays are shown in Table 1 and
Fig. 2C. All four mutant enzymes had WT-like ATPase activity
and a WT-like asymmetric MgATP binding pattern. Thus, it
seems that no specific interaction between amino acid side
chains in � and � (or �) causes the binding asymmetry. Instead,
it appears as if the �-helices themselves in this region are
responsible.

Discussion

One major goal of the research on ATP synthase in our lab at
this time is to explore the molecular basis for the changes in
affinity of the catalytic sites during rotation and to analyze the
role of these affinity changes in coupling of catalysis and rota-
tion. The affinity of a catalytic site for substrate(s) and prod-
uct(s) at any given point of time is determined by the position of
the central � subunit. In the absence of �, all three sites have the
same, rather low affinity. Several residues at the �/� interface
that affect binding affinities of the catalytic sites have been
described before (14, 15, 39). In the present study, we aimed to
identify the part(s) of � that included all residues that are
responsible for the affinity differences. For this purpose, we
measured nucleotide binding to the catalytic sites of two series
of � truncation mutants, one that had between 4 and 45 resi-
dues from the N terminus of � removed and the other between
14 and 60 residues from the C terminus. The truncations were
done using the enzyme from G. stearothermophilus because of
its superior oligomeric stability. In the absence of �, it can form
a stable �3�3 complex (28), which has not yet been described for

the E. coli enzyme. However, both enzymes are functionally so
similar, specifically in their nucleotide binding pattern (for
comparison, see the Kd(MgATP) values for E. coli given in the
Introduction and the G. stearothermophilus values in Table 1),
that there is no reason to assume that these patterns were
achieved by different mechanisms.

The truncation approach yielded two segments of about 10
residues, one on the N-terminal helix, �5–15, and the other on
the C-terminal helix, �256 –265. Both segments are required to
give the asymmetric, WT-like nucleotide binding pattern with
pronounced affinity differences and a clearly expressed high-
affinity site. If one of them is missing, the enzyme shows the
symmetric binding behavior with a relatively low overall affinity
that is also observed in the complete absence of �.

Over both segments, about half of the residues are conserved
or conservatively substituted (see “Results” and Tables S1 and
S2), and a number of these residues are able to form hydrogen
bonds and/or salt bridges with residues on the � or � subunits
(Fig. S3). However, experiments where the residues in both seg-
ments were replaced by alanine gave a WT-like asymmetric
nucleotide binding pattern and WT-like catalytic activity.
Thus, no individual amino acid side chains appear to be respon-
sible for asymmetry and activity. This finding is reminiscent of
the �DELSEED loop, which is essential for driving � rotation
and enzymatic activity due to its overall bulk shape, without
individual interactions between amino acid side chains re-
quired for its function (35–38).

The affinity-determining segment of the N-terminal helix,
�5–15, makes contact with the DELSEED loop of the �TP and
�DP subunits, which carry the high- and medium-affinity cata-
lytic site, respectively (18). This observation confirms the
importance of the DELSEED loop in affinity regulation of the
catalytic sites as suggested by previous studies (14, 15). Absence
of the �5–15 segment apparently fails to bring the respective �
subunit into the high- or medium-affinity conformation. The
affinity-determining segment of the C-terminal helix, �256 –
265, is located at a level similar to its N-terminal counterpart,
�5–15, offset by approximately one helical turn in direction
away from the membrane (Fig. 3). A portion of the �256 –265
segment approaches the “catch loop” (31, 40) of the �E subunit,
residues �309 –316. The ��C27 truncation removes any inter-
action of the C-terminal helix with the catch loop. Considering
that the affinity of the low-affinity catalytic site on �E is not
affected by �, it seems possible that the role of this segment in
determination of the affinity of the catalytic sites on �TP and
�DP is indirect, by stabilizing the N-terminal �5–15 segment
and its interactions with �3�3. Theoretically, it would also be
possible that lack of this portion of the C-terminal helix might
cause failure to form the N-terminal helix (41). However, we
could show that a � subunit consisting just of the N-terminal 35
or 42 residues was able to sustain a certain degree of ATP syn-
thesis activity (19), which would be highly unlikely if the seg-
ment were unstructured. Furthermore, it has been shown that
truncation of the N terminus by 50 residues (26) or of the C
terminus by 36 residues (25) still allows production of torque
close to 50% of WT, whereas the torque generated by an
enzyme without both helices is significantly lower (24). Taken
together, these findings suggest that each of the helices can
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exist without support of the other. Thus, the structural integrity
of � is preserved in the truncation mutants.

