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Abstract

Focal adhesion kinase (FAK) plays a vital role in tumor cell proliferation, survival and migration. 

Altered metabolic pathways fuel rapid tumor growth by accelerating glucose, lipid and glutamine 

processing. Besides the mitogenic effects of FAK, evidence is accumulating supporting the 

association between hyper-activated FAK and aberrant metabolism in tumorigenesis. FAK can 

promote glucose consumption, lipogenesis, and glutamine dependency to promote cancer cell 

proliferation, motility, and survival. Clinical studies demonstrate that FAK-related alterations of 

tumor metabolism are associated with increased risk of developing solid tumors. Since FAK 

contributes to the malignant phenotype, small molecule inhibition of FAK-stimulated bioenergetic 

and biosynthetic processes can provide a novel approach for therapeutic intervention in tumor 

growth and invasion.
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1. Introduction

Cell attachment to the extracellular matrix (ECM) is involved in fundamental activities from 

embryogenesis to tumorigenesis. Actin filaments are fastened to focal adhesions with the 

help of a multi-protein complex that “adheres” actin microfibers to the ECM proteins. 

Numerous proteins located in the focal adhesions or actin filament termini-ECM joint 

regions have been identified such as α-actinin, filamin, vinculin, fibronectin, integrin, talin, 

paxillin, and focal adhesion kinase (FAK). Focal adhesions are dynamic structures that 
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constantly change or reorganize in response to microenvironmental cues such as ECM 

alterations, growth factors, and nutrient availability (Fletcher & Mullins, 2010). For 

example, integrin engagement or growth factor stimulation promotes FAK interaction with 

Src, leading to activation of downstream pathways such as Ras/MAPK signaling (Guan & 

Shalloway, 1992; Schlaepfer, Hanks, Hunter, & van der Geer, 1994). FAK interactions with 

integrins and growth factor receptors contribute to cell anchorage dependency, motility, and 

invasive growth, which are associated with malignant overgrowth and pro-survival.

Human FAK, encoded by the protein tyrosine kinase 2 gene, consists of N-terminal FERM, 

central catalytic, and c-terminal focal adhesion targeting (FAT) domains. The N- and C-

terminal domains of FAK form an autoinhibitory structure (Lietha, et al., 2007). FAK 

interactions with membrane receptors including integrins and IGF1R are believed to induce 

a conformational switch of FAK to expose phosphorylation sites such as Y397. 

Phosphorylation of FAK at Y397 can promote FAK binding and phosphorylation of acceptor 

proteins including Src. FAK activation of Src can stimulate several signal transduction 

pathways such as PI3K-Akt, RAF/JNK, and Rho/Rac/PAK (J. Zhang, et al., 2013). 

Activation of those cascades modulates cell motility and survival. For example, Y397 

phosphorylation of FAK plays a critical role in cell migration (Ritt, Guan, & 

Sivaramakrishnan, 2013). Casapse cleavage of FAK into two fragments results in removal of 

autoinhibition and release of the FAT domain (Gervais, Thornberry, Ruffolo, Nicholson, & 

Roy, 1998). The FAT fragment inhibits FAK activity through dephosphorylation and induces 

cell death.

Overexpression and hyperphosphorylation of FAK are associated with many types of solid 

tumors. Lethality of FAK knock out indicates an essential role of FAK in fetal development. 

In adult tissues, FAK levels are relatively low, but can be elevated during wound healing and 

transformation processes (Gates, King, Hanks, & Nanney, 1994; Moissoglu & Gelman, 

2003; Nagaharu, et al., 2011; Tamura, et al., 2003). Hyperactivity of FAK can promote 

survival and motility, contributing to tumorigenicity and metastasis. For example, the levels 

of FAK expression were low in the normal colon or benign breast epithelium but high in the 

biopsies derived from patients with colon and metastatic breast cancer (Cance, et al., 2000; 

Lark, et al., 2005). Furthermore, the levels of FAK mRNA in normal tissues were very low, 

but were overexpressed in varied primary and metastatic tumors (Golubovskaya, Kweh, & 

Cance, 2009). FAK overexpression and phosphorylation were associated with Barrett’s 

associated esophageal adenocarcinoma, prostate-carcinoma, gastric cancer recurrence, 

squamous cell carcinoma, progression of hepatocellular carcinoma, thyroid cancer, small-

cell lung carcinoma, and oral tumor cell invasion (Aprikian, Tremblay, Han, & Chevalier, 

1997; Aronsohn, Brown, Hauptman, & Kornberg, 2003; Itoh, et al., 2004; S. J. Kim, et al., 

2004; Lai, et al., 2010; Ocak, Chen, Callison, Gonzalez, & Massion, 2012; Rovin, Frierson, 

Ledinh, Parsons, & Adams, 2002; Schneider, et al., 2002; Watanabe, et al., 2008; Yuan, et 

al., 2010).

