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Abstract

Inhibition of fear involves learning and then appropriately responding to safety signals, and has 

been shown to be impaired in PTSD patients. Response inhibition refers to cognitive control and 

likely uses the same prefrontal cortex circuits as fear inhibition, and has also been implicated in 

PTSD. Impaired inhibition can serve as an intermediate phenotype for PTSD and can be measured 

with neuroimaging and psychophysiological tools. We first review the neurobiological 

mechanisms of fear and response inhibition. Next, we summarize the functional magnetic 

resonance imaging (fMRI) and psychophysiological studies using fear and response inhibition 

paradigms in PTSD patients. Finally, we evaluate the theranostic role of impaired inhibition in 

PTSD risk and treatment response.

1. Introduction

Posttraumatic stress disorder (PTSD) is a debilitating mental illness that can develop after 

experiencing a traumatic event. PTSD is a heterogeneous disorder, which presents with 

different symptom domains, specifically, re-experiencing, avoidance and numbing, negative 

cognitions, and hyper-arousal symptoms (American Psychiatric Association, 2013). Given 

this complexity, clinical and research progress in the field can be greatly enhanced by 

measuring phenotypes that are closer to the neurobiology of the disorder. Such 

neurobiological intermediate phenotypes can increase our understanding of the etiology of 

the disorder and provide better theranostic indicators for treatment.

Impaired inhibition of fear can serve as an intermediate phenotype for PTSD and can be 

measured with neuroimaging and psychophysiological tools. A hallmark feature of PTSD is 

an exaggerated fear response to trauma reminders despite being in a safe environment 

(Jovanovic et al., 2012; Jovanovic et al., 2010; Jovanovic et al., 2009). Learning to recognize 

threat and show the appropriate fear response is a crucial mechanism for survival, because it 

helps to avoid future danger (Maren, 2001). However, it is just as important to respond 
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appropriately when a stimulus does not predict danger. Inhibition of fear responses involves 

learning and then appropriately responding to safety signals, i.e. the ability to discriminate 

between danger and safety cues and suppress fear responses in the presence of safety cues 

(Jovanovic et al., 2012). Conditioning paradigms can be used to measure safety signal 

learning in human and non-human models (Christianson et al., 2012; Myers et al., 2009).

Fear responses can be measured translationally in Pavlovian fear conditioning paradigms, 

such as fear-potentiated startle, which was originally developed in rodent models (Davis, 

1992). Animal models have also been used to develop paradigms to measure fear inhibition, 

such as conditioning discrimination and conditional inhibition (Jovanovic and Norrholm, 

2011; Myers et al., 2009). In humans, fear-potentiated startle can be used to measure both 

expression and suppression of fear. This suppression of the fear response, i.e., fear 

inhibition, is impaired in PTSD patients (Jovanovic et al., 2012; Jovanovic and Ressler, 

2010). Inhibition also takes place at a cognitive level. When something unexpected happens, 

the human brain has the ability to inhibit the initial response and to adjust the behavioral 

response accordingly (van Gaal et al., 2010). This cognitive control function is often defined 

as response inhibition and is an essential component of human behavior (Albert et al., 2010). 

The goal of this review is to describe impaired inhibition, as a potential intermediate 

phenotype for PTSD. We first review the neurobiological mechanisms of fear and response 

inhibition. Next, we summarize the functional magnetic resonance imaging (fMRI) and 

psychophysiological studies using fear conditioning and extinction, and response inhibition 

paradigms in PTSD patients. Finally, we evaluate the theranostic role of impaired inhibition 

in PTSD risk and treatment response.

1.1 Neurobiological Mechanisms of Fear Inhibition

As noted above, fear inhibition reflects the ability to differentiate danger and safety signals 

(Jovanovic and Ressler, 2010). Fear inhibition can only take place when the fear is initially 

learned by means of fear conditioning, i.e. learning an association between an aversive 

stimulus (unconditioned stimulus; US,) and a neutral stimulus (conditioned stimulus; CS), 

resulting in a fear response to the neutral stimulus (LeDoux, 2000). A safety signal is 

typically a second CS which is not paired with the aversive US, and should therefore elicit 

no fear response. Fear inhibition can then be measured as the degree of fear to this second 

CS. Fear inhibition is also relevant for extinction, a learning process in which the danger 

signal is repeatedly presented without the US, so that the CS no longer predicts the US 

(Milad et al., 2008). Extinction processes and relevance to PTSD is covered in detail by Zuj 

and Norrholm (this issue), therefore, we will focus primarily on fear inhibition to safety 

signals. Contextual information can also play an important role in fear inhibition processes.

