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Abstract

Introduction: Maternal circulating 25-hydroxyvitamin D [25(OH)D] has been shown to optimize 

production of 1,25-dihydroxyvitamin D [1,25(OH)2D] during pregnancy at approximately 100 

nmoles/L, which has pronounced effects on fetal health outcomes. Additionally, associations are 

noted between low maternal 25(OH)D concentrations and vascular pregnancy complications, such 

as preeclampsia. To further elucidate the effects of vitamin D activity in pregnancy, we 

investigated the role of maternal 25(OH)D, the nutritional indicator of vitamin D status, in relation 

to placental maintenance and, specifically, expression of placental gene targets related to 

angiogenesis and vitamin D metabolism.

Methods: A focused analysis of placental mRNA expression related to angiogenesis, pregnancy 

maintenance, and vitamin D metabolism was conducted in placentas from 43 subjects enrolled in a 

randomized controlled trial supplementing 400 IU or 4,400 IU of vitamin D3 per day during 

pregnancy. Placental mRNA was isolated from biopsies within one hour of delivery, followed by 

quantitative PCR. We classified pregnant women with circulating concentrations of <100 

nmoles/L as deficient and those with ≥100 nmoles/L as sufficient. The value of each gene’s 

change in the PCR cycle threshold (ΔCT), which is a relative measure of target concentration, was 
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compared with maternal 25(OH)D concentrations <100 nmoles/L and ≥100 nmoles/L based on a 

twosample Wilcoxon test.

Results: Soluble FMS-like tyrosine kinase 1 (sFlt-1) and vascular endothelial growth factor 

(VEGF) gene expression was significantly downregulated in the maternal subgroup with 

circulating 25(OH)D ≥100 ng/mL compared to the subgroup <100 ng/mL.

Discussion: Here, we report a significant association between maternal vitamin D status and the 

expression of sFlt-1 and VEGF at the mRNA level. Achieving maternal circulating 25(OH)D ≥100 

nmoles/L suggests the impact of maternal vitamin D3 supplementation on gene transcription in the 

placenta, thereby potentially decreasing antiangiogenic factors that may contribute to vascular 

pregnancy complications.
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1. Introduction

Pregnancy has been shown to be a critical life stage in which dietary supplementation with 

vitamin D appears to have a pronounced effect on fetal health outcomes, including a 

reduction in the risks of premature labor/birth, and additional maternal comorbidities such as 

gestational diabetes, hypertensive disorders, and infection (1–6). Little is known, however, 

about the role of maternal vitamin D sufficiency on the fetus and its role in pregnancy 

protection/maintenance throughout gestation. In a recent NICHD-sponsored, 6-year 

randomized, double-blind, placebo-controlled trial investigating serum concentrations of 

active, hormonal vitamin D during pregnancy, circulating maternal 25(OH)D concentrations 

were found to be optimized at 100 nmol/L (40 ng/mL), which is twice the level normally 

observed in non-pregnant women (7). In the present study, we aimed to examine the effect of 

maternal vitamin D status on hormones with vital roles in placental development and 

maintenance.

The association of lower vitamin D concentrations with non-cardiovascular disease 

demonstrates a diverse range of pathologies in observational studies, including infectious 

diseases, obesity, bone health, cancer and multiple sclerosis (8–10). Likewise, there is 

extensive evidence from laboratory studies to suggest that vitamin D influences the vascular 

system, supported by observational studies in humans revealing the association of vitamin D 

insufficiency with increased arterial stiffness and endothelial dysfunction in the conductance 

and resistance of blood vessels (11). As endothelial dysfunction is a hallmark of pregnancy 

complications that potentially lead to premature labor and delivery, such as preeclampsia, we 

hypothesized that maternal circulating vitamin D concentrations may affect the expression of 

an array of genes linked with angiogenesis and the potential for placental insufficiency 

secondary to its abnormal vasculature.

