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Abstract

Hydrogen/deuterium exchange detected by mass spectrometry (HDXMS) provides valuable 

information on protein structure and dynamics. Although HDX-MS data is often interpreted using 

crystal structures, it was suggested that conformational ensembles produced by molecular 

dynamics simulations yield more accurate interpretations. In this paper, we analyse the 

complement protein C3d by performing an HDX-MS experiment, and evaluate several 

interpretation methodologies using an existing prediction model to derive HDX-MS data from 

protein structure. To interpret and refine C3d’s HDX-MS data, we look for a conformation (or 

conformational ensemble) of C3d that allows computationally replicating this data. We confirm 

that crystal structures are not a good choice and suggest that conformational ensembles produced 

by molecular dynamics simulations might not always be satisfactory either. Finally, we show that 

coarse-grained conformational sampling of C3d produces a conformation from which its HDX-

MS data can be replicated and refined.
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1 Introduction

Hydrogen/deuterium exchange detected by mass spectrometry (HDX-MS) is an extremely 

valuable technique for analysing various aspects of proteins (Engen et al., 2011). It has been 

used to study protein structure and conformational changes, as well as protein folding and 

interactions (Pirrone et al., 2015). The hydrogen/deuterium exchange undergone by a protein 

is influenced by its structure. Although HDX-MS cannot produce a precise three-

dimensional model of a protein, it can provide useful structural information (Huang and 
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Chen, 2014). Additionally, since HDX-MS experiments involve monitoring proteins in 

solution over time, they can generate insights on protein dynamics (Wei et al., 2013). 

HDXMS also has the advantage of not suffering from the same restrictions as other 

structural biology techniques: it requires only small quantities of protein sample, and it is not 

limited by protein size (Jaswal, 2013). As such, HDX-MS has proven infinitely valuable to 

study systems as challenging as, for example, membrane proteins (Konermann et al., 2011).

HDX-MS has greatly impacted the study of plasma proteins that undergo dynamic structural 

transitions to exert their functional spectrum, such as members of the complement cascade 

and other innate immune pathways (Schuster et al., 2007). In the complement system, HDX-

MS has proven particularly valuable to examine the various conformational changes of the 

central component C3. C3 is the point of convergence for all complement activation routes, 

the driving force of complement response amplification, and a major source of immune 

effectors. Over the years, HDX-MS studies have helped elucidate the mechanisms that 

define the perpetual solution activation of C3 via hydrolysis (Winters et al., 2005), and the 

major conformational transition of C3 to the potent opsonin C3b upon activation by 

convertases (Schuster et al., 2008). HDX-MS has also helped characterize the structural 

effects of point mutations in patients with a form of functional C3 deficiency (Sfyroera et al., 

2015), and of a bacterial immune evasion protein that allosterically inhibits C3b activity 

(Chen et al., 2010). HDX-MS was among the few structural methods that could be applied to 

these large plasma proteins, which typically exceed 150 kDa; it has provided important 

insight that was not readily available from X-ray crystallography.

Despite the usefulness of HDX-MS experiments, it has sometimes proven challenging to 

interpret the data they produce, namely deuterium-uptake kinetic curves for various peptides 

extracted from a protein (see Section 4.1.1). Such a kinetic curve is often reduced to a single 

number: the peptide’s average protection factor (Jaswal, 2013), which quantifies the extent 

to which this part of the protein is protected from exchange (which is, in turn, thought to be 

influenced by the protein’s structure). Typically, these average protection factors are 

visualized on a protein heat map (Huang and Chen, 2014) built using a structural model 

reported in the Protein Data Bank (PDB). However, it has been argued that the 

correspondence between experimental HDX-MS data and such structural models is often not 

satisfactory, especially for models resulting from X-ray crystallography studies (Radou et 

al., 2014). The reason is that, contrary to crystal structures, HDX-MS data reflects the 

inherent variability of a protein’s native state, which emanates from the protein’s 

equilibrium fluctuations. Therefore, it was suggested that experimental HDX-MS data could 

be better interpreted using a conformational ensemble produced by a molecular dynamics 

(MD) simulation (Best and Vendruscolo, 2006). This technique has been used to validate 

experimental HDX-MS data and refine it from the peptide to the residue level (Radou et al., 

2014).

In this work, we analyse the native state of the complement protein C3d through HDX-MS, 

using the aforementioned methodology and similar ones. A fragment of the central 

complement component C3, the opsonin C3d has recently gained attention as immune 

effector, biomarker, drug targeting structure, and potential therapeutic target itself. Upon 

complement activation by various triggers, C3 gets cleaved by convertases, yielding 
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opsonins, such as C3d, that exert important biological functions (Ricklin et al., 2016). 

Whereas C3d has long been known to help induce adaptive immune responses by binding to 

CD21 on B cells (Carroll and Isenman, 2012), newer studies have identified C3d as ligand 

for the integrin receptor CD11b/CD18 (Bajic et al., 2013), and have indicated its role in the 

phagocytic uptake of opsonized particles (Lin et al., 2015). Owing to the fact that C3d is the 

final opsonin stage and remains covalently bound to cells that experienced complement 

attack, it has evolved into an important surface biomarker in the diagnosis of complement-

mediated clinical conditions, such as antibody-mediated rejection during transplantation 

(Stites et al., 2015). Furthermore, its newly discovered roles in innate and adaptive immune 

effector functions put C3d into the spotlight as potential therapeutic target. C3d-binding 

entities based on antibodies or small molecules are therefore being developed and 

investigated (Gorham et al., 2015; Thurman et al., 2013). Though important as an individual 

opsonin, C3d also corresponds to the thioester-containing domain (TED) in C3, C3b and 

iC3b. This domain fulfils important functions during the activation of C3 and serves as 

binding site for natural ligands and immune evasion proteins alike (Chen et al., 2010; 

Hammel et al., 2007; Haspel et al., 2008). Therefore, gaining additional structural 

information about this important opsonin and immune mediator, expanding on early crystal 

structures of C3d (Nagar et al., 1998), is highly important. At the same time, its 

comparatively small size within the family of C3 opsonins facilitates the establishment of 

experimental and computational analyses for the purpose of this study.

In this paper, we report on an HDX-MS experiment we have performed to gather data about 

C3d’s native state (see Section 2.1). To interpret this experimental HDX-MS data in relation 

to C3d’s structure, we needed to find a conformation (or a conformational ensemble) of C3d 

from which this data could be first computationally replicated. For that, we had to choose an 

HDX prediction model (i.e., a theoretical model defining how to derive HDX data from a 

protein’s structure) among those available in the literature. We selected a theoretical model 

built on a phenomenological approximation of the protection factors of a protein’s residues 

(see Section 4.1.2) (Best and Vendruscolo, 2006; Vendruscolo et al., 2003). Using this 

model, we compare various strategies to obtain a conformation (or a conformational 

ensemble) of C3d from which its experimental HDX-MS data can be computationally 

replicated (see Sections 2.2 to 2.5).