The neurobiological model of fear inhibition in PTSD suggests that responses to fear-

evoking stimuli can elevate amygdala activity to the point at which cortical inputs cannot 

suppress this activity during presentations of threatening stimuli (Liberzon et al., 1999; 

Milad et al., 2009; Rauch et al., 2000; Stevens et al., 2013; Stevens et al., 2017). Figure 1 

presents a schematic representation of neurobiological mechanisms underlying the stress 

response, fear conditioning, and fear inhibition. During fear conditioning, the aversive US 

elicits a stress response and this information is sent via the locus coeruleus (LC) to the 
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basolateral nucleus of the amygdala (BLA). Within the BLA the information about the US 

becomes associated with the perception of the CS and contextual information is relayed by 

the hippocampus (Kim and Jung, 2006; Poulos et al., 2010). Attention to the fear-relevant 

stimuli is mediated by the dorsal anterior cingulate cortex (dACC; Milad et al., 2007). The 

BLA activates the central nucleus of the amygdala (CeA), which is the key output region of 

the amygdala and activates the fear response (Kim and Jung, 2006; LeDoux et al., 1988). 

Inhibition of this fear response involves the hippocampus and the ventromedial prefrontal 

cortex (vmPFC; Jovanovic and Ressler, 2010; Milad et al., 2008; Quirk and Mueller, 2007). 

When presented with the safety signal, the hippocampus activates the vmPFC, which in turn 

inhibits neurons in the amygdala (Corcoran and Quirk, 2007). The output from the CeA is 

consequently reduced, leading to an inhibition of the fear response (Jovanovic and Ressler, 

2010).

1.2 Response Inhibition

Response inhibition is defined as the ability to suppress irrelevant or inappropriate actions in 

response to a novel information (Albert et al., 2010; Hedden and Gabrieli, 2010). A 

distinction can be made between reactive and proactive response inhibition. Reactive 

inhibition is defined as stopping an already initiated response when presented with a stop 

signal, whereas proactive inhibition is the anticipation of stopping based on cues or context 

signaling the likelihood of a stop (Aron, 2011; Zandbelt and Vink, 2010). The Go/NoGo task 

is most commonly used experimental paradigm to test response inhibition (Leibenluft et al., 

2007). In this paradigm, participants are asked to respond to a Go stimulus, and on a small 

proportion of the trials, the Go stimulus is followed by a stop signal (No Go) indicating that 

the participant has to withhold their response (Logan and Cowan, 1984). The stop signal 

anticipation task (SSAT; Zandbelt and Vink, 2010) is often used to assess proactive 

inhibition; this paradigm includes a cue that signals a percent likelihood of a stop signal 

occurring.

A simplified graphic overview of the neurobiological mechanisms of reactive inhibition is 

presented in Figure 2. The cortico-striatal-cortical motor loop is involved in responding and 

in response inhibition, because it regulates the continuing of movements. In this loop there is 

a direct and an indirect pathway that respectively activates or inhibits the motor cortex 

(Alexander and Crutcher, 1990; Alexander et al., 1986; Pollack, 2001). When the Go signal 

is observed, the premotor cortex (PMC) activates the dorsal striatum (putamen and caudate 

nucleus). Once activated, the dorsal striatum inhibits the substantia nigra pars reticulata 

(SNr)/internal segments of the globus pallidus (GPi). The SNr/GPi reduces its inhibition of 

the thalamus, which ultimately activates the motor cortex, resulting in the motor response 

(Alexander and Crutcher, 1990; Alexander et al., 1986). For the response inhibition process, 

the right inferior frontal gyrus (rIFG) is essential, because of its role in attentional 

monitoring and detection of the stop signal (Duann et al., 2009; Hampshire et al., 2010) or 

expectancy violation (Zandbelt et al., 2013). The pre-supplementary motor area (preSMA) is 

the primary site for the actual motor response inhibition (Duann et al., 2009; Zandbelt et al., 

2013), and activates the subthalamic nucleus (STN; (Aron et al., 2007; Boehler et al., 2010). 