Consistent with this hypothesis, multiple studies have shown associations between low 

maternal 25(OH)D concentrations and the risk of preeclampsia (12–14). Mirzakhani H, et al. 
(2016) demonstrated in their study of over 800 participants that higher maternal circulating 
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vitamin D concentrations both at the start of the study (first trimester) and in late pregnancy 

were associated with a lower risk of preeclampsia (15). There is still little known, however, 

about the effects of maternal circulating vitamin D concentrations on the fetus/fetal tissue; 

although new and developing studies are attempting to combat the controversy of vitamin 

D’s relation to pregnancy outcomes. Al-Garawi A, et al. (2016) recently described the gene 

expression profiles of healthy pregnancy women in the Vitamin D Antenatal Asthma 

Reduction Trial (VDAART). The conclusions of this study suggest maternal vitamin D 

levels influence transcriptional profiles and these alterations of the maternal transcriptome 

may contribute to fetal immune imprinting (16). It is proposed that these transcriptional 

changes may be related to pregnancy comorbidities, including vascular complications. 

Women with preeclampsia (a known significant vascular complication of pregnancy) are 

recognized to be at great risk for adverse pregnancy outcomes with a 20-fold increased risk 

for maternal mortality and several-fold higher risk for neonatal morbidity and mortality, 

depending on the gestational age at delivery and the presence of growth restriction in the 

fetus (17). Therefore, the placenta was chosen, due to its innately high vascularization and as 

the interface between maternal and fetal tissue, to determine how maternal vitamin D status 

affects both maternal and fetal tissue on a molecular level.

Our study primarily investigated the role of maternal vitamin D status on placental 

expression of target genes related to vascular complications of pregnancy; however, a total of 

three groups of target genes were chosen based on previously reported functions within the 

placenta. The first group chosen has critical function in the angiogenesis pathway related to 

pregnancy, and included vascular endothelial growth factor (VEGF), placental growth factor 

(PGF), and soluble fms-like tyrosine kinase 1 (sFlt-1). Additionally, regulatory genes known 

for their role in placental (and thus pregnancy) maintenance, which included progesterone 

receptor B (PRB), estrogen receptor 1 (ESR1), human chorionic gonadotropin β (hCGβ), 

and human placental lactogen (hPL) were investigated. Finally, genes related to vitamin D 

metabolism, including vitamin D receptor (VDR), glucocorticoid receptor (GRα, aka 

NR3C1), 24-hydroxylase (CYP24A1), and CYP27B1 were evaluated. Of note, CYP27B1 is 

responsible for the production of 1,25(OH)2D from 25(OH)D, while CYP24A1 catalyzes the 

conversion of 1,25(OH)2D into 24-hydroxlated products, constituting the degradation of the 

vitamin D molecule (18). We hypothesized that increased mRNA expression of 

proangiogenic genes and decreased mRNA expression of antiangiogenic factors would be 

observed in vitamin D sufficient women compared to vitamin D deficient women.

2. Methods

2.1 Study Design

This study was part of a randomized, placebo-controlled clinical trial (NCT 01932788) in 

which women provided informed consent and were followed from time of enrollment 

through delivery. The Institutional Review Board at the Medical University of South 

Carolina approved this study protocol (Pro 00020570). Enrolled mothers were 18–45 years 

of age who presented at 8–14 weeks’ gestation with a singleton pregnancy. Exclusion 

criteria included: pre-existing calcium or uncontrolled thyroid/parathyroid disease, requiring 

chronic diuretic/cardiac medications, sickle cell disease, sarcoidosis, and inflammatory 
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bowel disease. Mothers were randomized to receive placebo or 4000 IU/day vitamin D3 plus 

the standard prenatal vitamin (containing 400 IU vitamin D3). Mothers were followed 

monthly through delivery, which coincided with a total of six to seven visits prior to 

delivery, at which time placental biopsies were obtained. Of note, the treatment group was 

not known at the time of sample analysis due to study blinding. Table 1 highlights 

demographic data for the subjects whose placentas were utilized for the following study. 

Again, these forty-three women and their placentas were studied as a subset of the larger 

ongoing RCT, in which long term follow-up for the children of these pregnancies continues.