• First, we point out that computationally deriving HDX-MS data from C3d’s 

crystal structure does not produce good estimates of its experimental HDX-MS 

data. This confirms that, as noted in (Radou et al., 2014), using only a crystal 

structure may be limiting when interpreting HDX-MS data in certain 

applications.

• Second, we show that better estimates of C3d’s experimental HDX-MS data are 

obtained when computationally deriving HDX-MS data from conformations or 

conformational ensembles produced by MD simulations. However, as we 

observe only small improvements and a clear lack of consistency, we argue that 

using MD conformations might not always be an accurate way to interpret HDX-

MS data either. We also explain why increasing the temperature in an MD 

simulation to broaden conformational sampling does not improve results.

Devaurs et al. Page 3

Int J Comput Biol Drug Des. Author manuscript; available in PMC 2019 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Third, we suggest that using coarse-grained conformational sampling might be a 

better strategy to obtain conformations that allow computationally replicating 

experimental HDX-MS data. By exploring C3d’s native state with such a 

method, we obtain a conformation, referred to as the “HDX conformation”, 

yielding the best estimates of C3d’s experimental HDX-MS data.

Finally, we analyse the HDX conformation of C3d, and we elaborate on what it reveals 

about C3d’s native state (see Section 2.6). We also use this HDX conformation to refine 

C3d’s experimental HDX-MS data from the peptide level to the residue level, and we 

discuss the usefulness of this data (see Section 2.7).

2 Results and Discussion

The three-dimensional structure of C3d was resolved by X-ray crystallography almost two 

decades ago (Nagar et al., 1998). In our work, we use a similar description of C3d’s 

structure produced by a more recent X-ray crystallography study of C3d in complex with the 

extracellular fibrinogen-binding protein (Efb) (Hammel et al., 2007); it can be found in the 

PDB under ID 2GOX. In this crystal structure, C3d contains 297 residues, where residue 1 

corresponds to residue 991 of the full complement protein C3.

C3d can be described as a single-domain α−protein containing twelve α−helices and five 

310−helices. We refer to these helices using the notations introduced in (Nagar et al., 1998). 

Overall, the helices of C3d are organized into an α−α barrel: an inner barrel of helices 

enclosed within an outer barrel of helices. Most consecutive helices alternate between the 

inner barrel and the outer barrel; the remaining helices are not located on the side but at the 

ends of the barrel. The inner barrel is composed of six parallel α−helices: α1 (Glu22 to 

Thr41), α3 (Thr86 to Leu102), α5 (Lys149 to Ala164), α8 (Ser196 to Met209), α10 (Gln236 

to Leu253), and α12 (Ser278 to Asp295). The outer barrel contains six parallel helices 

running anti-parallel to those of the inner barrel; they comprise one 310−helix, T1 (Ala7 to 

Leu13), and five α−helices: α2 (Leu49 to Arg70), α4 (Ser107 to Lys121), α7 (Ser174 to 

Asn189), α9 (Pro215 to Thr223), and α11 (Phe256 to Gln269). The remaining helices are 

rather short; they include one α−helix, α6 (Asp166 to Gln171), and four 310-helices: T2 

(Gln43 to Phe47), T3 (Gln137 to Ile140), T4 (Gly142 to Arg144), and T5 (Tyr190 to 

Asn192).

The ends of the barrel differ significantly: one is a convex surface containing the thioster 

region involved in cell-surface attachment; the other is a concave surface containing a large 

acidic pocket (Nagar et al., 1998). It has been observed that Efb binds to C3d on one side of 

this acidic pocket (Hammel et al., 2007; Haspel et al., 2008). Various ligands of C3d are 

known to bind in the same region, while complement receptor 2 (CR2) binds over the whole 

acidic pocket (Gorham et al., 2015). Finally, note that C3d also features a disulfide bridge 

between Cys111 and Cys168.

2.1 HDX-MS Experiment on C3d

As part of this work, following the methodology presented in Section 4.2.1, we performed 

an HDX-MS experiment on C3d, alone in solution. Therefore, the data produced by this 
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experiment is expected to characterize C3d’s native state. This HDX-MS experiment 

produced deuterium-uptake curves for 86 peptides extracted from C3d (see Table 1). Only 

six amino acids of C3d are not included in any peptide: Phe156, Glu187–Tyr190 and 

Leu248. Therefore, the HDX-MS experiment achieved a coverage of 98% of the protein. 

The redundancy of the data, through the presence of overlapping peptides is also good: 87% 

of amino acids are included in more than one peptide, 62% in more than two peptides, and 

41% in more than three.

Traditionally, this data would be interpreted by (i) converting the deuterium-uptake curves 

into average protection factors of peptides, and (ii) visualizing these average protection 

factors as a heat map using a crystal structure (if available). The first drawback of this 

approach is the loss of information it causes (from a kinetic curve to a single number). 

Second, it can be difficult to deal with overlapping peptides whose data may not be 

consistent. Finally, as suggested in (Radou et al., 2014), there exist more meaningful ways to 

analyse experimentally-observed HDX-MS data, such as refining this data from the peptide 

to the residue level. However, this requires using a protein conformation or a conformational 

ensemble from which the experimental HDX-MS data can be first computationally 

replicated. This also necessitates an HDX prediction model that allows deriving HDX-MS 

data from protein structure, such as the one presented in Section 4.1.2.

In the context of our work, to refine and interpret C3d’s experimental HDX-MS data, we 

first have to reproduce the deuterium-uptake data reported in Table 1. For that, we need to 

find a conformation (or a conformational ensemble) from which this data can be accurately 

derived. Note that, as the N-terminus and C-terminus are known to undergo significant levels 

of back-exchange, our confidence in the HDX-MS data gathered for the corresponding 

peptides is rather low. Therefore, the first two and last three peptides (italicized in Table 1) 

are not considered in the attempt to reproduce C3d’s HDX-MS data, which leaves us with 81 

peptides to perform this analysis.

2.2 HDX Data Derived from the Crystal Structure of C3d

We started by trying to reproduce C3d’s experimental HDX-MS data, using its crystal 

structure, the HDX prediction model described in Section 4.1.2, and the methodology 

presented in Section 4.2.2. Although it was suggested that using a crystal structure to 

reproduce HDX-MS data may not be the most accurate way of doing so (Radou et al., 2014), 

our objective was to obtain a baseline against which other strategies could be compared. We 

subsequently refer to the crystal structure of C3d reported in the PDB (under ID 2GOX) as 

its “PDB conformation.”