Interestingly, despite the presence of a high-affinity site, the
��C20 truncation mutant showed only low ATPase activity;
adding back 6 more residues, in the ��C14 mutant, restored
WT-like activities. This finding is in contrast to the situation at
the N terminus where the presence of a high-affinity site went
hand in hand with normal ATPase activities as observed with
��N4; the ��N9 mutant, which had largely lost high-affinity
binding capability, also had substantially reduced enzymatic
activity. Thus, as far as the mutants under investigation here are
concerned, the presence of a high-affinity site appears to be a
necessary, but not sufficient, condition for high activity.

The 2 residues immediately downstream of the identified
segment, �Arg266 and �Gln267 are strictly conserved. However,
from the results presented here, it is clear that they have no
influence on the binding affinity of the catalytic sites as these
residues are missing in ��C20, which nevertheless has a WT-
like binding pattern. Given the importance of �Arg266 and
�Gln267 for the catalytic function (40, 42),7 it is likely that their
absence in ��C20 is responsible for the low enzymatic activity
of this truncation mutant. The lack of residue �Thr271 in
��C20 (which is present in ��C14) could be another factor for
its catalytic impairment (42, 43). It is interesting to note that
loss of hydrogen-bonding capability of �Thr271 resulted in
reduced nucleotide-binding affinity of the catalytic site(s) in the
transition state (measured as rate of formation of the transi-
tion-state analog MgADP–fluoroaluminate complex (43)).
However, as the results presented here show, �Thr271 has no
role in determining the affinity in the ground state.

Experimental procedures

Bacterial strains and plasmids

For generation of the � truncation mutants in G. stearother-
mophilus �3�3� and the �-less �3�3 subcomplexes, the back-
ground plasmid was pNM2. Plasmid pNM2 is a derivative of
plasmid pKAGB1 (44). pKAGB1 is used to express a Cys- and
Trp-less form of the �3�3� subcomplex of G. stearothermophi-
lus ATP synthase. pNM2 contains an additional mutation to
generate an �3(�Y341W)3� subcomplex, which allows moni-
toring nucleotide binding to the three catalytic sites, and a
His10 tag at the N terminus of the � subunits to facilitate puri-
fication. Site-directed mutagenesis was performed using the
QuikChange II XL kit. To generate the N-terminal truncations,
downstream of the � start codon ATG, the codons for the next
4 – 45 amino acids were eliminated. To obtain the C-terminal
truncations, stop codons were inserted at the desired positions.
For generation of the �-less enzyme, a stop codon was intro-
duced at the �7 position. The insertion of an NheI site down-
stream of this stop codon allowed us to remove the remainder
of the gene for � on an NheI-NheI fragment as there is a natural
NheI site downstream of the � gene. Removal of segments was
confirmed by DNA sequencing of the plasmid product. For

expression of the mutant proteins, the plasmids were trans-
formed into E. coli strain JM103�(uncB-uncD).