The maternal serum 25(OH)D concentrations obtained at the visit prior to delivery, either 

study visit 6 or 7 (abbreviated as V6/7), were separated into two categories: those <100 

nmol/L (<40 ng/mL) and those ≥100 nmol/L (≥40 ng/mL). Based on optimized conversion 

of 25(OH)D to 1,25(OH)2D at ≥100 nmol/L, mothers with total circulating 25(OH)D 

concentrations <100 nmol/L were defined as “deficient” and those with concentrations ≥100 

nmol/L were defined as “sufficient” (1) (7). As is standard in clinical practice, the 25(OH)D 

concentration was utilized for serum measurements as it provides the best estimate of a 

patient’s vitamin D status. We chose to study the differences between the two groups based 

on their 25(OH)D concentrations, rather than their randomized assignment to placebo vs 

treatment group secondary to the fact that our study participants remain blinded. As this 

study was a sub-aim of the RCT, the presented information will be released prior to 

unblinding of the overarching trial.

2.2 Placenta collection

From November 2013 through June 2014, placentae were collected, stored at 4°C, and 

sampled within 1 hour of delivery (n = 43). A convenience sample of forty three placentas 

were available from the larger overarching study cohort, due to the processing time 

limitation at delivery (within 1 hour). Each placenta was sampled at four different sites using 

a standard biopsy punch (3mm). Biopsy sites were approximately 5cm from the umbilical 

cord insertion, 2cm from each other, and avoided the placental edge, fibrous knots and large 

blood vessels. Each biopsy was a full thickness sample taken from the maternal through the 

fetal side of the placenta. Biopsies were washed briefly in 1X phosphate buffered saline 

(PBS), immediately placed in RNAlater solution (Thermo Fisher Scientific, Waltham, MA) 

at 4°C and stored at −20°C until RNA isolation. The protocol was modified from those of 

Wyatt et al and Pidoux et al (19, 20).

2.3 RNA isolation, reverse transcription and real-time quantitative polymerase chain 
reaction (RT-qPCR)

Total RNA was isolated from each biopsy with TRIzol reagent (Invitrogen Life 

Technologies, Waltham, MA) and purified with the SV Total RNA Isolation System 

(Promega, Madison, WI). Total RNA was treated with ribonuclease-free deoxyribonuclease I 

(DNase I; Qiagen, Venlo, Netherlands) to remove any genomic DNA contamination. 

Concentrations and quality of RNA samples were evaluated by measuring optical density 

with a NanoDrop ND-1000 (Thermo Fisher Scientific, Waltham, MA) and by formaldehyde 

gel electrophoresis. One microgram (μg) of total RNA for the placental biopsy samples 

passing the RNA quality check were pooled for each subject and reverse transcribed with the 
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iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA). Complementary DNA (cDNA) was 

stored at −20°C until RT-qPCR analysis.

RT-qPCR analysis was performed on biopsy samples. Complementary DNA was analyzed in 

triplicate by RT-qPCR amplification using an iCycler MyIQ Single Color Real-Time PCR 

Detection System (Bio-Rad, Hercules, CA). Each 15-μL DNA amplification reaction 

contained 10 mM Tris-HCl (pH 7.84), 50 mM KCl, 3 mM MgCl2, 200 μM dNTPs, 0.5% 

Tween-20, 0.8% glycerol, 2% DMSO, 200-fold dilution of SYBR Green (Invitrogen, 

Waltham, MA), 0.01 μM Fluorescein Calibration Dye (Bio-Rad, Hercules, CA), 0.2 μM of 

each primer, 0.01 U/μL AmpliTaq Gold DNA polymerase (Applied Biosystems, Foster City, 

CA) and 2-times diluted cDNA. RT-qPCR amplification conditions included an enzyme 

activation step of 95°C (5 min) followed by 30–45 cycles of 95°C (15 sec) and a primer 

specific combined annealing/extension temperature (30 sec). Based on primer optimization 

runs, 30 cycles were utilized for expression data for the target gene hPL but otherwise 45 

cycles of 95°C (15 sec) were utilized for all other target genes. The specificity of 

amplification was confirmed by the melt-curve analysis.

Triplicate data for each gene were averaged and mRNA expression levels were determined 

by the comparative CT method (also known as the 2−ΔΔCT method, or for individual data 

points 2−ΔCT). Primer sequences, annealing/extension temperatures and GenBank accession 

numbers are reported in Table 2.