The mitogenic effects of FAK on cell proliferation and survival in normal and neoplastic 

tissues have been well accepted and reviewed (Hauck, Hsia, & Schlaepfer, 2002; Lietha, et 

al., 2007; G. Liu, et al., 2008; Schlaepfer, et al., 1994; Ucar & Hochwald, 2010; Zachary & 

Rozengurt, 1992). The role of FAK in metabolism under normal and disease conditions such 
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as cancer has not been critically evaluated or summarized. Increasing evidence indicates a 

role for FAK modulation of glucose, lipid and glutamine metabolism that is likely essential 

for tumor cell rapid growth, survival and invasion.

2. FAK-promoted glucose consumption in neoplastic proliferation

Growth factors such as insulin/IGF-1 and anchorage are primary extracellular cues that 

stimulate cell proliferation. FAK interactions with IGF-1R and integrins transmit these 

growth signals by activating effectors such as PI3K/Akt, promoting glucose consumption to 

fuel rapid growth in tumor cells (Fig 1).

i) FAK modulation of insulin-stimulated glucose uptake

The direct binding of FAK with insulin receptor substrate (IRS) proteins and the role of FAK 

in controlling expression of insulin receptor substrate-1 (IRS-1) has been previously shown 

(Lebrun, Baron, Hauck, Schlaepfer, & Van Obberghen, 2000). Insulin binds to its receptors, 

triggering IRS-FAK activation and intracellular signal cascades that mediate a number of 

cellular processes including an increase in glucose transport (Baron, Calleja, Ferrari, 

Alengrin, & Van Obberghen, 1998; El Annabi, Gautier, & Baron, 2001; Goel & Dey, 2002; 

Huang, Cheung, Parsons, & Bryer-Ash, 2002; Knight, Yamauchi, & Pessin, 1995; Lebrun, et 

al., 2000; Ouwens, et al., 1996; Pillay, Sasaoka, & Olefsky, 1995). FAK activation 

reorganizes actin filaments to form a mesh harboring the glucose transporter. Translocation 

and activation of transporter 4 promotes glucose uptake through PI3K/Akt activation in 

skeletal muscle cells (Bisht & Dey, 2008). Furthermore, fibronectin activation of FAK 

through integrin-ECM interaction stimulates glucose uptake in endothelial cells (Paik, Ko, 

Jung, & Lee, 2009). In hepatocytes, FAK modulates glycogen synthesis by stimulating Akt/

GSK-3β signaling (Huang, et al., 2002).

Oncogenes alter metabolic pathways, contributing to increased glucose uptake and 

dependency for cancer cell viability. This unique feature of malignant cells has been applied 

to tumor detection using positron emission tomography imaging with the radiolabeled 

glucose analog 18F-fluorodeoxyglucose. High levels of glucose increase integrin-ECM 

stimulation of FAK activity and enhances stem cell proliferation (Kroder, et al., 1996). On 

the other hand, glucose withdrawal induces aberrant tyrosine phosphorylation of focal 

adhesion protein in glucosedependent cell lines such as glioblastoma, sarcoma, and 

melanoma (Graham, et al., 2012). FAK modulation of insulin signaling is likely to be cell 

type specific since FAK activation is negatively correlated with glucose uptake in neuronal 

cells (Gupta, Bisht, & Dey, 2012).

Glucose is one of the major cellular sources of energy and building materials that are 

required for proliferation. FAK stimulation of glucose uptake is expected to be correlated 

with increased proliferation. Indeed, FAK overexpression or hyperactivation is common in 

solid tumors. In addition, tyrosine kinases including FAK modulate the levels of glucose 

transporters (Anichini, et al., 1997; Bisht & Dey, 2008) and the proliferation index (T. J. Liu, 

et al., 2007; Serrels, et al., 2012; Zhelev, et al., 2004) in muscle and tumor cells.
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ii) FAK-IGF1R signaling in tumor glucose metabolism

IGF-1/IGF1R signaling has potent effects on cell survival through promoting proliferation 

and suppressing apoptosis. The metabolic effects of the IGF-1/IGF1R axis on glucose 

metabolism are less known. Several lines of observations support the role of the IGF-1/

IGF1R cascades in glucose processing. First, IGF1R often forms complexes with insulin 

receptors. Thus, IGF1R can have influence on insulin stimulation of glucose consumption 

via the insulin receptor/IGF1R complex. Secondly, IGF-1 can directly bind with insulin 

receptors, indicating IGF signaling in modulation of glucose metabolism. Thirdly, IGF-1/

IGF1R stimulation of rapid proliferation needs sustained energy and cellular biosynthesis. 

IGF1R stimulated glucose uptake can meet this high demand (Kuemmerle, 2012).

Activation of IGF-1R signaling is correlated with primary and metastatic malignancies such 

as prostate, breast, pancreatic, and lung cancer (Moser, et al., 2008; Putz, et al., 1999; 

Resnik, Reichart, Huey, Webster, & Seely, 1998; Warshamana-Greene, et al., 2005). The 

anti-apoptosis property of IGF1R-triggered kinase cascades contributes to cancer cell 

resistance to cytotoxicity and vascularization. When EGFR pathways are blocked by 

inhibitors such as Erlotinib, IGF1R can resume EGFR-related signaling and promote breast 

cancer survival. IGF1R-enhanced angiogenesis is involved in tumor invasion and metastasis 

(Ackermann, Morse, Delventhal, Carvajal, & Konerding, 2012; Kucab & Dunn, 2003; 

Menu, et al., 2007).