The STN activates the SNr/GPi, which in turn inhibits the thalamus. Finally, this results in 

decreased activation of the motor cortex and an inhibition of the motor response (Aron et al., 
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2007; Boehler et al., 2010). In addition, there is an indirect route from the preSMA via the 

dorsal striatum and external segments of the globus pallidus (GPe), also resulting in an 

inhibition of the motor response (Aron et al., 2007; Boehler et al., 2010).

2. Functional MRI Measures of Inhibition in PTSD

Neuroimaging studies have used fear and response inhibition paradigms to assess 

phenotypes for PTSD diagnosis and treatment outcome. Table 1 is an overview all 22 

articles that result from the Pubmed search [TITLE-ABS-KEY] “PTSD” AND “inhibition” 

OR “extinction” AND “MRI” OR “fMRI” OR “magnetic resonance imaging” OR “neural 

correlates”. Other articles that resulted from this search but did not use fMRI or did not use 

an inhibition task were excluded. Most studies were cross-sectional studies comparing 

PTSD patients with trauma controls and/or healthy controls. A total of 4 longitudinal fMRI 

studies using an inhibition paradigm have been conducted, 1 predicting future PTSD in 

recently traumatized civilians (van Rooij et al., 2018) and 3 pre- and post-treatment studies 

(Falconer et al., 2008; Helpman et al., 2016; van Rooij et al., 2015).

2.1 fMRI Inhibition Phenotypes for PTSD Diagnosis

A key region for inhibition is the ventromedial prefrontal cortex (vmPFC) or the rostral 

anterior cingulate cortex (rACC), as this region is thought to regulate emotional and 

behavioral responses by inhibiting the amygdala (Stevens et al., 2013). Indeed, using a fear 

inhibition paradigm, reduced vmPFC activation in PTSD patients compared to controls was 

demonstrated during extinction learning (Milad et al., 2009; Rougemont-Bücking et al., 

2011), extinction recall (Garfinkel et al., 2014; Milad et al., 2009; Rougemont-Bücking et 

al., 2011) and fear renewal to the CS+ (Garfinkel et al., 2014). Moreover, vmPFC activation 

was positively correlated with recall memory (Milad et al., 2009). Also during response 

inhibition, several studies showed reduced vmPFC (Jovanovic et al., 2013a) or medial PFC 

activation (Aupperle et al., 2016; Falconer et al., 2008) in patients compared to controls. 

Furthermore, in PTSD patients, rostral ACC (or vmPFC) activation was found to correlate 

with childhood trauma (Stevens et al., 2016). Reduced medial PFC and rACC activation also 

correlated with more PTSD symptoms in a multisource interference task comparing 

incongruent and congruent trials. Moreover, reduced functional connectivity between these 

regions and bilateral lateral PFC was observed in PTSD patients (Clausen et al., 2017). In a 

study with traumatized youth, increased medial frontal cortex activation was found in the 

PTSD patients compared to healthy controls, but reduced middle frontal cortex activation 

was observed (Carrion et al., 2008).

It is postulated that the vmPFC inhibits the overactive amygdala (Stevens et al., 2013). 

Increased amygdala activation has consistently been demonstrated in PTSD patients during 

extinction learning (Milad et al., 2009; Sripada et al., 2013), and extinction recall in novel 

context (Wicking et al., 2016). Decreased amygdala activation was observed during fear 

conditioning (Diener et al., 2016), during fear renewal in response to the CS+ (Garfinkel et 

al., 2014), and in response to predictable vs. unpredictable threat (Dretsch et al., 2016). 

Furthermore, PTSD patients showed a negative interaction between the amygdala and the 

dlPFC (Diener et al., 2016).

van Rooij and Jovanovic Page 4

Prog Neuropsychopharmacol Biol Psychiatry. Author manuscript; available in PMC 2020 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As part of this neurocircuitry, the hippocampus is important for context processing and 

memory. A positive correlation between hippocampal activation during extinction learning 

and PTSD symptoms was observed (Sripada et al., 2013). A context > no context contrast 

also revealed more hippocampal activation in PTSD patients compared to controls even 

though PTSD patients showed less differentiation between threat and safety (Steiger et al., 

2015). However, most studies point to diminished functionality of the hippocampus. 