2.4 Statistical analysis

NormFinder software (Aarhus, Denmark) was utilized to identify the normalization gene out 

of the internal control data (21). GAPDH was identified as having the greatest stability 

value. Allowing for ease of presentation as well as the ability to present the data as ‘fold 

change’ in expression (see Equation 1), the aforementioned ΔCT quantification method was 

used. The ΔCT was identified as the difference between the average cycle threshold of the 

target gene and the internal control (GAPDH). To be consistent, analyses were based on 

analyzing Real time PCR data based on ΔCT supported by Yuan et al (22). This equation 

and its derivation have been previously reported in Applied Biosystems User Bulletin No. 2 

(P/N 4303859) (23).

We applied the 2−ΔCT for analysis to correlate the individual data points, rather than 

compare between two treatment groups, as the ΔΔCT equation is typically utilized. By this 

method, we were able to compare gene expression in two different samples (vitamin D 

deficient vs sufficient mothers) and relate this to an internal control gene (GAPDH).

Fold change = 2−ΔCT

= 2− CT target gene − CT internal control
Equation 1.

By using the above equation/method for analysis, the data may be interpreted as the 

expression of the target gene relative to the internal control gene. The data were then 

separated into the two categories of maternal vitamin D status (i.e. deficient vs sufficient) for 
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comparative purposes. Demographics between the vitamin D sufficient and vitamin D 

deficient mothers were compared based on two-sample Wilcoxon test and Fisher’s Exact test 

(see Table 1). The expression of the eleven genes (ΔCT values) were compared between the 

vitamin D sufficient and vitamin D deficient mothers based on two-sample Wilcoxon test. 

ΔCT values for the vitamin D sufficient and vitamin D deficient group were summarized 

using their median and inter quantile range (IQR). The associations between 25(OH)D 

concentration and gene expression were examined using Spearman’s rank correlation test. 

Multiple regression models were performed by regressing ΔCT values on 25(OH)D 

concentration, maternal age, BMI and race/ethnicity for each of the eleven genes. Data were 

analyzed using R version 3.1.2 (R Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1 Effect of maternal 25(OH)D concentrations on angiogenic factors (VEGF, PGF and 
sFlt-1)

Thirteen women were defined as vitamin D deficient and thirty as vitamin D sufficient at 

V6/7 (see Table 1). The results of the two-sample Wilcoxon test revealed the ΔCT values for 

VEGF and sFlt-1 are significantly different between the vitamin D <100 nmol/L and the 

vitamin D ≥100 nmol/L group at 0.05 level. For VEGF, the median values are 2.7 (IQR: 2.2, 

3.0) and 3.6 (IQR: 2.9, 4.6) in the vitamin D <100 nmol/L group and the vitamin D>100 

nmol/L group, respectively. For sFlt-1, the median ΔCT values are −3.7 (IQR: −4.1, −3.6) 

and −2.7 (IQR: −3.6, −1.9) in the vitamin D <100 nmol/L group and the vitamin D>100 

nmol/L group, respectively.

The expression of sFlt-1, PRB, hPL, and GRα were also associated with mother’s baseline 

vitamin D status. At baseline, thirty-six women were vitamin D deficient and seven women 

were vitamin D sufficient. A two-sample Wilcoxon test revealed the values for sFlt-1, PRB, 

hPL and GRα are significantly different between the vitamin D <100 nmol/L and the 

vitamin D ≥100 nmol/L group at 0.05 level. For sFlt-1, the median ΔCT values are −3.6 

(IQR: −4.0, −2.5) and −1.6 (IQR: −2.5,−1.2) in the vitamin D <100 nmol/L group and the 

vitamin D>100 nmol/L group at V1, respectively. Spearman’s rank correlation tests revealed 

that higher baseline 25(OH)D concentration is associated with higher ΔCT values of VEGF 

(r=0.30, p=0.050), PGF (r=0.30, p=0.047), sFlt-1 (r=0.31,p=0.041), PRB (r=0.36, p=0.017) 

and GRα (r=0.31, p=0.045). Table 3 summarizes each gene’s values in the vitamin D 

deficient and sufficient group based on their median and interquartile range [(IQR) 

representing the 25th and 75th percentiles].