Our results show that the HDX-MS data which is computationally derived from the PDB 

conformation of C3d does not fit well the experimentally-observed data (see Figure 1). The 

average difference between the structurally-derived and experimentally-observed HDX-MS 

data across all peptides is 1.23 (see Section 4.2.2). Discrepancies are especially significant 

on the right-hand side of the chart, which corresponds to peptides of C3d comprising the 

region between residues Met191 and Ala242. This region includes helices T5, α8 and α9, the 

beginning of helix α10, as well as the loops between them. It is located on the side of the α
−α barrel and does not cover areas of C3d with known major biological activity. Therefore, 
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the discrepancies observed in this region cannot be linked, a priori, to any biologically-

relevant conformational change in C3d.

The fact that a PDB conformation does not typically provide good estimates of experimental 

HDX-MS data is due to the very nature of HDX-MS experiments, which monitor proteins in 

solution, contrary to X-ray crystallography. Since HDX-MS data reflects the inherent 

flexibility of a protein, a single conformation was not expected to provide good estimates 

(Vendruscolo et al., 2003). Therefore, it was suggested that HDX-MS data could be 

accurately reproduced only as an average over an ensemble of conformations representing 

the native state of a protein, such as an ensemble extracted from an MD simulation (Best and 

Vendruscolo, 2006).

2.3 HDX Data Derived from MD Simulations of C3d

Following the methodology described in Section 4.2.3, we performed three MD simulations 

of C3d (which were 100 ns long) to try and obtain better estimates of its experimental HDX-

MS data. The premise of this experiment is that an MD simulation can produce a richer 

representation of a protein’s native state than a crystal structure, by sampling the protein’s 

equilibrium fluctuations.

Our results confirm that using a conformational ensemble extracted from an MD simulation 

allows deriving HDX-MS data that fits the experimental data better than when using the 

PDB conformation. Aggregating the histogram of differences obtained for each MD 

ensemble (see Figure 2) yields an average difference of about 1.05 (as compared to 1.23 

with the PDB conformation). However, Figure 2 shows that there are significant 

discrepancies between the HDX-MS data sets derived from the three MD ensembles: for 

numerous peptides, the deuterium-uptake curves derived from these ensembles are not 

consistent. This is due to the fact that the sampling performed by MD significantly differs 

across simulations. Therefore, this raises questions about using MD to characterize the 

variability of a protein’s native state, as captured through an HDX-MS experiment. Previous 

studies, such as (Radou et al., 2014), have usually based their analysis on a single MD 

simulation. Our experiment shows that results obtained this way might not always be 

reproducible.

Another important fact that raises questions about using MD conformational ensembles to 

replicate experimental HDX-MS data is that a single conformation might provide better 

estimates than the whole ensemble. For example, the conformation obtained at the end of the 

energy minimization step of MD (see Section 4.2.3) provides reasonable estimates. Indeed, 

aggregating the histogram of differences obtained with this “minimized conformation” (see 

Figure 1) yields an average difference of 1.06, which is similar to the averages obtained with 

the MD ensembles (1.03, 1.07 and 1.04, respectively).

This prompted us to determine which conformations within the three MD ensembles would 

provide the best estimates of C3d’s experimental HDX-MS data. For that, we applied the 

HDX prediction model to each conformation in these ensembles, instead of computing 

averages. In each MD ensemble, we selected the conformation providing the best estimates. 

These MD conformations produce even better estimates than the minimized conformation of 
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C3d. Aggregating the histograms of differences obtained with these MD conformations (see 

Figure 3) yields average differences between 0.88 and 0.92. Despite such consistency in 

terms of average difference, Figure 3 shows that the HDX-MS data sets derived from the 

three MD conformations are far from being consistent. Indeed, discrepancies between 

histograms are even worse than when using the full MD ensembles.

Although we observe a slight improvement in HDX prediction, as compared to what C3d’s 

crystal structure produced, it is still not good enough to consider that the experimental HDX-

MS data has been replicated. Errors in HDX prediction are especially high on the right-hand 

side of the chart, which corresponds to region [Met191–Ala242] of C3d. To investigate 

whether these errors were due to this region being more flexible than other parts of C3d, we 

examined the B factors reported in the PDB. No correlation was found between B factors 

and errors in HDX prediction. We also performed a normal mode analysis of C3d, using 

ProDy (Bakan et al., 2011). No correlation was found between normal modes and errors in 

HDX prediction.

The extent of discrepancies between experimentally-observed and structurally-derived 

HDX-MS data initially prompted us to think that they might have captured significant 

conformational differences corresponding to distinct states of C3d. This would have been 

surprising, as C3d is not known to be very flexible (Haspel et al., 2008). In fact, we show in 

what follows that these discrepancies do not correspond to structural differences. We believe 

that the failure to replicate C3d’s experimental HDX-MS data using MD conformations (or 

conformational ensembles) is a consequence of MD not sampling C3d’s native state 

thoroughly enough. Note that this issue remained, even after extending one of the MD 

simulations from 100 ns to 300 ns.

2.4 HDX Data Derived from High-Temperature MD Simulations of C3d

The computational cost of MD makes it often impractical to run a simulation for long 

enough to produce a thorough exploration of a protein’s native state. Various methods have 

been proposed to improve performance, such as temperature-accelerated replica exchange, 

umbrella sampling, metadynamics, or accelerated MD (Feixas et al., 2014; Rocchia et al., 

2012). As our objective was not to evaluate these methods, we decided to try and broaden 

the scope of MD’s conformational exploration by simply increasing the temperature.

We performed four additional MD simulations of C3d, following our previous methodology 

(see Section 4.2.3), except for the temperature of the production stage. In this experiment, 

we used four different temperatures: 350 K, 400 K, 450 K, and 500 K (instead of 300 K, as 

in the previous experiment). From each produced trajectory, which was 200 ns long, we 

extracted a set of 1000 conformations at regular time steps. We then determined, in each set, 

which conformation provided the best estimates of C3d’s experimental HDXMS data.