The Hochwald laboratory and others have demonstrated FAK interaction with and 

stabilization of IGF1R (Andersson, D’Arcy, Larsson, & Sehat, 2009; W. Liu, et al., 2008). 

The N-terminal FERM domain of FAK directly binds to IGF1R, leading to PI3K/Akt 

activation and survival. Small molecule inhibition of FAK-IGF1R interactions induces 

apoptosis and prevents tumor growth. Antibody-mediated inhibition of IGF1R signaling 

results in decreased Akt activity and glucose uptake (Shang, et al., 2008). Impaired kinase-

independent biological functions of IGF1R leads to decreased intracellular glucose levels 

and viability of cells derived from human embryonic kidney and metastatic breast cancer 

(Janku, Huang, Angelo, & Kurzrock, 2013).

iii) Clinical associations of increased glucose levels and cancer risk

Increased glucose uptake and associated metabolism are hallmarks of malignancy. Abnormal 

IGF1R signaling can contribute to tumor metabolic pathways since increased IGF1R mass 

and/or activity may enhance insulin receptor-induced glucose utilization. IGF1R signaling 

may promote the shift of cellular balance favoring biosynthesis to support neoplastic 

proliferation. Several studies show that high glucose levels are correlated with increased 

cancer risk (Chocarro-Calvo, Garcia-Martinez, Ardila-Gonzalez, De la Vieja, & Garcia-

Jimenez, 2013; Kabat, et al., 2012; Wulaningsih, et al., 2013). A large clinical study 

(540,309 participants) demonstrated that high serum glucose levels were linked with 

increased risks of development of colon cancer (Wulaningsih, et al., 2012). Quartile analysis 

indicated a positive association between glucose levels and risks of kidney cancer (Van 

Hemelrijck, et al., 2012). These observations demonstrate the possible need for monitoring 

aberrant glucose levels or metabolism to identify individuals at high risk of developing 

certain types of malignancies such as colon cancer (Aleksandrova, et al., 2011).
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3. Lipid-FAK interactions in tumorigenesis

i) The role of lipids in FAK-promoted tumor motility and invasive growth

Lipid metabolism can affect the scaffolding and kinase functions of FAK (Fig 2). Lipids in 

the cell membrane provide the necessary microenvironment for FAK interactions with 

receptors such as integrins and IGF1R. In addition, lipid rafts can facilitate the translocation 

of FAK-associated complexes in FAK-promoted signal transduction. For example, lipid rafts 

are associated with FAK stimulation of ERK1/2 and neurite outgrowth (Niethammer, et al., 

2002). Lipid rafts and FAK interactions contribute to cell adhesion signaling (Shima, Nada, 

& Okada, 2003).

FAK activation and association with Src family members can transmit growth cues by 

forming complexes with membrane-bound receptors such as integrins, IGF1R, and EGFR in 

lipid rafts. Indeed, translocation of the neuronal cell adhesion molecule from FGFR 

complexes into FAK-associated lipid rafts promotes focal adhesion assembly, cell motility 

and invasive growth (Lehembre, et al., 2008). Disrupting the lipid rafts attenuates EMT and 

cell spreading (Lehembre, et al., 2008). A synthetic lipid analog promotes invasiveness of 

colon cancer cells through upregulation of integrin-FAK phosphorylation/activation, 

interactions, and scaffolds (Van Slambrouck, et al., 2007).

ii) FAK and lipid metabolism in neoplastic growth

FAK can affect lipid metabolism by controlling the supply of precursors and enzyme activity 

of proteins involved in lipid synthesis. Citrate is exported from mitochondria into the cytosol 

and converted to fatty acid (Fig 2). Growth factor and anchorage-dependent activation of 

FAK enhances glucose uptake. This can maintain the carbon supply for increased lipid 

synthesis in proliferative cells.

FAK and fatty acid biosynthesis: Citrate conversion to acetyl-CoA, malonyl-CoA, long 

chain fatty acid, and unsaturated fatty acid oleate involves ACLY, acetyl-CoA carboxylase, 

fatty acid synthetase, and stearoyl-CoA desaturase (Fig 2). Aberrant enzyme activity and de 
novo lipogenesis are associated with many types of solid tumors such as lung, gastric, and 

breast cancers (Migita, et al., 2008; Varis, et al., 2002; Yancy, et al., 2007). SREBP-1 

activation of PI3K/Akt signaling and Myc-regulated glutaminolysis to lipid metabolism are 

linked to metabolic reprogramming in cancer cells (Guo, Bell, Mischel, & Chakravarti, 

2013). Inhibition of key lipogenic enzymes, ACLY and fatty acid synthetase, decreases FAK, 

Akt, and paxillin activity and cell motility (Zaytseva, et al., 2012). Insulin activation of 

ACLY involves FAK-induced phosphorylation/translocation of insulin receptors (Brownsey, 

Edgell, Hopkirk, & Denton, 1984). Depletion of raft cholesterol impairs chemokine and 

growth factor stimulated FAK recruitment and adhesion, thus, contributing to anoikis like 

apoptosis (J. H. Jeon, et al., 2010; Le, Honczarenko, Glodek, Ho, & Silberstein, 2005; E. K. 