Additionally, we analyzed the fold change in expression for each of these angiogenic factors. 

The mean(sd) for PGF of 2−ΔCT (vitamin D deficient group) is 12.5(7.4) and the mean(sd) 

2−ΔCT (vitamin D sufficient group) is 11.5(11.5). When compared to the vitamin D deficient 

group, the mothers who were vitamin D sufficient demonstrated a downregulation in PGF by 

1.1 fold. There is no statistically significant difference in PGF expression between the two 

groups (pval=0.72).

For VEGF, however, the mean(sd) of 2−ΔCT (vitamin D deficient group) is 0.20(0.12) and 

the mean(sd) of 2−ΔCT (vitamin D sufficient group) is 0.11(0.10). When compared to the 
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vitamin D deficient group, the mothers who were vitamin D sufficient demonstrated a 

downregulation in VEGF by 1.7 fold. There is a significant difference in VEGF expression 

between the two groups (pval=0.04) at a significance level of 0.05.

Likewise, the mean(sd) of 2−ΔCT (vitamin D deficient group) is 15.6(8.8) and the mean(sd) 

of 2−ΔCT (vitamin D sufficient group) is 9.2(8.1) for sFlt-1. When compared to the vitamin 

D deficient group, the mothers who were vitamin D sufficient demonstrated a 

downregulation in sFlt-1 by 1.7 fold. There is a significant difference in sFlt-1 expression 

between the two groups (pval=0.03) at a significance level of 0.05.

Figure 2 demonstrates the fold change conversion for each target gene as compared with the 

vitamin D sufficiency. In other words, the mean ΔCT values of each target gene in the 

vitamin D deficient group were obtained and the mean ΔCT values of each target gene in the 

vitamin D sufficient group were obtained; the two groups were then compared (based on 

fold change analysis) to see if a mother’s status (i.e. vitamin D sufficiency) could be 

correlated with decreased or increased expression of that gene (i.e. up/downregulation).

The effect of baseline 25(OH)D on placental gene expression was examined in multiple 

regression models adjusting for maternal age, BMI and race/ethnicity. As shown by Table 4, 

the concentration of baseline 25(OH)D is associated with VEGF expression after 

considering other variables in the model at a significance level of 0.05. Baseline 25(OH)D is 

not significantly associated with the expression of other genes we considered after adjusting 

for maternal age, maternal baseline BMI and race/ethnicity. The concentration of 25(OH)D 

at V6/7 is not associated with any of the eleven genes we considered at a significance level 

of 0.05, adjusting the effect of maternal age, maternal baseline BMI and race/ethnicity.

While there is expected to be some baseline level of upregulation in many of these target 

genes during pregnancy and higher expression of some of these target genes (VEGF and 

sFlt-1) in vascular disorders of pregnancy, the maternal serum 25(OH)D status (i.e. 

sufficiency) appears to have a significant effect on downregulating the overall expression of 

these genes as compared to deficient women. There was a small, although not significant, 

decrease in PGF expression in the sufficient group.

3.2 Effect of maternal 25(OH)D concentrations on placental maintenance (PRB, ESR1, 
hCGβ, hPL) and vitamin D metabolism (CYP24A1, CYP27B1, GRα, VDR)

As shown in Table 3, the results of the analysis did reveal a significant association between 

baseline (V1) 25(OH)D concentrations and certain genes related to placental maintenance, 

to include PRB (pval=0.02) and hPL (pval=0.03), as well as GRα (pval=0.02), whose role is 

known in vitamin D metabolism. However, the analysis did not reveal a significant 

difference for the mRNA expression of ESR1 or hCGβ between the group with circulating 

25(OH)D <100 nmol/L vs. ≥100 nmol/L group. Likewise, no significant difference was 

found in other specific genes involved in vitamin D metabolism, including CYP24A1, 

CYP27B1, or VDR.
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4. Discussion