Increasing the temperature to 350 K did not produce anything different from the previous 

MD simulations. Therefore, we report only the results achieved by the three other MD 

simulations (see Figure 4). From these results, it appears that increasing the temperature is 

not beneficial: the average differences obtained with the MD simulations at 400 K, 450 K 

and 500 K are 0.92, 0.99 and 1.11 respectively. An interesting outcome of this experiment is 

Devaurs et al. Page 7

Int J Comput Biol Drug Des. Author manuscript; available in PMC 2019 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the histograms of differences are significantly different from those of previous MD 

simulations (compare Figures 3 and 4). This shows that increasing temperature had the 

intended effect of broadening the sampling of C3d’s conformational space. This is 

confirmed by data on the radius of gyration, Rg, of various conformations of C3d: for the 

PDB conformation, Rg = 18 Å; the largest radius observed in regular MD simulations is Rg 

= 18.7 Å; the largest radius observed in high-temperature MD simulations is Rg = 19Å at 

400 K, Rg = 19.6Å at 450 K, and Rg = 22.2Å at 500 K.

To sum up, increasing the temperature in MD can broaden the sampling of a protein’s 

conformational space. However, in this case, it did not yield a conformation from which 

good estimates of C3d’s experimental HDX-MS data could be derived. One reason is that, 

when temperature is too high, the protein starts unfolding and conformations are generated 

outside the native state. We recognize that increasing temperature is not the most efficient 

way to improve MD’s performance, and that more sophisticated variants of MD (Feixas et 

al., 2014; Rocchia et al., 2012) could be successful in producing a good HDX predictor for 

C3d. However, in this study, we chose to follow a different approach because we believe that 

coarse-grained conformational sampling can be a valuable alternative to all-atom 

simulations, such as classical (molecular mechanics) MD.

2.5 HDX Data Derived from Coarse-Grained Conformational Sampling of C3d

We argue, here, that using “coarse-grained” conformational sampling can help broaden the 

exploration of C3d’s conformational space in a beneficial way. Note that we use the term 

“coarse-grained” in its most general sense. In this context, numerous coarse-grained 

computational tools can be considered: MD-like methods using coarse-grained force fields 

(Davtyan et al., 2012), Monte-Carlo-based simulations (Boomsma et al., 2013; Sim et al., 

2012), methods using elastic network models (López-Blanco and Chacón, 2016), or 

robotics-inspired conformational sampling methods (Al-Bluwi et al., 2012; Devaurs et al., 

2013, 2015; Gipson et al., 2012), among others. Here, we use a computational tool called 

SIMS (Gipson et al., 2013), which combines a robotics-inspired conformational sampling 

method with the Rosetta modelling software (Das and Baker, 2008) (see Section 4.2.4).

We refer to the conformation produced by this experiment (cf. Section 4.2.4) as the “HDX 

conformation” of C3d. Indeed, this conformation provides very good estimates of C3d’s 

experimental HDX-MS data (see Figure 5). The average difference between experimentally-

observed and structurally-derived deuterium-uptake curves across all peptides is only 0.6. 

Therefore, we can consider that deriving HDX-MS data from this conformation allows 

replicating C3d’s experimentally-observed HDX-MS data. This is the first step toward 

interpreting and refining this experimental data.

2.6 Examination of the HDX Conformation of C3d

The HDX conformation of C3d, which allows replicating its experimental HDX-MS data, is 

very similar to the PDB conformation (see Figure 6). All the helices forming the α−α barrel 

are conserved in the HDX conformation, although some are slightly different: α1 is extended 

from [Glu22–Thr41] to [Gly21–Thr41], α5 is shortened from [Lys149–Ala164] to [Asp150–

Ala164], α7 is shortened from [Ser174–Asn189] to [Leu175–Asn189], α10 is shortened 
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from [Gln236–Leu253] to [Tyr238–Leu253], α12 is shortened from [Ser278–Asp295] to 

[Thr279–Asp295], and T1 is shortened from [Ala7–Leu13] to [Ala7–Lys11]. The disulfide 

bridge between Cys111 and Cys168 is also conserved. On the other hand, two small helices 

have disappeared (T4 and T5), and α6 has been shortened from [Asp166– Gln171] to 

[Asp166–Glu169]. Another difference is that the α−α barrel of the HDX conformation (Rg 

= 19 Å) is slightly wider than the α−α barrel of the PDB conformation (Rg = 18 Å). 

However, we do not consider these to be significant differences.

The HDX conformation is also similar to other crystal structures obtained for C3d itself 

(Bajic et al., 2013; Morgan et al., 2011; Nagar et al., 1998; van den Elsen and Isenman, 

2011) or for other molecules that contain C3d as their TED (see Section 1), such as C3 

(Janssen et al., 2005). This confirms that this C3d state is rather stable, in the sense that it 

displays little conformational variability. Indeed, comparatively to other areas of C3, and 

particularly its a-chain, the C3d/TED domain has typically been considered stable. The 

strong similarity between the HDX conformation of C3d and its crystal structures 

demonstrates that they all are reasonably good representations of the three-dimensional 

structure of C3d in solution. Therefore, these conformations may be suitable to interpret 

experimental data, such as results of ligand interaction analyses, which may benefit 

functional studies and drug development efforts.

Despite the similarity between the HDX conformation of C3d and its crystal structures, 

small differences exist, mostly in terms of width of the α−α barrel. We wish to stress that 

the HDX conformation should only be regarded as an averaged representation of C3d’s 

flexibility, as captured in its experimental HDX-MS data. In other words, we do not consider 

this conformation to be a better representation of C3d’s native state than its crystal 

structures. Indeed, the HDX conformation does not appear to be energetically stable. First, 

after performing an energy minimization of the HDX conformation, we obtained a 

conformation whose energy is higher than the minimized version of the PDB conformation. 

Second, after running an MD simulation starting from the HDX conformation, we observed 

that, except at the very beginning, all generated conformations were more similar to the PDB 

conformation than to the HDX conformation, in terms of width of the α−α barrel.

Since the experimental HDX-MS data reflects the inherent variability of a protein’s native 

state, a conformational ensemble describing this state would provide a better HDX 

prediction than a single conformation. We still believe this to be true, but only if the 

ensemble is a good representation of this state. Our results show that this could not be 

achieved for C3d by simply using MD. On the other hand, coarse-grained conformational 

sampling provided us with a conformation yielding good HDX predictions. Predictions 

could be even better if this method was used to generate conformational ensembles, but 

evaluating these ensembles would be too computationally-expensive. In practice, it is 

reasonable enough to use a single conformation for HDX prediction, instead of a 

conformational ensemble. The only caveat is that this conformation should not be regarded 

as a better representation of a protein’s native state than a conformational ensemble. It 

should only be considered as a mean to interpret and refine experimental HDX-MS data.
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2.7 Refinement of C3d’s HDX-MS Experimental Data

A clear benefit of using the HDX prediction model we chose and a protein conformation to 

replicate experimental HDX-MS data is that it allows refining this data from the peptide 

level to the residue level. Indeed, in this HDX prediction model, the HDX-MS data is first 

derived from the protein’s structure at the residue level, and then aggregated at the peptide 

level (see Section 4.1.2). Therefore, this method provides residue-level HDX-MS 

information at no experimental or computational cost. Another technique was proposed to 

obtain residue-level information, but it requires collecting experimental HDX-MS data with 

high levels of redundancy, in terms of overlapping peptides (Kan et al., 2013). On the other 

hand, the method we use can be applied to any experimental dataset, irrespective of the level 

of redundancy.