Park, et al., 2009; Ramprasad, et al., 2007).

iii) Lipids and cancer risk

Cancer and proliferating cells have enhanced biosynthesis of fatty acids by channeling 

glucose and/or glutamine into the TCA cycle and upregulation of lipid biosynthetic enzymes 
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(Ridgway, 2013). The levels of certain lipid components and lipogenic enzymes are 

associated with the risks of kidney and breast cancer (Van Hemelrijck, et al., 2012; Wang, et 

al., 2013). High fat diets stimulate bile acid secretion into the gastrointestinal tract. Bile 

acids are correlated with colon cancer, and lipid-lowering drugs may reduce the risk of 

colorectal tumor (Cai, Dupertuis, & Pichard, 2012; McMichael & Potter, 1985; Simon, et al., 

2012; van Duijnhoven, et al., 2011). At high physiological levels, the bile acid deoxycholic 

acid, induced colonic tumor formation in mice (Bernstein, et al., 2011). Deoxycholic acids 

decreased phosphorylation of FAK at tyrosine-576/577 (Tyr-576/577) and Tyr-925, 

promoted Src binding with FAK, and triggered inside-out signaling in colon cancer cells 

(Khare, Holgren, & Samarel, 2006). FAK interactions with Src can induce downstream 

cascades including PI3K/Akt. Indeed, bile acid-induced colon cancer is likely associated 

with PI3K/Akt signaling-increased survival and proliferation (Raufman, Shant, Guo, Roy, & 

Cheng, 2008).

4. FAK-associated deregulation of glutamine metabolism in cancer cell 

survival and proliferation

Many cancer cells such as pancreatic ductal adenocarcinoma rely on glutamine for their 

survival and biosynthetic needs (Wilson, Erickson, Antonyak, & Cerione, 2013). Although 

the direct link of FAK activation and glutamine deregulation warrants further investigation, 

current data suggests that the scaffold and kinase functions of FAK can contribute to cell 

sensing microenvironmental cues and modulation of amino acid and protein metabolism. For 

example, FAK activation is associated with K-Ras and H-Ras induced transformation of 

NIH3T3 cells and rat fibroblasts (J. Jeon, et al., 2007). In addition, aberrant activation of 

oncogenes such as Myc and K-Ras mediate reprograming of glutamine metabolism (Son, et 

al., 2013; Wise & Thompson, 2010) (Fig 3). FAK hyper-activation is associated with 

uncontrolled cancer survival and proliferation. Targeting malignancy-specific glutamine 

consumption provides an unique approach to attack solid tumors.

i) FAK and glutamine dependency for tumor growth and invasion

Proliferating cells consume glutamine to fuel the tricarboxylic acid cycle and provide 

nitrogen for nucleotide, nonessential amino acid and hexosamine biosynthesis (Fig 3). 

Cancer cells often develop dependency on specific amino acids (Fu, et al., 2003). For 

example, deprivation of tyrosine and phenylalanine in the medium induces apoptosis of 

melanoma cells through FAK-related signaling pathways (Fu, Yu, Pelayo, Ferrans, & 

Meadows, 1999). Glutamine metabolism is dramatically increased in Her2-type breast 

cancer (S. Kim, Kim do, Jung, & Koo, 2013). Oncogene K-Ras modulation of glutamine 

metabolism is essential for pancreatic cancer cell survival and growth (Son, et al., 2013). 

FAK interactions with Her2 promote tumorigenesis (Lark, et al., 2005; Vartanian, Goodearl, 

Lefebvre, Park, & Fischbach, 2000). Furthermore, micrometastatic cells express activated/

phosphorylated FAK, Her2 and PI3K, suggesting the roles of Her2-FAK/Src-PI3K activation 

in malignant and invasive growth (Kallergi, Mavroudis, Georgoulias, & Stournaras, 2007; 

Vadlamudi, Sahin, Adam, Wang, & Kumar, 2003).
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ii) The association of FAK activation and glutamine-modulated autophagy in cancer cell 
survival

Autophagy is a key strategy for cell survival under stress conditions such as nutrient 

deficiency. Degradation of non-essential and/or redundant cellular compartments leads to 

release of building blocks to fuel key energy and biosynthetic processes. Cancer cells can 

capture this machinery to retain their pro-survival and proliferative states. For instance, 

pancreatic cancer cells have elevated levels of autophagy, and suppression of autophagy 

prevents proliferation and tumor growth. FAK stimulates PI3K/Akt signaling; whereas 

PI3K/Akt activation increases the levels of glutamine and its synthetase (van der Vos, et al., 

2012). Increased glutamine production promotes autophagy, survival and proliferation (Ko, 

et al., 2011; W. M. Liu, et al., 2013; Nicklin, et al., 2009; Sakiyama, Musch, Ropeleski, 

Tsubouchi, & Chang, 2009). These observations support the notion that growth factor 

stimulation of FAK-PI3K-Akt signaling contributes to cell survival and proliferation through 

upregulation of glutamine synthetase and autophagy.

iii) FAK modulation of glutamine metabolism in stress-resistant neoplastic cells

Rapid cell proliferation demands energy and building blocks. High levels of energy 

generation and biosynthesis are correlated with production of byproducts such as oxidants. 