The major finding of our study was a statistically significant association between maternal 

vitamin D sufficiency (as defined by a total circulating 25(OH)D concentration >40 ng/mL) 

and decreased expression (downregulation) of VEGF and sFlt-1 as compared to the 

expression in deficient mothers, which is the first report of this association. Notably, 

maternal vitamin D sufficiency at baseline and at the last visit prior to delivery (V6/7) were 

both associated with decreased expression of sFlt-1 at 0.05 level. Maternal vitamin D 

sufficiency at baseline and at last visit were also associated with decreased expression of 

VEGF. The expression of PRB, hPL and GRα were also significantly associated with 

vitamin D deficiency at baseline. We also observed an association between baseline maternal 

25(OH)D concentrations and the expression of VEGF, PGF, sFlt-1, PRB and GRα at a 

significance level of 0.05.

Due to our limited sample size, none of these associations were significant after the 

Bonferroni adjustment for multiple testing, however, our results can still provide insights 

regarding the role of vitamin D in placenta gene regulation. Also, the Bonferroni adjustment 

is known to be conservative especially when the tests are correlated. In our paper, we found 

significant correlations among the expression of the eleven genes we considered. For 

example, the expression of sFlt-1 was associated with GRα (r=0.77, p<0.001) and the 

expression of VEGF was associated with PRB (r=0.80, p<0.001). Therefore, the Bonferroni 

approach will lead to overly conservative results for our study.

We can reason from this data set that if our mothers were vitamin D sufficient (≥100 

nmol/L), their expression of sFlt-1 was lower than the expression of sFlt-1 in those mothers 

who were vitamin D deficient. This reduction in expression, with maternal vitamin D 

sufficiency, suggests the ability to potentially decrease sFlt-1 expression during pregnancy. 

Reduction in sFlt-1 demonstrates the potential for vitamin D3’s role in decreasing 

antiangiogenic factors that may contribute to vascular pregnancy complications, such as 

preeclampsia.

The association between high levels of sFlt-1 and maternal development of preeclampsia has 

been well demonstrated in both laboratory and clinical studies (24–29). As an antiangiogenic 

factor, sFlt-1 is known to cause vasoconstriction and endothelial damage in the placenta, 

thereby inducing a cascade of placental insufficiency, intrauterine fetal growth restriction 

and vascular comorbidities of pregnancy, such as preeclampsia. Likewise, PGF is often 

decreased in these disease processes, leading to the well cited relationship and diagnostic 

predictive value of the sFlt-1/PGF ratio. A higher ratio of sFlt-1 to PGF has been associated 

with an increased risk of preeclampsia (30–33).

Despite a small and insignificant decrease in the overall expression of PGF in women who 

were vitamin D sufficient compared to those who were deficient, the results of our study 

yielded evidence to support a relatively high expression in PGF in this cohort. More 

importantly, our study revealed the potential at sufficient concentrations of circulating 

25(OH)D ≥100 nmol/L to reduce gene expression in sFlt-1, which may provide important 

clinical data to warrant maternal 25(OH)D monitoring/optimization throughout pregnancy—
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especially in women predisposed to vascular pregnancy complications. Our results revealed 

decreased expression of VEGF in women who were considered vitamin D sufficient, which 

has previously not been described. This may reflect a lower need for new vasculature toward 

the end of pregnancy/third trimester, as increased vascularization and expression of VEGF is 

most important in early gestation (34).

This was a candidate gene study, based on existing evidence of the roles of the selected 

genes in the biological pathways of vitamin D regulation, placental maintenance and 

vascular complications of pregnancy. Of course, there are limitations to the subjective nature 

of the selection of these genes secondary to our team’s specific interests, as there are a host 

of additional genes that could have been chosen for analysis. Further investigation of the role 

of vitamin D supplementation on placental vascular development and regulation throughout 

pregnancy is warranted in a larger population, as the independent contribution of a single 

gene, as compared to the influence and contribution of many other genes, is difficult to 

assess in this small sample size. However, our genes of interest and the results we obtained 

provide the foundation for future studies to expound on the effects of maternal 25(OH)D 

concentrations in relation to the development of vascular compromise/complications of 

pregnancy.