Decreased hippocampal activation in PTSD patients versus controls has been observed 

during extinction recall, and correlated positively recall memory (Milad et al., 2009), during 

fear renewal in response to the CS-(Garfinkel et al., 2014) and in response to predictable vs. 

unpredictable threat (Dretsch et al., 2016). Furthermore, reduced hippocampal activation 

during a response inhibition task correlated with increased PTSD symptoms in a chronically 

traumatized population (van Rooij et al., 2016), and predicted future PTSD symptoms in 

recently traumatized civilians (van Rooij et al., 2018).

The dorsal anterior cingulate cortex (dACC) is part of the salience network, and is important 

for directing attention. PTSD patients showed increased dACC activation during late fear 

conditioning and extinction learning (Rougemont-Bücking et al., 2011), and during 

extinction recall (Milad et al., 2009; Rougemont-Bücking et al., 2011). A comparison of 

male vs. female PTSD patients showed more left dACC activation in men during extinction 

recall (Shvil et al., 2014).

Another key region of the salience network is the insula, which is thought to be involved in 

interoceptive awareness. Insula activation during extinction learning was positively 

correlated with PTSD symptoms (Sripada et al., 2013). Furthermore, PTSD patients 

compared to controls showed increased insula activation during extinction recall, whereas 

patients showed reduced activation during predictable vs. unpredictable threat (Dretsch et 

al., 2016). Using a response inhibition paradigm, increased anterior insula activation was 

observed in PTSD patients compared to controls for both Stop vs NoStop and Hard vs Easy 

trials contrasts (Aupperle et al., 2016). Increased insula activation to attending vs. ignoring 

fearful faces was observed during an attentional interference task (Bruce et al., 2013).

Regions often implicated in response inhibition are the pre/post-central gyrus (motor and 

sensorimotor cortex), the right inferior frontal gyrus (rIFG) and striatum. Increased 

postcentral gyrus activation in PTSD patients compared to controls during inhibition has 

indeed been observed in several studies during extinction recall (Sripada et al., 2013) and 

during response inhibition (Falconer et al., 2008; van Rooij et al., 2014). This is thought to 

indicate decreased suppression of the motor cortex, resulting in increased activation of the 

motor cortex and impaired response inhibition (van Rooij et al., 2014). Decreased rIFG 

activation has been demonstrated in PTSD patients during context processing (van Rooij et 

al., 2016), indicating impaired signaling of the contextual cue needed to guide behavior.

Other regions that were differently activated in PTSD patients compared to controls across 

several studies were the cerebellum and bilateral superior temporal cortex/gyrus. Increased 

right cerebellar cortex activation was observed during extinction recall (Milad et al., 2009) 

and response inhibition (Falconer et al., 2008). However, during fear renewal, decreased 

cerebellum activation was observed in PTSD patients compared to controls (Garfinkel et al., 
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2014). Increased bilateral superior temporal cortex was observed during extinction learning 

(Milad et al., 2009), whereas reduced activation of the superior and middle temporal gyrus 

was observed in response to predictable vs. unpredictable threat (Dretsch et al., 2016).

2.1.1 Summary—It is likely that fear inhibition and response inhibition lhave shared 

circuitry (Jovanovic et al., 2013a), in that inhibitory circuits regulate both emotion and non-

emotion regions. The core inhibition circuits that are impaired in PTSD are the vmPFC and 

hippocampus, and neuroimaging studies have indeed demonstrated decreased functioning of 

these regions using both fear inhibition and response inhibition paradigms. The involvement 

of the salience network (amygdala, dACC, and insula) during response inhibition in PTSD is 

less clear, although some studies show increased insula activation during both fear and 

response inhibition. On the other hand, the role of motor reponse regions in PTSD has only 

been observed primarily using response inhibition paradigms. It can therefore be concluded 

that there is important shared inhibition neurocircuitry that is implicated in PTSD, and 

different specific target regions are involved depending on the nature of the inhibition task.

2.2 fMRI Inhibition Phenotypes for PTSD Therapy

Only 3 studies to date have used an inhibition paradigm in a longitudinal pre- and post-

treatment study. Helpman and colleagues (Helpman et al., 2016) used the fear conditioning 

and extinction paradigm before and after 10 weeks of prolonged exposure (PE). Pre- and 

post-treatment fMRI data was available for 16 PTSD patients and 16 trauma controls. PTSD 

patients showed greater right rACC activation at baseline compared to follow-up. 