In order to cope with excessive oxidants, FAK-overexpressing solid tumors must upregulate 

signaling pathways that promote antioxidant production. Growth factor-FAK-PI3K/Akt 

signaling resulting in increased glutamine synthetase and glutamine levels can serve as anti-

oxidative machinery. Son et al., observed that glutamine deprivation suppresses pancreatic 

ductal tumor cell growth through a non-canonical pathway of glutamine consumption that is 

involved in serial conversion of glutamine-oxaloacetate-malate-pyruvate (Son, et al., 2013). 

This process leads to increased NADPH/NADP+ ratios, which has anti-oxidative activity. 

Antioxidants, GSH and N-acetylcysteine, abolish glutamine deficiency-suppressed cancer 

cell growth (Son, et al., 2013), suggesting that cancer cells use glutamine metabolism to 

maintain cellular redox balance. Glutamine has been reported to modulate cell protection 

against oxidative stress in intestinal epithelial cells (Musch, Hayden, Sugi, Straus, & Chang, 

1998). Glutamine supplements attenuate 2,4,6-trinitrobenzene sulfonic acid-induced 

oxidative stress in a rat model of colitis (Crespo, et al., 2012). Increased flux of glutamine 

toward glutathione synthesis reduces oxidative stress in flies and human cell lines (Nicolay, 

et al., 2013). A direct link of FAK modulation of glutamine metabolism in neoplastic cells 

has not been shown at this time.

iv) The link between aberrant glutamine metabolism and tumorigenesis

Excessive glutamine consumption contributes to malignant survival, genomic instability, and 

unscheduled proliferation (Fernandez-Marcos & Serrano, 2013; Jeong, et al., 2013). Use of 

small molecules targeting glutamine metabolism allows linkage of the Rho GTPases and 

NF-κB to mitochondrial glutaminase hyper-activity in cancer cells (Wilson, et al., 2013). 

Abnormalities in glutamine metabolism has been linked to pancreatic, lung, and breast 

cancer, which is associated with oncogenes such as K-Ras, solute-linked carrier family A1 

member 5 and Myc (Dang, 2013; Hassanein, et al., 2013; S. Kim, et al., 2013; Son, et al., 

2013).
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The role of FAK in glutamine deregulation-associated tumorigenesis include 1) activating 

glutamine metabolism-related oncogenes such as K-Ras, 2) relaying signals from oncogenes 

to glutamine metabolic enzymes, and 3) direct regulation of glutamine metabolism. FAK 

levels are often elevated in solid tumors. siRNA inhibition of FAK expression attenuates 

EGF and fibronectin-stimulated overexpression of oncogenes and cell cycle regulatory 

proteins, resulting in decreased cell migration and proliferation (J. H. Park & Han, 2009; J. 

H. Park, Ryu, & Han, 2011). Phosphorylation of FAK at tyrosine 407 negatively regulates 

FAK activity. Decreased Y407 phosphorylation is correlated with Ras transformation of 

fibroblasts, indicating that FAK activation stimulates Ras signaling (J. Jeon, et al., 2007; 

Wade, Brimer, Lyons, & Vande Pol, 2011). On the other hand, R-Ras promotes FAK 

signaling, and synergizes with alpha2beta1 integrin stimulation of FAK activation (Kwong, 

Wozniak, Collins, Wilson, & Keely, 2003). Furthermore, Myc activates FAK in 

neuroblastoma cells (Beierle, et al., 2007). Glutamine restriction inhibits FAK activity and 

impairs melanoma attachment and spreading, suggesting the involvement of FAK in 

glutamine metabolism-modulated malignant cell anchorage and motility (Fu, et al., 2004).

5. Targeting FAK-mediated metabolic signaling pathways

The interplay among glycolytic/mitochondrial glucose processes, lipid biosynthesis, and 

nucleotide/protein/antioxidant metabolism are dynamically balanced in response to a 

constantly changing microenvironment. FAK overexpression and hyperactivation can 

promote glucose metabolism to fuel cell proliferation in cancer cells (Fig 4). Targeting FAK 

activation and its interactions with proteins that are involved in glucose, fatty acid, and 

glutamine metabolism can be an attractive approach to combat tumor growth and metastasis. 

Inhibitors targeting FAK function, FAK binding with IGF1R, FAK-activated key lipogenic 

enzymes and glutamine synthetase have been developed (Vander Heiden, 2011). The NIH 

clinical trial database (clinicalTrial.gov) and PubMed have been searched to identify 

inhibitors targeting FAK activity and its metabolic pathways.

i) FAK inhibitors

VS-6063 and VS-4718 are drug candidates, developed by Verastem, for FAK inhibition 

targeting cancer stem cells. A phase I/Ib clinical trial has been conducted with Paclitaxel in 

combination with the company’s first FAK inhibitor, defactinib or VS-6063, in subjects with 

advanced ovarian cancer. Verastem reports that VS-6063 was granted orphan drug status by 

the US FDA and European regulators for mesothelioma, an asbestos-related rare lung cancer 

with limited treatment options. Verastem also reports that VS-6063 was well tolerated at the 

dose of 400 mg BID in combination with weekly Paclitaxel. Previously, pre-clinical studies 

indicated that VS-6063 (formerly PF-04554878) reduced cancer stem cells, primary tumor 

mass and metastasis (Schultze & Fiedler, 2011). A recently completed Phase I clinical study 

shows that the FAK inhibitor, PF-00562271, is tolerated at a dose of 125 mg BID in patients 

with pancreatic, head and neck, prostatic neoplasms (Infante, et al., 2012).