In terms of clinical limitations of this study, patient compliance/variation of vitamin D 

concentrations are innate to the study protocol. Each mother in the study obtained a pill 

count at each individual appointment throughout the course of the study. If the study 

individuals were not at least 75% compliant with their supplement, they were exited from 

the study. As the study remains blinded, treatment allocation remains unknown; however, 

maternal circulating 25(OH)D concentrations were measured on a monthly basis for safety 

reasons and are the best indicator of vitamin D status (35).

Additionally, placental biopsy sampling yields a possible laboratory limitation. Pidoux et al. 

describes the intra- and inter-placental variability that may occur as a result of full thickness 

placental biopsies (20). This was a key reason for the specifications of biopsy sampling sites 

among our population; however, the limits of processing biopsies that encompass both 

maternal and fetal tissue remain. As each placental sample was frozen, stored and 

homogenized using the same method, it is unlikely that this added to the potential 

discrepancy of mRNA expression variability, especially amongst those genes for which 

mRNA expression was not statistically significant between the two maternal groups. It is 

unclear whether no (or little) change in mRNA expression could indicate an increase on the 

maternal tissue but a decrease on the fetal side, or vice versa. While there are reports of 

histological separation of placental tissue at the fetal and maternal interface, to our 

knowledge technology does not yet exist for gross sample separation.

While this study revealed an early molecular basis in favor of vitamin D sufficiency during 

pregnancy, there is a great deal of work to be done for clinical relevancy. For example, 

protein analysis is needed to corroborate the mRNA results. Additionally, we expect the 

results of the overarching clinical study to provide a wealth of knowledge as to the maternal 

and neonatal outcomes of the supplemented mothers. Two of the women, out of the total 43 

we observed, experienced preeclampsia with resultant preterm deliveries at 35 weeks and 
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36+3 weeks, respectively. While the sample size of this study is large enough to detect 

placental gene expression changes, it was not large enough to detect associative gene 

expression changes with clinical outcome.

4.1 Conclusions

Our data may serve to demonstrate the impact of maternal vitamin D3 supplementation on 

gene transcription in the placenta. The results are suggestive of the possibility to modify 

placental gene expression to improve placental health for those women at risk for suspected 

vascular disorders of pregnancy. This is the first step to further elucidate the role of maternal 

supplementation with vitamin D3 in factors relating to placental health.
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Highlights

• Definition of maternal 25(OH)D sufficiency during pregnancy is reviewed.

• Placental changes in vascular disorders of pregnancy are discussed.

• Sufficient 25(OH)D concentrations in relation to placental expression is 

presented.

• Vitamin D3 supplementation impact on placental gene transcription is 

highlighted.

• Improving outcomes of suspected vascular disorders of pregnancy is offered.
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Figure 2. 
Placental target gene expression in vitamin D sufficient cohort as compared to deficient 

women. Calculated fold change difference between vitamin D deficient vs sufficient groups. 

Shown negative values indicate downregulation and positive values indicate upregulation in 

women who were sufficient. Comparatively, vitamin D sufficiency resulted in 

downregulation of all but three of the genes tested. Results represent the fold change +/− 

standard deviation of each target gene. Genes with significant results are shown with an 

asterisk (*).
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Table 1.

Comparison of maternal and infant characteristics of women classified as 25(OH)D sufficient (≥100 nmoles/L) 

or deficient (<100 nmoles/L) prior to delivery.

Maternal 25(OHD <100 
nmoles/L

Maternal 25(OH)D ≥100 
nmoles/L

Total p-value*

N (%) N (%) N (%)

Ethnicity 0.04

African American 5 (11.6) 6 (13.9) 11 (25.6)

Hispanic 6 (13.9) 11 (25.6) 17 (39.5)

Caucasian 1 (2.3) 13 (20.2) 14 (32.5)

American Indian 1 (2.3) 0 (0.0) 1 (2.3)

Insurance 0.10

Private 2 (4.7) 13 (30.2) 15 (34.9)

Medicaid 7 (16.3) 7 (16.3) 14 (32.6)

Self-Pay 4 (9.3) 10 (23.3) 14 (32.6)

Marital Status 0.76

Single 4 (9.3) 5 (11.6) 9 (20.9)

Married 6 (13.9) 18 (41.9) 24 (55.8)