Using the HDX prediction model and the HDX conformation of C3d, we refined the 

peptide-level HDX-MS data reported in Table 1 into a list of protection factors for C3d’s 

residues. These protection factors are visualized on the HDX conformation of C3d as a heat 

map (see Figure 7). This is a clear improvement over the classical methodology producing 

such heat maps at the peptide level (Huang and Chen, 2014). Some observations derived 

from Figure 7 were expected: for example, helices generally benefit from higher protection 

factors than loop regions. On the other hand, local packing density induces an unexpected 

result: the highest protection factors are observed within two loop regions (Ala75, Phe76 and 

Ser85).

Obtaining residue-level HDX-MS data is considered highly valuable for most HDX-based 

applications, including ligand interaction studies. If an HDX-MS experiment is performed 

on a complex involving C3d and one of its ligands, refining the experimentally-observed 

data at the residue level and comparing it to the data obtained for C3d alone can help 

characterize the interaction interface or even locate key residues maintaining the complex. 

Moreover, comparing residue-level HDX-MS data obtained for complexes involving distinct 

ligands can help explain potential differences in binding affinity and engineer more potent 

binders during rational drug design. This may be particularly important to alleviate the 

possible absence of suitable co-crystal structures, or to increase the throughput in screening 

and hit validation.

3 Conclusions

In this paper, we have analysed the native state of the complement protein C3d. Although 

several crystal structures of C3d are available (Hammel et al., 2007; Nagar et al., 1998), little 

is known about its inherent variability in solution. To gather data that could help bridge this 

gap, we performed an HDX-MS experiment on C3d. As a result, we obtained deuterium-

uptake curves for 86 peptides extracted from C3d. To interpret this experimental data in 

relation to C3d’s structure, it is imperative to have a conformation (or a conformational 

ensemble) of C3d from which this data can be replicated. As a crystal structure might not be 

the most accurate predictor for experimental HDX-MS data (Radou et al., 2014), we used 

various conformational sampling techniques to generate alternative conformations of C3d.
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Although using a conformational ensemble produced by an MD simulation was thought to 

be an appropriate way to reproduce experimentally-obtained HDX-MS data (Radou et al., 

2014), our study shows that this might not always be true. First, we observe that a single 

conformation of such ensemble can be a better HDX predictor than the whole ensemble. 

Second, at least in the case of C3d, there seems to be a lack of consistency between the HDX 

predictions obtained with different MD simulations. Third, using MD conformations yields 

HDX predictions that are only slightly better than when using C3d’s crystal structure. All 

this indicates that MD might not produce a representation of a protein’s native state that can 

capture its inherent variability in the same way as HDX-MS data does. This is particularly 

surprising for C3d because, comparatively to other regions of C3, the C3d/TED has typically 

been considered very stable.

As an alternative to MD simulations, we suggest using coarse-grained conformational 

sampling to obtain good HDX predictors. At least for the model protein C3d, such sampling 

could generate a conformation from which the best estimates of C3d’s experimental 

HDXMS data could be derived. As a result, this HDX conformation can be used to interpret 

the experimental data and refine it from the peptide to the residue level. Although not 

necessarily a better representation of C3d’s native state than crystal structures or MD-

derived conformational ensembles, the HDX conformation can be regarded as an average 

representation of the variability of C3d’s native state that is captured in its experimental 

HDX-MS data. Therefore, this conformation contains valuable information that may guide 

structural studies or help identifying hitherto unrecognised areas of structural dynamics.

The similarity between the HDX conformation we have obtained for C3d and its crystal 

structures confirms the stability of its native state: it seems to display little conformational 

variability. Therefore, in practice, C3d’s crystal structures can be regarded as good-enough 

representations of its three-dimensional structure in solution. Combining this structure with 

the residue-level HDX-MS data we have obtained for C3d could prove extremely valuable 

for ligand interaction studies, with potential implications for rational drug design.

As part of our future work, we plan to investigate whether the results reported in this paper 

can be generalized to yield a comprehensive HDX prediction and refinement methodology. 

More specifically, we will examine whether coarse-grained conformational sampling is 

generally better than MD at producing conformations that are good HDX predictors. We will 

evaluate our methodology on several proteins. We envision several applications for an 

accurate HDX prediction method. First, it would allow evaluating the consistency between 

crystallographic and HDX-MS data, in cases where it is not certain whether both datasets 

correspond to the same protein state. Second, if a protein’s native state is described in the 

PDB, and if only HDX-MS data is available for another (non-native) protein state, it would 

be possible to obtain a structural model of this non-native state. Finally, the possibility to 

refine HDX-MS data from the peptide to the residue level will benefit all the applications of 

the HDX-MS technique itself (Pirrone et al., 2015).
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4 Methods

In the Methodological Background, we outline general concepts underpinning the HDX-MS 

experimental technique, and we introduce the HDX prediction model chosen for this study. 

Then, in the Experimental Methods, we present the specific details of our experimental and 

computational methodology.

4.1 Methodological Background

4.1.1 Hydrogen/Deuterium Exchange Detected by Mass Spectrometry (HDX-
MS)—Hydrogen/Deuterium exchange (HDX) is a chemical phenomenon in which hydrogen 

atoms of proteins are exchanged with deuterium atoms in the surrounding solvent (Engen et 

al., 2011). As the mass of deuterium is about twice the mass of hydrogen, HDX can be 

monitored by Mass Spectrometry (MS): the amount of deuterium incorporated in a protein, 

which is referred to as deuterium uptake, corresponds to an increase in mass. In HDX-MS 

experiments, only the exchange of amide hydrogens (i.e., hydrogens attached to backbone 

nitrogens) is monitored (Engen et al., 2011). Therefore, HDX-MS experiments are 

interpreted on the basis of a single measurement per amino acid, for all amino acids of a 

protein, except for proline residues and for the N-terminus because they do not possess an 

amide N–H group.