VS-4718 is the second compound, developed by Verastem, currently under study in a Phase 

I clinical trial evaluating patients with metastatic non-hematologic malignancies.
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GSK2256098 is a small molecule inhibitor of FAK developed by GlaxoSmithKline. A phase 

I clinical trial dose escalation study in subjects with solid tumors known to express FAK has 

been performed. Preliminary findings from the first trial of GSK2256098 in subjects with 

mesothelioma suggested that it had some effects on disease spread in patients lacking an 

active tumor suppressor gene, NF2 ((ECCO), 2012).

Numerous new FAK inhibitors have been designed, produced, and tested, including 

diarylamino-1,3,5-triazine, 1,3,4-oxadiazole, pyrazolo[4,3-c][2,1]benzothiazines derivatives, 

cFAK-C4 and Y15 (Dao, et al., 2013; Dunn, Heffler, & Golubovskaya, 2010; Ma, 2011; 

Schultze & Fiedler, 2010; Tomita, et al., 2013; S. Zhang, et al., 2013).

ii) Inhibitors targeting FAK activation of IR/IGF1R

Insulin and IGF-1 can stimulate FAK activity (Baron, et al., 1998); and FAK binds with and 

stabilizes IGF-1R. Therefore, FAK hyperactivity can promote insulin/IGF-1 signaling-

mediated glucose metabolism in cancer cells. Blocking basic insulin signaling can cause 

serious metabolic disorders. Inhibitors targeting IGF1R have been developed in the attempt 

to attenuate tumor growth.

IGF1R inhibitors: Several companies are currently testing small molecule kinase 

inhibitors targeting the IGF1R tyrosine kinase and many have had limited utility (Hewish, 

Chau, & Cunningham, 2009; Pollak, 2008). Over 50 clinical trials of IGF1R inhibitors in 

patients with many types of tumors have been registered with NIH (Clinicaltrials.gov, 

August 2013). Inhibitor names, tumor types, trial stages and statuses are summarized in 

Table 1. Approaches targeting the ATP competitive binding site have limitations due to lack 

of specificity for IGF1R. This is due to sequence homology and identity, particularly in the 

kinase domain, and structural similarity of IGF1R to other receptor tyrosine kinases such as 

the insulin receptor. A similar argument can be made for kinase inhibitors of FAK. In 

addition, it appears that disruption of the kinase domain is not sufficient to specifically 

interfere with the downstream signaling of IGF1R (or FAK) and it is unclear whether the 

kinase function or the scaffolding function of these proteins is more important 

(Golubovskaya, et al., 2012; Su, et al., 2013).

Targeting FAK-IGF1R interaction represents a novel approach to inhibit abnormal 

hyperactivation of survival signaling. Both FAK and IGF-1R are upregulated and promote 

the malignant phenotype making them appropriate targets for developmental therapeutics. 

We have shown that dual inhibition of FAK and IGF1R leads to a synergistic increase in cell 

detachment and apoptosis (Hochwald, et al., 2009; W. Liu, et al., 2008; Zheng, et al., 2010). 

However, selective dual small molecule inhibitors of both proteins are not available or 

demonstrate toxicity (Golubovskaya, et al., 2008; Kurenova, et al., 2009; Watanabe, et al., 

2008). Inhibitors targeting FAK protein binding with IGF1R offer significant promise to 

inhibit the function of both FAK and IGF-1R proteins and be more efficacious than existing 

IGF-1R inhibitors that have failed testing in clinical trials. These FAK inhibitors may be 

associated with low rates of side effects for the following reasons: 1) FAK-IGF1R signaling 

can primarily stimulate abnormal survival signaling. Specific inhibition of FAK FERM 

domain binding with IGF1R should have minimal effects on FAK binding with other 
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partners, indicating a limited impact on basic signaling. 2) FAK levels decrease after fetal 

development to very low levels in adult normal tissues; therefore, these inhibitors can have 

less impact on normal tissues.

Small organic molecules are particularly attractive as inhibitors of intracellular protein– 

protein interactions because of the ability to modify their structures to achieve optimal target 

binding, and because of their ease of delivery in in vivo systems. Several investigators have 

developed an approach for therapeutic intervention by targeting FAK-IGF1R protein-protein 

binding. Molecular docking, cell-based screening and xenograft mouse models have been 

used for the identification of lead compounds such as INT2–31 that inhibit FAK-IGF1R 

binding and tumor growth (Ucar, et al., 2012; Ucar, et al., 2013).

iii) Targeting ACLY and fatty acid synthetase

ACLY hyperactivation is a common feature of many tumors and is correlated with FAK 

overexpression. Inhibition of ACLY activity induces the arrest of cancer cell cycle 

progression in vitro and in vivo (Migita, et al., 2013; Zaidi, Swinnen, & Smans, 2012). 