Furthermore, a decrease in sgACC and hippocampal/parahippocampal activation was 

associated with reduced PTSD symptoms. In an fMRI study of 13 treatment-seeking PTSD 

patients prior to 8 weekly cognitive behavioral therapy (CBT) sessions, PTSD severity was 

measured pre-treatment and 6 months later (Falconer et al., 2013). Greater activation during 

a Go/NoGo task in the left frontostriatal network, including the left IFC, orbitofrontal cortex 

and dorsal striatum, anterior medial PFC and parahippocampus was related to lower PTSD 

severity post-treatment, controlling for pre-treatment severity, but using a lenient statistical 

threshold (p<0.005, uncorrected). Finally, van Rooij and colleagues collected pre- and post-

treatment scans using the stop signal inhibition task to measure both response inhibition and 

contextual cue processing (van Rooij et al., 2015). Scans were collected from 41 war 

veterans with PTSD and 22 control veterans with a 6–8 month interval during which the 

patients received trauma-focused therapy. No pre-to post-treatment differences were 

observed in the regions of interest, i.e., left motor cortex and right IFG and striatum, 

however, whole brain analyses (p<0.001, k=47, FWE-corrected) showed that more left 

inferior parietal lobe (IPL) activation during context processing predicted a greater symptom 

reduction (van Rooij et al., 2015).

In addition to pre/post-treatment studies using inhibition tasks, inhibition tasks were used in 

two fMRI studies assessing the effects of potential pharmacotherapies. A placebo-controlled 

between-subjects (N=14 in each group) fMRI study was used to examine the effects of 

tetrahydrocannibinol (THC) on vmPFC and hippocampal activation using a fear 

conditioning and extinction task (Rabinak et al., 2014). Participants who used THC 

compared to the placebo control group showed heightened vmPFC and hippocampal 
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activation in response to the extinguished CS+ during extinction recall (Rabinak et al., 

2014). Finally, Ebrahimi and colleagues (2017) performed a placebo-controlled fMRI study 

assessing the effects of D-cycloserine (DCS) on appetitive and aversive learning using 

monetary wins and losses as US. The DCS group showed reduced amygdala activation and 

enhanced amygdala-vmPFC coupling during extinction recall (Ebrahimi et al., 2017).

2.2.1 Summary—Studies show that functional neuroimaging measures of fear inhibition 

and response inhibition are related to PTSD treatment outcomes. Specifically, decreased 

sgACC and hippocampal activation during fear inhibition, and increased pre-treatment left 

IPL and frontrostriatal activation during response inhibition is related to better outcomes. 

More studies are needed to substantiate these findings, but these studies underscore the 

importance of assessing fear and response inhibition as phenotypes of PTSD treatment 

response.

3. Psychophysiological Measures of Inhibition in PTSD

As discussed above and shown in Figure 1, the amygdala is an integral part of the neural 

circuit that controls fear responses and the peripheral targets of fear responses, such as those 

that can be measured using psychophysiological recordings (Davis et al., 1993). Specifically, 

the amygdala activates several loci of the peripheral nervous system, including the 

sympathetic nervous system via the PAG which increases sweat gland activity measured by 

skin conductance response (SCR), and the vagus nerve increasing heart-rate variability 

(HRV). In addition, the amygdala directly stimulates the pons, a brain region that lies within 

a circuit mediating fear-potentiated startle (FPS) responses. Therefore, conditioned fear can 

be observed as increased SC and FPS responses, as compared to safety conditions or 

baseline, respectively, within specific learning paradigms. On the other hand, during safe 

conditions, the vmPFC inhibition of the amygdala should decrease SCR and FPS; however, 

PTSD patients with impaired fear inhibition may continue to display elevated levels of SCR 

or FPS.

These peripheral psychophysiological measures can be easily and non-invasively captured 

on the surface of the skin and provide objective metrics associated with PTSD symptoms 

(Jovanovic et al., 2009). Psychophysiological reactivity to reminders of the traumatic 

experience has been extensively studied in PTSD over the last 25 years, with most studies 

showing heightened fear responses in patients compared to controls (Norrholm and 

Jovanovic, 2018; Orr et al., 1993; Pole, 2007). However, the sensitivity and specificity of 

psychophysiological measures has been debated (Keane et al., 1998), and likely depends on 

the task used to capture the fear response. The majority of psychophysiological tasks have 

captured reactivity to trauma-related stimuli, which has high sensitivity but relatively low 

specificity (Keane et al., 1998); inhibition of fear may offer more promise in PTSD 

specificity.