The HDX rates of amino acids can vary up to several orders of magnitude, depending on pH 

and temperature (Brier and Engen, 2008). The HDX rate of an amino acid in an unstructured 

peptide is only affected by its neighbours; this “intrinsic” HDX rate, denoted by kint, can be 

predicted (Bai et al., 1993; Connelly et al., 1993). The HDX rate of an amino acid in a 

protein is influenced by additional factors, such as solvent accessibility and protein 

structure; this HDX rate, denoted by kobs, is the one that is observed experimentally (Wei et 

al., 2013). The extent to which amide hydrogens of a protein are protected from being 

exchanged can be quantified by defining the protection factor of every amino acid i as 

Pi = ki
int/ki

obs.

At the beginning of an HDX-MS experiment, the protein is equilibrated in H2O at room 

temperature under physiological conditions (pH close to 7). To start the HDX reaction, the 

protein is then diluted with excess D2O. At several time points, the reaction is quenched in a 

solution sample by bringing the pH down to 2.5, and the temperature down to 0°C. Proteins 

in the sample are digested using pepsin, which is active at acidic pH and generates numerous 

peptides typically 6–20 amino acids long. The sample is then introduced into a 

chromatography system that separates the peptides and sends them into a mass spectrometer. 

The MS analysis identifies the peptides and quantifies their deuterium uptake. As this 

analysis is repeated at several time points, an HDX-MS experiment produces deuterium-

uptake kinetic curves for various peptides (Huang and Chen, 2014). Additionally, as the 

maximum number of deuterium atoms that can be incorporated by a peptide is known, 

results are usually reported as fraction of deuterium uptake, instead of “absolute” deuterium 

uptake.
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An important aspect of HDX-MS experiments is that, because sample analysis is performed 

in H2O solution, some deuterium atoms incorporated by the peptides are exchanged back to 

hydrogens. This phenomenon, known as back-exchange, can be detrimental if deuterium in 

amide groups start reverting to hydrogen. This is why digestion and MS analysis have to be 

performed rapidly. As back-exchange of amide groups cannot be totally avoided, it has to be 

accounted for in the analysis of deuterium-uptake curves: if the HDX rate of a peptide is 

considered as the average rate of its amino acids, the first two amino acids in the chain have 

to be ignored because they systematically undergo back-exchange (Huang and Chen, 2014; 

Konermann et al., 2011).

4.1.2 Hydrogen/Deuterium Exchange Derived from Protein Structure—The 

levels of HDX undergone by different parts of a protein are known to be influenced by the 

protein’s three-dimensional structure. Several theoretical models have been proposed to 

define a relationship between a protein’s conformation and HDX data, but none of them has 

been widely accepted by the scientific community (Skinner et al., 2012). Among these 

models, we chose to use the one that performed best in a recent comparative study (Skinner 

et al., 2012). This model relies on the definition of a phenomenological expression 

approximating the protection factors of the protein’s residues (Vendruscolo et al., 2003). 

Since its conception, this model has been applied in several studies (Best and Vendruscolo, 

2006; Gsponer et al., 2006; Kieseritzky et al., 2006; Radou et al., 2014; Tartaglia et al., 

2007).

The theoretical model is based on the assumption that protection from HDX arises from the 

involvement of amide groups in hydrogen bonds and from the packing density of atoms 

around amides. More specifically, given a conformation C, the protection factor of residue i, 
Pi(C), can be derived from the phenomenological expression

ln Pi C = βhNi
h C + βcNi

c C (1)

where Ni
h C  is the number of hydrogen bonds involving the amide group of residue i, and 

Ni
c C  is the number of atom contacts (quantifying packing density) involving residue i. 

Parameters βh and βc have been estimated by fitting experimentally-determined HDX data 

of various proteins: βh = 2 and βc = 0.35 (Best and Vendruscolo, 2006). The number of 

hydrogen bonds, Ni
h C , is defined as the number of main-chain oxygens in any residue 

(excluding residues i − 2,…, i + 2) within a cutoff distance of 2.4Å from the amide hydrogen 

of residue i. The number of atom contacts, Ni
c C , is the number of heavy atoms (i.e., non-

hydrogens) in any residue (excluding residues i − 2,…, i + 2) within a cutoff distance of 

6.5Å from the amide hydrogen of residue i. Note that, instead of being derived from a single 

conformation, protection factors can be computed as ensemble averages over a set of 

conformations, such as a conformational ensemble produced by an MD or Monte Carlo 

simulation (Best and Vendruscolo, 2006; Vendruscolo et al., 2003).
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Using the protection factors derived from (1), one can generate deuterium-uptake curves of 

peptides that can be compared to experimentally-obtained HDX-MS data. For that, we first 

assume that a residue’s deuterium uptake follows pseudo-first-order kinetics (Brier and 

Engen, 2008; Huang and Chen, 2014; Konermann et al., 2011). Since Pi = ki
int/ki

obs, the 

fraction of deuterium incorporated by residue i at time t is thus

di t = 1 − exp −ki
obst = 1 − exp − ki

int/Pi t (2)

where ki
int rates are known. Then, the deuterium uptake of peptide j can be considered as an 

average over the residues it contains (Radou et al., 2014). Note that we systematically 

exclude from the average the first two amino acids of the peptide because of back-exchange.

4.2 Experimental Methods

4.2.1 HDX-MS Experiment—Human purified C3d (0.25 mg/mL) was expressed in E. 
coli, as described in other work (Hammel et al., 2007). Deuterium oxide (99.9 atom % D; 

151882) was obtained from Aldrich (St. Louis, MO). Tris(2-carboxyethyl)-ohosphine 

hydrochloride (TCEP-HCl; 20491) and immobilized pepsin (20343) were from Thermo 

Scientific (Rockford, IL). Guanidine hydrochloride (> 99.5% purity; BP178–500), 

acetonitrile (99.9%; A998) and formic acid (> 99.5% purity; A117) were purchased from 

Fisher (Fair Lawn, NJ).

C3d’s peptides (2 pmol) were analysed in data-dependent acquisition (DDA) mode. 

Precursor ions were acquired in the m/z 300–1500 Da range using a top 3 method and 

MS/MS scans of the fragment ions were acquired in the m/z 100–1200 Da range. The total 

cycle time was 3.8 sec and ions selected for fragmentation were excluded for 20 sec. UPLC 

parameters were as described below. Peptide identification took place in ProteinLynx Global 

Server™ (version 3.0.2, Waters) using 10 ppm peptide tolerance and 0.8 Da fragment 

tolerance.