ACLY deficiency exerts an anticancer effect via increased ROS and p-AMPK (Migita, et al., 

2013). These observations support the notion that FAK-ACLY signaling contributes to 

increased lipogenesis in cancer cells, but potent and specific antagonists to inhibit abnormal 

constitutive activation of these proteins are lacking.

Normal cells rely on dietary fatty acids. Therefore, depletion of fatty acid synthetase has 

limited impact on normal cells. FAK and fatty acid synthetase are often highly upregulated 

in solid tumors. Furthermore, fatty acid synthetase is essential for cancer cell survival. 

Inhibition of fatty acid synthetase induces apoptosis. Inhibitors targeting fatty acid 

synthetase prevent cell proliferation and growth of prostate cancer (Chen, Chang, Chuang, 

Tai, & Hwang, 2012). Several potent inhibitors of fatty acid synthetase have been patented 

and are commercially available (Pandey, Liu, Xing, Fukuda, & Watabe, 2012). Since the 

levels of FAK and fatty acid synthetase in normal tissues are low or undetectable, clinical 

trials of fatty acid synthetase inhibitors in patients with tumors overexpressing FAK and/or 

fatty acid synthetase may result in the discovery of potent anti-cancer drugs with minimal 

side-effects. No trials evaluating fatty acid synthetase inhibitors in malignancy have been 

reported to date.

iv) Inhibition of aberrant glutamine metabolism

FAK can enhance the activities of oncogenes such as K-Ras and Myc; while their activation 

has been linked to increased glutamine synthetase activity. Derivatives of methionine 

sulfoximine, phosphorus containing analogues of glutamic acid, bisphosphonates and 

miscellaneous inhibitors targeting glutamine synthetase have been developed (Berlicki, 

2008). A glutaminolytic drug, L-Asparaginase, and the glutamine synthetase inhibitor, 

methionine sulfoximine, depleted the glutamine pool, arrested cell cycle progression, and 

induced caspase-3 mediated apoptosis in human hepatocellular carcinoma cells (Tardito, et 

al., 2011). Oncogenic Myc promotes glutaminase expression and cancer cell addiction to 

glutamine (Wise, et al., 2008). Inhibition of glutaminase activity using siRNA or small 

molecule, BPTES [bis-2-(5 phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide], 
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prevented growth and tumorigenesis (Lobo, et al., 2000; Thangavelu, et al., 2012). 

Glutaminase inhibitors attenuate cancer-related gene expression through histone and 

epigenome modification (Simpson, Tryndyak, Pogribna, Beland, & Pogribny, 2012). A cell-

permeable benzophenanthridinone compound 968 inhibits mitochondria glutaminase, 

resulting in repressed growth and invasive activity in NIH3T3 cells expressing Dbl, Cdc42-

F28L, Rac-F28L or RhoC-F30L mutants, in SKBR3 and in MDA-MB231 cancer cells. The 

observations suggest that the balance of glutamine and glutamate plays a vital role in tumor 

cell survival. Depletion of either glutamine or glutamate pools in the tumor cells can lead to 

oxidant production and apoptosis. Although preclinical results have shown the anticancer 

effects of targeting glutamine metabolisms, there is no clinical trial that is registered in the 

NIH clinical trial data base as of August, 2013.

6. Summary and prospective

FAK plays a key role in tumor metabolism that is characterized by excessive consumption of 

and addictive dependency on glucose, lipids and glutamine. Constitutive FAK binding with 

and stabilization of IR/IGF1R promotes effectors such as IRS and PI3K/Akt cascades, 

promoting glucose consumption to fuel rapid cell division and enhance survival.

Lipids are major components of cell membranes that are essential for excessive cell 

proliferation. The role of FAK in tumor lipid metabolism is less well studied. However, 

experimental evidence supports the notion that FAK can contribute to the malignant cell 

deregulation of lipid bioprocesses. First, FAK interactions with membrane receptors such as 

integrins, EGFR, and IGF1R to form complexes are critical for initiation of lipid 

biosynthesis. Second, FAK activation is correlated with overexpression of lipid enzymes. 

Finally, FAK-promoted glucose consumption can provide carbon sources for lipid synthesis.

Oncogene-induced glutamine consumption can fuel rapid cell growth and maintain redox 

balance in cancer cells. Constitutive FAK activation stimulates oncogenes such as K-Ras and 

Myc, which promotes the activities of glutamine metabolic enzymes including glutamine 

synthetase and glutaminase. Increased levels of cellular glutamine pools boost TCA-

mediated metabolic pathways and antioxidant production, which is essential for rapid cell 

proliferation.