Cohabitating 3 (7.0) 7 (16.3) 10 (23.3)

Mean ± SD Mean ± SD Mean ± SD

Maternal age (years) 36.9 ± 4.2 28.9 ± 4.2 28.3 ± 4.3 0.31

Maternal BMI 30.3 ± 8.2 28.7 ± 8.1 29.2 ± 8.0 0.56

Maternal 25(OH)D baseline (ng/mL) 58.4 ± 22.7 71.9 ± 23.7 67.9 ± 23.9 0.10

Maternal 25(OH)D V6/7 (ng/mL) 60.9 ± 26.2 140.5 ± 31.2 116.6 ± 47.2

Infant gestational age (weeks) 39.2 ± 1.2 38.5 ± 1.8 38.7 ± 1.7 0.24

Infant birth weight (grams) 3381 ± 562 3363 ± 517 3369 ± 524 0.64

*
p-values are included to identify the association between maternal vitamin D status and other demographic variables of interest.

Of note, African Americans and Hispanics are more likely to be vitamin D deficient (p=0.043). The type of insurance (p=0.104), maternal marriage 
status (p=0.759), maternal age (p=0.306), gestational age (p=0.239), baseline 25(OH)D (p=0.096), maternal BMI (p=0.563), birthweight (p=0.644) 
were not significantly different between the vitamin D sufficient and vitamin D deficient patients.
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Table 3:

The effect of vitamin D deficiency* on placenta gene expression (ΔCT).

Vitamin D deficient at 
V1 Median(IQR)

Vitamin D sufficient at 
V1
Median(IQR)

p-value Vitamin D deficient at 
V6/7 Median(IQR)

Vitamin D
sufficient at V6/7 
Median(IQR)

p-value

VEGF 3.1(2.2,4.0) 4.3(3.6,5.0) 0.068 2.7(2.2,3.0) 3.6(2.9,4.6) 0.014

PGF −3.5(−4.0,−2.4) −2.3(−2.6,−0.5) 0.056 −3.4(−4.0,−2.9) −2.8(−3.9,−1.7) 0.191

sFlt-1 −3.6(−4.0,−2.5) −1.6(−2.5,−1.2) 0.010 −3.7(−4.1,−3.6) −2.7(−3.6,−1.9) 0.008

PRB 7.8(6.7,9.0) 10.0(9.2,10.7) 0.021 7.3(6.5,8.5) 8.7(7.1,9.5) 0.113

ESR1 7.9(7.4,8.5) 9.4(8.3,10.0) 0.069 7.6(6.8,8.3) 8.3(7.5,9.3) 0.061

hCGb −6.3(−7.6,−5.5) −4.5(−5.9,−3.8) 0.065 −6.4(−7.2,−6.0) −5.9(−7.6,−4.6) 0.355

hPL −14.4(−14.9,−13.3) −13.4(−13.8,−12.7) 0.031 −13.7(−14.6,−13.4) −14.2(−14.9,−13.2) 0.509

CYP24A1 5.6(4.5,6.3) 7.0(5.3,7.5) 0.237 5.6(5.0,6.4) 5.8(4.7,7.0) 0.765

CYP27B1 7.7(6.8,8.5) 8.3(8.0,10.0) 0.097 7.6(6.7,8.4) 8.1(7.0,9.0) 0.451

GRα 0.6(−0.5,1.2) 2.0(1.8,2.2) 0.022 0.2(−1.3,1.1) 1.0(−0.1,2.0) 0.128

VDR 7.4(6.9,8.4) 8.6(7.3,8.9) 0.236 7.2(7.1,8.2) 7.7(6.9,8.5) 0.853

*
25(OH)D<100nmol/L
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Table 4:

The effect of baseline 25(OH)D concentration on VEGF expression adjusted for maternal age, maternal 

baseline BMI and maternal race/ethnicity.

Variables Estimate Std. Error p-value

25(OH)D at baseline 0.05 0.02 0.048

Maternal Age 0.00 0.04 0.921

Maternal baseline BMI 0.01 0.03 0.584

African American Reference

Caucasian 0.67 0.53 0.218

Hispanic 0.94 0.47 0.055
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