For the labelling experiment, 4 μL of purified C3d (0.2 μg/μL in PBS; 10 mM Na2HPO4, 1.8 

mM KH2PO4, 2.7 mM KCl and 137 mM NaCl, pH 7.5) was mixed with 40 μL of deuterated 

PBS at 24±0.5°C. Samples were quenched at 10, 30, 100, 300, 1000, 3000 and 10000 sec 

using an equal volume (44 μL) of pre-chilled guanidinium hydrochloride-TCEP (3.2 M and 

0.8 M, respectively) at a final pH 2.4. Samples were incubated on ice for 2 min prior to LC-

MS analysis. Non-deuterated samples were prepared similarly in protiated PBS; fully-

deuterated samples were prepared by incubating the protein for 48 h at 37±0.5°C. Samples 

were prepared and analysed in duplicate using a Synapt G2S ESI-QToF (Waters) mass 

spectrometer with MassLynx™ 4.1 (SCN 916, Waters). Spectra were acquired in the 

positive ion mode. Leu-Enk was co-infused as a lock spray standard. Chromatographic 

separation took place on a nano-Acquity UPLC system with HDX technology (Waters). 

Quenched samples were injected on an Acquity UPLC R BEH C18 VanGuard Pre-column 

(130 Å, 1.7 μm, 2.1×5 mm, Waters P/N 186003975). Peptides were generated upon online 

digestion (3 min at 300 μL/min using 0.23% v/v formic acid) of C3d using immobilized 
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pepsin. They were separated on an Acquity UPLC R BEH C18 analytical column (130 Å, 

1.7 μm, 1×100 mm; 186002346, Waters). Chromatographic parameters were: flow rate at 40 

μL/min; solvents A (0.23% v/v formic acid) and B (0.23% v/v formic acid in acetonitrile). 

Solvent B was ramped from 3% to 10% in 0.2 min, to 38.5% in 19.8 min, to 90% in 2 min, 

and then kept at 90% for 2 min before re-equilibrating to initial conditions. Data processing 

took place in DynamX (version 2.0, Waters).

4.2.2 HDX Data Derived from Crystal Structures—Using the model described in 

Section 4.1.2, we derived HDX-MS data from the conformation of C3d reported in the PDB 

(i.e., 2GOX). More precisely, we calculated the fraction of deuterium uptake at all 

experimental time points for the 81 peptides retained for analysis (see Section 2.1). We then 

compared this data to the experimentally-obtained data reported in Table 1. To assess the 

goodness-of-fit between structurally-derived and experimentally-observed HDX-MS data, 

we constructed a histogram of differences by computing, for every peptide j, the error 

∑t ∈ T D j
der t − D j

obs t , where T is the list of experimental time points, D j
der t  is the 

structurally-derived deuterium uptake at time t, and D j
obs t  is the experimentally-observed 

deuterium uptake at time t. Note that this histogram can be aggregated into an average 

difference over all peptides.

4.2.3 HDX Data Derived from MD simulations—All MD simulations were 

performed with the GROMACS v4.6.5 package (Pronk et al., 2013) using the GROMOS96 

(53a6) force field and the SPC water model. A cubic box was defined with at least 9Å of 

liquid layer around C3d’s structure (for a total of 15052 water molecules), with periodic 

boundary conditions. Sodium (Na+) and chloride (Cl−) counter-ions were added to neutralize 

the system, with a final concentration of 0.15 mol/L. The algorithms v-rescale (with tau-t = 

0.1 ps) and parrinello-rhaman (with tau-p = 2 ps) were used for temperature and pressure 

coupling, respectively. A cutoff value of 1.2 nm was used for both the van der Waals and 

Coulomb interactions, with Fast Particle-Mesh Ewald electrostatics (PME).

The production stage of each MD simulation is preceded by (i) three steps of Energy 

Minimization (EM) and (ii) eight steps of Equilibration (EQ). The first EM step is conducted 

using the steepest-descent algorithm and position restraints on C3d’s heavy atoms (5000 kJ
−1mol−1nm−1), allowing relaxation of the solvent only. The second EM step involves the 

same algorithm, but no restraint. The third EM step uses the conjugate-gradient algorithm, 

without restraint, to further relax the protein. The EQ phase starts at a temperature of 310 K, 

which is maintained for 300 ps, applying position restraints on C3d’s heavy atoms (5000 kJ
−1mol−1nm−1). This step allows solvation layers to form without affecting C3d’s folding. 

Temperature is then reduced to 280 K, and position restraints are gradually reduced. This 

process is followed by a progressive temperature increase, up to 300 K. Together, these EQ 

steps constitute the first 500 ps of each MD simulation. During the production stage, the 

system is not subjected to any restraint, and temperature remains constant at 300 K.

All MD simulations were run on a single node of our local High-Throughput Computing 

cluster. Such node includes two octo-core Intel E5–2650v2 Ivy Bridge EP processors (2.6 

GHz), for a total of 32 threads, sharing 32 GB of memory. The performance of an MD 
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simulation of C3d on this architecture is approximately 29 ns/day. We initially ran three MD 

simulations of C3d and obtained trajectories of 100 ns in length, which is the length of the 

MD performed in (Radou et al., 2014). Then, we extended one of these simulations to 300 

ns. Finally, we performed four additional MD simulations of 200 ns in length, using 

increasing temperatures for the production stage: 350 K, 400 K, 450 K, and 500 K. From 

each MD simulation, we extracted a set of 1000 conformations at regular time steps along 

the trajectory. Using the HDX prediction model described in Section 4.1.2, we derived 

HDX-MS data from each MD conformational ensemble. First, protection factors of residues 

were calculated as averages over the conformational ensembles. Then, within each 

ensemble, we determined which conformation would provide the best estimates of C3d’s 

experimental HDX-MS data.

4.2.4 HDX Data Derived from Coarse-Grained Conformational Sampling—In 

this work, we used a computational framework developed to explore a protein’s 

conformational space: Structured Intuitive Move Selector (SIMS) (Gipson et al., 2013). This 

framework integrates robotics-inspired sampling algorithms with the Rosetta modelling 

software (Das and Baker, 2008). SIMS follows a “coarse-grained” approach: the 

representation of a protein involves only backbone dihedral angles; this representation is 

manipulated in a multi-resolution fashion during sampling. Starting from the PDB 

conformation of a protein, SIMS can iteratively generate an ensemble of low-energy 

conformations by perturbing previously-generated conformations. Typical perturbations 

include dihedral angle rotation, loop closure and others. In this experiment, SIMS was run 

for five days on four threads of a 3.6 GHz Intel i7–4790 quad-core CPU. Then, from the 

produced conformational ensemble, we determined which conformation would provide the 

best estimates of C3d’s experimental HDX-MS data.
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Figure 1. 
Deriving HDX-MS data from two conformations of C3d. Histograms of differences (for the 