Defining and establishing the link between FAK-related pathways and abnormal metabolism 

can promote the design and development of new drugs for the treatment of cancer. For 

example, inhibitors targeting FAK modulation of IGF1R, ACLY, and glutaminase have been 

reported to attenuate abnormal glucose, fatty acid and glutamine consumption as well as 

tumorigenesis. However, clinical trials of those potent inhibitors in patients with tumors are 

lacking. It is expected that the development of new potent small molecules and further 

clinical studies of the known inhibitors targeting FAK and/or its downstream metabolic 

effectors can lead to the identification of novel compounds to kill cancer cells with minimal 

side-effects on normal tissues.

Abbreviations

FAK focal adhesion kinase
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FASN Fatty Acid Synthase

IGF1R insulin-like growth factor 1 receptor

ACLY ATP citrate lyase

ECM extracellular matrix

IRS insulin receptor substrate

IR insulin receptor

PBTES Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide

GS glutamine synthetase

GLUT glucose transporter
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Fig 1. FAK modulation of cancer cell glucose consumption and proliferation.
Growth factors, insulin/IGF1R, and/or anchorage-activated integrin trigger FAK activation. 

Downstream factors, IRS and PI3K/Akt induce alteration of glycolysis and mitochondrial 

respiration. Excessive glucose consumption provides energy and precursors to rapidly 

growing cells. Inhibitors targeting FAK or FAK-IGF1R interactions can prevent malignant 

cell glucose consumption and growth.
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Fig 2. The roles of FAK in lipid-mediated tumor growth and invasion.
FAK interactions with receptors such as IR/IGF1R/integrin and effectors such as 

PI3K/Akt/ERK are associated with lipid rafts. Formation and translocation of FAK-

associated lipid complexes contributes to ACLY and FASN activation, channeling TCA-

processed glucose to promote lipogenesis. Excessive lipid biosynthesis can induce cell 

growth and lipid turnover-mediated motility. Inhibition of ACLY and FASN leads to 

decreased lipid biosynthesis and tumor growth/invasion.
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Fig 3. FAK activation and cancer dependency on glutamine.
FAK activation of oncogenes, K-Ras and Myc, alters the activities of glutamine synthetase 

and glutaminase. Increased glutamine flux provides precursors for nuclei acid and protein 

synthesis that are essential for cell proliferation. Furthermore, cancer cells rely on glutamine 

consumption to generate antioxidants, that neutralize rapid growth-accelerated ROS 

production, for their survival.
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Fig 4. FAK modulation of cancer cell metabolism.
Insulin/IGF1 stimulates FAK-PI3K-Akt signaling through IRS. This modulates glucose 

metabolism via activation of glucose transporters, glycolytic and mitochondrial enzymes. 

Citrate can leave the TCA cycle in mitochondria and is converted to lipids. FAK activation 

of ERK/Akt can promote this conversion and channel glucose to lipids for the biosynthetic 

needs of rapidly growing cells. Anchorage-dependent stimulation of FAK activity 

contributes to K-Ras/Myc signaling-related glutamine metabolism.
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Table 1.
Clinical trials of IGF1R inhibitors in subjects with cancer.

The NIH ClinicalTrials.gov database has been searched to identify studies on inhibitors targeting IGF1R 

signaling in solid tumors. Inhibitor names, tumor types, trial stages and their status/conclusions are 

summarized (clinicalTrial.gov)(Lacy, et al., 2008; Molife, et al., 2010; Scagliotti & Novello, 2012).

Name Tumor Trial phase/NIH number Status/conclusion

PL225B Advanced Refractory Solid Tumors Phase 1/NCT01779336 Recruiting

OSI-906 Breast Cancer Phase 2/NCT01013506 Withdrawn/toxicities and progressed

Multiple Myeloma Pahse 1 & 2/NCT01672736 Recruiting

Lung Cancer Phase 2/NCT01387386 Recruiting

AXL1717 Non Small Cell Lung Cancer Phase 1/NCT01466647 Completed/No results posted

Glioblastoma, Gliosarcoma Phases 1 & 2/NCT01721577 Recruting

Anaplastic Astrocytoma

Anaplastic

Oligodendroglioma

Anaplastic Oligoastrocytoma

Anaplastic Ependymoma

Non-small-cell Lung Cancer Phase 2/NCT01561456 Recruiting

Squamous Cell Carcinoma

Adenocarcinoma of the Lung

Solid Tumors Hematological Malignancies Phase 1/NCT01062620 Completed/No results posted

CP-751,871 Carcinoma, Squamous Cell; Phase 3/NCT00673049 Terminated/progressed

Carcinoma,

Adenosquamous;

Carcinoma, Large Cell;

Carcinoma, Non-Small-Cell

Lung

Multiple Myeloma Phase 1/NCT01536145 Completed/tolerated

Solid Tumors Phase 1/NCT00474760 Completed/tolerated

RAD001 AMG479 + Neoplasm Metastases Phase 1/NCT01122199 Recruiting

AVE1642 Liver Carcinoma Phases 1 & 2/NCT00791544 Withdrawn/discontinued

MK-0646 Non Small Cell Lung Cancer Phase 2/NCT00799240 On-going

Pancreatic Cancer Phases 1 & 2/NCT00769483 Recruiting

R1507 Neoplasms Phase 1/NCT00400361 Completed/tolerated

XL228 Cancer, Lymphoma Phase 1/NCT00526838 Terminated/discontinued
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