3.1 Psychophysiological Inhibition Phenotypes for PTSD Diagnosis

While heightened fear responses to conditioned safety signals may be a common feature of 

all anxiety disorders (Duits et al., 2015), safety signal learning has frequently been 

associated specifically with hyperarousal symptoms of PTSD (Glover et al., 2011; 

van Rooij and Jovanovic Page 7

Prog Neuropsychopharmacol Biol Psychiatry. Author manuscript; available in PMC 2020 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Michopoulos et al., 2015). Further, the inability to transfer learned safety to a novel context 

may be a specific deficit in PTSD. Transfer of safety can be tested in paradigms designed to 

examine inhibition of fear when a safety signal is paired with a conditioned danger cue. For 

example, a conditional discrimination task (termed AX+/BX−) begins by training 

individuals to discriminate between danger and safety, and then tests fear responses to a 

compound stimulus which combines both cues (Jovanovic et al., 2005; Myers et al., 2009). 

In healthy individuals, fear-potentiated startle to the compound cue is reduced relative to the 

danger cue (Jovanovic et al., 2005). In individuals with current PTSD, the inhibition by the 

safety signal may be too weak to reduce the fear response (Jovanovic et al., 2009; Sijbrandij 

et al., 2013). In fact, impaired fear inhibition is associated both with acute and persistent 

PTSD symptoms (Jovanovic et al., 2013b; Sijbrandij et al., 2013). However, using the same 

conditional discrimination task did not how impaired inhibition in individuals with high trait 

anxiety (Kindt and Soeter, 2014), or depression without comorbid PTSD (Jovanovic et al., 

2010), suggesting specificity for PTSD.

Fear extinction can also be used to measure fear inhibition (see Zuj and Norrholm, this issue, 

for in depth review), and has shown that impaired extinction of SCR to danger signals is 

associated with chronic PTSD (Blechert et al., 2007; Milad et al., 2008; Wessa and Flor, 

2007), and predicts future PTSD symptom severity (Guthrie and Bryant, 2006). Elevated 

heart rate responses to both safety signals during conditioning and sanger signals during 

extinction have been associated with symptom severity even in soldiers who report sub-

threshold PTSD (Costanzo et al., 2016). Inhibition of fear-potentiated startle responses 

during extinction also show deficits in PTSD populations, including military (Acheson et al., 

2015) and civilian (Norrholm et al., 2011) trauma populations.

3.1.1 Summary—Taken together, these studies point to impaired fear inhibition as a 

robust phenotype for PTSD and psychophysiological assessments of the fear-potentiated 

startle as a reliable measure for fear inhibition in PTSD.

3.2 Psychophysiological Inhibition Phenotypes for PTSD Therapy

While psychophysiological measures have a rich history of use with PTSD, they have 

seldom been used in PTSD treatment. There is a small number of studies that have used 

trauma-evoked startle responses (Robison-Andrew et al., 2014; Rothbaum et al., 2014) or 

HR (Wangelin and Tuerk, 2015) pre- and post-treatment, with all of these showing positive 

treatment outcomes. Fear inhibition has only been examined with treatment in two studies. 

In addition to changes in fMRI, the study by Helpman and colleagues examined SCR during 

extinction before and after 10 weeks of prolonged exposure therapy in PTSD patients 

(Helpman et al., 2016). The study found treatment-related improvements in inhibition of 

SCR during extinction that correlated with change in PTSD symptoms. Finally, a recent case 

study incorporated these measures as assessment at 1 month follow-up after treatment and 

found that imaginal exposure therapy immediately after trauma exposure was associated 

with normal levels of fear inhibition of FPS during conditioning and extinction observed in 

healthy control participants (Post et al., 2017). However, this study did not measure FPS 

prior to treatment, so was not able to show treatment-related change.
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While there have been very few published studies that have used fear inhibition as a 

treatment outcome in PTSD, some emerging studies have used pharmacological 

manipulations of fear inhibition. These studies are useful in determining potential targets for 

drug discovery for novel therapeutics for PTSD. For example, intranasal oxytocin facilitates 

inhibition of fear measured with SCR during extinction (Eckstein et al., 2015) and FPS 

during extinction recall (Acheson et al., 2013). Administration of cannabinoids in the form 

of THC also facilitates extinction of SCR (Rabinak et al., 2013). While these studies were 

conducted in healthy participants targeting fear inhibition, one recent study examined FPS in 

subjects with PTSD and trauma controls, and found that dexamethasone administration the 

night prior to fear conditioning normalized the impairments in fear inhibition (Michopoulos 

et al., 2017). These studies represent the first step in using fear inhibition to test the effects 

of pharmacological agents in PTSD.