81 peptides extracted from C3d) obtained when assessing the goodness-of-fit between the 

experimental HDX-MS data obtained for C3d and the HDX-MS data derived from the PDB 

conformation of C3d, or from a minimized version of this conformation.
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Figure 2. 
Deriving HDX-MS data from MD simulations of C3d. Histograms of differences (for the 81 

peptides extracted from C3d) obtained when assessing the goodness-of-fit between the 

experimentally-observed HDX-MS data and the HDX-MS data derived from ensembles of 

conformations extracted from three MD simulations of C3d.
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Figure 3. 
Deriving HDX-MS data from MD conformations of C3d. Histograms of differences (for the 

81 peptides of C3d) obtained when assessing the goodness-of-fit between the 

experimentally-observed HDX-MS data and the HDX-MS data derived from single 

conformations extracted from three MD simulations of C3d.
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Figure 4. 
Deriving HDX-MS data from high-temperature MD simulations of C3d. Histograms of 

differences obtained when assessing the goodness-of-fit between the experimentally-

observed HDX-MS data and the HDX-MS data derived from single conformations extracted 

from MD simulations of C3d at 400 K, 450 K and 500 K respectively.
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Figure 5. 
Deriving HDX-MS data from coarse-grained conformational sampling of C3d. Histograms 

of differences obtained when assessing the goodness-of-fit between the experimentally-

observed HDX-MS data of C3d and the HDX-MS data derived from its PDB conformation 

or its HDX conformation (i.e., the conformation produced by coarse-grained conformational 

sampling).
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Figure 6. 
PDB and HDX conformations of C3d depicted using the ribbon model.
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Figure 7. 
Heat-map visualization of the protection factors of C3d’s residues. Protection factors are 

derived from, and depicted on, the HDX conformation of C3d. Prolines are coloured in 

green. Other residues are coloured using a spectrum corresponding to the range of protection 

values.
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Table 1

HDX-MS data experimentally-obtained for C3d. Results are reported as percentage of deuterium uptake (i.e., 

ratio of effective deuterium uptake over maximal deuterium uptake) at seven time points for the 86 peptides 

extracted from C3d. The first two and last three peptides are not used in the attempts to computationally 

reproduce this data.

time points (min)

0.17 0.5 1.7 5 17 50 167

[1–16] 67 76 86 95 97 99 100

[1–25] 64 70 80 90 97 100 100

[26–40] 6 6 7 10 16 28 46

[26–43] 8 11 16 22 30 40 55

[28–43] 12 15 20 26 33 41 51

[33–40] 9 9 9 10 13 19 34

[33–43] 14 20 29 40 50 55 64

[34–43] 15 23 34 46 57 64 73

[35–43] 15 24 35 48 60 66 74

[36–43] 18 27 42 58 72 78 85

[41–58] 68 69 71 74 79 84 90

[44–56] 78 79 81 82 85 90 94

[44–57] 73 74 75 77 83 90 96

[44–58] 65 66 67 69 74 83 90

[50–57] 35 36 40 44 51 58 71

[50–58] 43 45 46 49 57 68 79

[57–68] 6 7 10 15 21 29 51

[58–66] 7 7 7 8 12 16 50

[58–67] 4 5 5 6 8 13 48

[58–68] 6 8 11 17 22 31 56

[59–66] 6 6 7 8 10 24 48

[59–67] 5 5 5 6 9 14 48

[59–68] 6 8 11 17 23 31 56

[67–75] 25 26 30 41 60 85 99

[67–76] 20 21 25 35 56 78 97

[67–78] 14 17 22 35 52 71 92

[68–75] 28 29 34 44 67 85 98

[68–76] 24 25 29 40 61 82 96

[69–75] 32 34 38 50 73 89 99

[69–76] 26 28 31 42 65 84 99

[78–89] 39 45 51 53 55 61 70

[79–88] 46 54 61 62 65 72 83

[79–91] 34 40 45 46 50 54 63

[80–91] 28 34 39 41 44 50 59

[91–98] 3 3 3 4 4 4 5
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time points (min)

0.17 0.5 1.7 5 17 50 167

[91–99] 1 1 2 2 2 2 5

[92–98] 3 3 4 4 4 4 4

[92–102] 19 23 30 34 35 39 47

[103–110] 69 76 86 93 96 98 98

[103–113] 52 59 72 79 84 89 95

[113–119] 3 3 3 3 4 4 4

[117–128] 9 10 11 14 24 39 63

[120–128] 15 15 17 18 22 32 56

[120–139] 31 35 42 53 64 72 80

[129–137] 32 38 47 60 73 80 82

[129–139] 37 43 54 71 83 90 92

[140–150] 65 67 75 82 90 95 97

[140–153] 53 55 60 69 83 95 98

[140–155] 47 48 53 62 75 86 89

[157–166] 17 18 20 25 39 54 70

[157–169] 26 32 40 47 58 70 81

[159–166] 19 20 23 30 45 62 79

[159–169] 33 40 49 56 67 79 88

[159–170] 34 40 49 58 67 79 88

[159–185] 44 51 59 65 73 80 85

[170–184] 45 53 64 72 79 82 85

[170–185] 43 50 60 66 73 76 80

[170–186] 41 48 56 65 70 73 77

[171–184] 45 51 61 71 75 79 83

[191–200] 69 75 81 86 91 94 96

[194–203] 41 51 56 69 77 81 83

[201–217] 39 44 56 69 78 87 94

[201–220] 33 38 51 63 73 81 86

[202–220] 33 39 54 66 75 83 88

[204–217] 41 46 58 70 79 88 94

[204–220] 34 40 54 66 76 85 89

[207–217] 48 53 68 82 87 92 94

[207–220] 38 45 61 73 81 86 88

[210–220] 36 43 62 73 79 83 84

[221–241] 63 76 90 97 98 99 99

[221–242] 60 72 86 92 94 96 98

[242–247] 3 4 4 4 4 5 5

[249–268] 18 21 26 30 34 41 54

[251–265] 28 33 37 39 44 52 67

[252–268] 20 24 28 33 40 47 61

[256–265] 8 13 16 20 29 41 62
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time points (min)

0.17 0.5 1.7 5 17 50 167

[256–268] 6 9 14 20 28 37 54

[256–280] 47 52 56 61 65 70 78

[257–268] 4 5 8 15 24 32 50

[258–268] 3 4 8 14 19 25 44

[260–268] 3 4 7 13 18 24 43

[269–280] 93 96 97 97 97 97 98

[269–283] 71 74 77 81 83 86 93

[284–297] 23 29 33 35 38 42 48

[287–297] 35 46 51 52 55 61 68

[290–297] 55 73 81 83 87 94 99
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