Isolation of �3�3(�) subcomplex and quantification of
truncated � subunit

The purification method of �3�3� or �3�3 subcomplex was
modified from a previously described procedure (45). Cells
were grown aerobically at 37 °C in terrific broth medium con-
taining 100 �g/ml ampicillin. After cell lysis by French press,
the cell debris was removed by centrifugation at 35,000 rpm for
30 min. The supernatant containing the complex was applied to
a Ni2�-nitrilotriacetic acid column (Qiagen) equilibrated with
20 mM imidazole and 100 mM NaCl, pH 7.0. The column was
washed with 50 mM imidazole and 100 mM NaCl, pH 7.0, and
the enzyme was eluted with 500 mM imidazole and 100 mM

NaCl, pH 7.0. The subcomplex was stored as precipitate in 70%
saturated ammonium sulfate at 4 °C. The amount of truncated
� subunit was determined via Western blotting using antibod-
ies raised against a peptide corresponding to a part of the glob-
ular portion of �; the antibodies were a kind gift from Drs.
Toshiharu Suzuki and Masasuke Yoshida (Japan Science and
Technology Agency, Tokyo, Japan). �3�3� subcomplex with
full-length � served as a standard. Blots were then developed
with enhanced chemoluminescence substrate (Thermo Scien-
tific). The expression level of � subunit was quantified by mea-
suring the integrated density of bands using a Photodyne imag-
ing system and NIH ImageJ acquisition software. Control
experiments with an anti-� antibody (Agrisera, Vännäs, Swe-
den) showed that the amount of � was not affected by the muta-
tions (Fig. S2, A and B).

The oligomeric state of �3�3� and �3�3 samples was assessed
by size exclusion chromatography. A Bio-Sil SEC 250 7.8 	
80-mm column, equilibrated with 100 mM sodium phosphate
buffer, pH 6.8, was used. The eluate was monitored by UV absor-
bance at 280 nm. The calculated molecular masses of �3�3� and
�3�3 complexes and � and � individual subunits, based on their
amino acid sequences, are 352, 320, 55, and 52 kDa, respec-
tively. BSA (66 kDa) and bovine heart lactate dehydrogenase
(137 kDa) were used as controls.

Functional analysis of mutant enzymes

ATPase activities were assayed in a buffer containing 50 mM

Tris/H2SO4, 10 mM ATP, and 4 mM MgSO4, pH 8.0, at 42 °C.
The reaction was started by addition of 10 –20 �g/ml enzyme
and stopped after 1 or 2 min (depending on the activity) by
addition of SDS (final concentration, 5%, w/v). The released Pi
was measured as described (46). 1 unit of enzymatic activity
corresponds to 1 �mol of ATP hydrolyzed (equivalent to 1
�mol of Pi produced)/min.

Binding of MgATP to the catalytic sites of the purified �3�3
or �3�3� subcomplex was measured using the fluorescence of
the inserted Trp residue �Trp341 (7, 8). Before use, the �3�3�
ammonium sulfate precipitate was pelleted by centrifugation
and redissolved in a buffer containing 50 mM Tris/HCl and 10
mM CDTA, pH 8.0. After 1-h incubation at 23 °C, the �3�3�
subcomplex was passed through two subsequent centrifuge
columns containing Sephadex G-50 equilibrated with 50 mM

Tris/HCl and 0.1 mM EDTA, pH 8.0. After this treatment, the

7 The cited references use the E. coli enzyme. Although at the N terminus of �
the amino acid numbers for G. stearothermophilus and E. coli are the same,
at the C terminus adding 2 to the G. stearothermophilus numbers gives
those for E. coli.
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enzyme subcomplex is essentially nucleotide-free (47); using
the luciferin/luciferase method after heat denaturation of the
enzyme complex, we found �0.1 mol of nucleotide (ATP plus
ADP)/mol of subcomplex. To measure MgATP binding, fluo-
rescence titrations were performed in a buffer containing 50
mM Tris/H2SO4 and 2.5 mM MgSO4, pH 8.0, with ATP added to
the desired concentration. Kd values were determined by fitting
of theoretical curves to the experimental data points by nonlin-
ear least-squares analysis. All functional assays were performed
within 2–3 days after preparation of the enzyme.

Miscellaneous

Protein concentrations were determined by the method of
Bradford (48) using BSA as a standard. Secondary structure
predictions were performed using the PredictProtein server
(49). Figs. 3 and S3 were created using PyMOL (Schrödinger,
Portland, OR) using Protein Data Bank code 1E79 (32) as start-
ing material.
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