3.2.1 Summary—While there is a small number of treatment studies of PTSD that have 

used psychophysiological measures, these studies show an improvement in fear inhibition 

after successful treatment, suggesting the importance of including psychophysiological 

measures in future clinical research.

4. Conclusions

Fear inhibition and response inhibition have significant overlap in circuitry as both depend 

on prefrontal regulation of diverse processes, and hippocampal information to guide these 

processes. Neuroimaging measures have been used to show impairments in PTSD for both 

fear and response inhibition processes, whereas psychophysiological measures have 

specifically been used to demonstrate fear inhibition deficits in PTSD. Inhibition studies in 

PTSD have mostly focused on fear inhibition as this is more directly related to hyperarousal 

symptoms observed in PTSD. However, given the neurobiological overlap between fear and 

response inhibition processes it would be interesting to focus on response inhibition to 

establish changes in the fear inhibition domain. For example, targeting non-emotional 

circuits to increase regulation over emotional or fear processes could be an interesting novel 

treatment approach. Brain modulation techniques, including transcranial magnetic 

stimulation (TMS) or transcranial direct current stimulation (tDCS) could be used to target 

the brain’s inhibitory neurocircuitry.

Fear conditioning studies that index inhibition of fear, such as safety signal learning and 

extinction, can be used to objectively measure deficits in PTSD using fMRI, fear-potentiated 

startle, skin conductance response, and heart rate. Using such methods to assess PTSD 

diagnosis and symptoms in an emerging literature are showing promising specificity for 

PTSD; however, it is unclear that these methods will be able to accurately diagnose PTSD in 

the absence of other clinical measures. It is likely that impaired fear inhibition can be added 

to a battery of assessment to determine a profile of risk. This battery could also include other 

mechanisms related to inhibition of fear such as extinction retention and overgeneralization, 

or other measures assessing response inhibition.

Further, there is a very small number of studies that have examined fear inhibition clinically 

as a measure of treatment outcome. In fact, the small number of PTSD therapy studies 
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looking at inhibition utilized fMRI, and no studies to date have used psychophysiological 

measures of fear inhibition. The current state of the science is the translational development 

of interventions targeting fear inhibition, and several promising pharmacological agents are 

showing facilitation effects in humans. Future studies will need to build on these results 

using randomized clinical trials with psychophysiological outcomes. Currently, these 

measures show a lot of promise as an intermediate phenotype for PTSD treatment, however, 

the clinical utility of fear inhibition paradigms remains to be seen.
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Figure 1. 
A simplified schematic overview of the neurobiological mechanisms underlying the stress 

response, fear conditioning and fear inhibition. The squared boxes indicate brain areas and 

the dotted lines indicate observable features and the HPA axis. Abbreviations: US = 

unconditioned stimulus, CS = conditioned stimulus, LC = locus coeruleus, VN = vagus 

nerve, dACC = dorsal anterior cingulate cortex, BLA = basolateral amygdala, CeA = central 

amygdala, vmPFC = ventromedial prefrontal cortex, PAG = periaquaductal gray, VN = vagal 

nucleus
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Figure 2. 
A simplified schematic overview of the neurobiological aspects of reactive and proactive 

response inhibition. In this model we included the rIFG as attentional monitor and suggest 

influence of the rIFG on the preSMA during increasing stop signal probability. We propose a 

main role of the preSMA for both reactive and proactive inhibition. The squared boxes 

indicate brain areas and the dotted lines indicate observable features and the basal ganglia 

and striatum. Abbreviations: PMC = premotor cortex, rIFG = right inferior frontal gyrus, 

DLPFC = dorsolateral prefrontal cortex, preSMA = presupplementary motor area, SNr = 
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substantia nigra pars reticulate, GPi = internal segments of the globus pallidus, GPe = 

external segments of the globus pallidus, SNc = substantia nigra pars compacta, STN = 

subthalamic nucleus.
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