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ABSTRACT: The effect of a nonspherical particle shape on the dynamics in
crowded solutions presents a significant challenge for a comprehensive
understanding of interaction and structural relaxation in biological and soft
matter. We report that small deviations from a spherical shape induce a
nonmonotonic contribution to the crowding effect on the short-time cage
diffusion compared with spherical systems, using molecular dynamics
simulations with mesoscale hydrodynamics of a multiparticle collision
dynamics fluid in semidilute systems with volume fractions smaller than
0.35. We show that the nonmonotonic effect due to anisotropy is caused by
the combination of a reduced relative mobility over the entire concentration
range and a looser and less homogeneous cage packing of nonspherical
particles. Our finding stresses that nonsphericity induces new complexity,
which cannot be accounted for in effective sphere models, and is of great
interest in applications such as formulations as well as for the fundamental
understanding of soft matter in general and crowding effects in living cells in particular.

■ INTRODUCTION

Diffusion of proteins in cells is an essential aspect, as it strongly
influences the cellular machinery through numerous processes
such as signal transmission or reactions between proteins.1−3 In
a dense and crowded environment such as the interior of a living
cell, individual proteins strongly feel the presence of surrounding
proteins through direct and hydrodynamic interactions.4−7

These interactions cause a severe slowing down of diffusional
transport in crowded solutions,1,8 with a strong dependence on
the nature of the crowder and tracer.9−13 Concentrated protein
solutions present promising systems for the investigation of
generic crowding effects, since systematic experimental studies
have been successfully linked to colloid-inspired descrip-
tions,14−19 as for example for the critical slowing down and
dynamical arrest in crystallin solutions mimicking the eye lens
fluid.20−23 On the basis of this overall success of colloidal
concepts, previous studies1,14−18,21,23 argued that a weak shape
anisotropy as found for many globular proteins can be
successfully modeled using effective spherical particles,24

thereby neglecting the specific shape of the particle.
Here, using mesoscale hydrodynamic simulations, we

critically examine this approach in the appropriate short-time
limit, in which the single-particle hydrodynamic mobility
governs themotions without being obstructed by other particles.
We stress that an accurate characterization of the short-time

limit is essential for a quantitative understanding of dynamic
processes at longer times, as short-time processes always enter
the description, e.g., owing to mobility as well as collision or
escape times. We show that slightly nonspherical particles
experience a nonmonotonic contribution to the slowing down of
the short-time cage diffusion, i.e., the short-time collective
diffusion on a length scale comparable to the particle size, which
cannot be understood based on colloidal models of effective
spheres, and is not caused by interparticle attraction. We remark
that this effect is not caused by jamming close to dynamical
arrest, but is an intrinsic property of colloidal and protein
diffusion in semidilute systems with volume fractions smaller
than 0.35. We rationalize the finding based on the mobility, i.e.,
the short-time self-diffusion, and structural properties of the
system.We discuss the broad implications for the understanding
of biological and soft matter given the prevalence of particles
with anisotropic interactions and a nonspherical shape.

■ METHODS

Mesoscale Hybrid Simulation.We investigate the effect of
shape anisotropy on the dynamical behavior of colloids by a

Received: August 14, 2018
Revised: November 30, 2018
Published: November 30, 2018

Article

pubs.acs.org/JPCBCite This: J. Phys. Chem. B 2018, 122, 12396−12402

© 2018 American Chemical Society 12396 DOI: 10.1021/acs.jpcb.8b07901
J. Phys. Chem. B 2018, 122, 12396−12402

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/JPCB
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpcb.8b07901
http://dx.doi.org/10.1021/acs.jpcb.8b07901
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


mesoscale hybrid simulation approach combining the multi-
particle collision dynamics (MPC) method for the fluid with
molecular dynamics simulations (MD) for ellipsoids.25−28

Importantly, this simulation approach allows for a reliable
account of hydrodynamic interactions of nonspherical particles,
and is thus ideally suited to address crowding effects in such
systems. We recently used this approach to show that short-time
dynamics of weakly attractive colloids is strongly affected by
anisotropic interactions,23 and the clustering dynamics of
proteins has been investigated.29 Furthermore, the MPC
method has successfully been used in complex systems such as
polymers,25,26 colloids,28,30 vesicles, and blood cells,31,32 as well
as active systems.33

Model Ellipsoid. An ellipsoid is represented by a set of Nm
beads of massM distributed over the ellipsoid surface and one in
the center (cf. Figure 1 inset). This structure allows for a

computationally efficient coupling of the solvent and ellipsoid.28

Neighboring beads and the center of the ellipsoid are connected
by a harmonic bond potential
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tomaintain a nearly rigid ellipsoid. Here, r is the center-to-center
distance of the two beads, l is the preferred bond length, and ks is
the spring constant. The interactions between ellipsoids are

assumed to be short ranged, and are represented by a Yukawa
attraction with hard core-like repulsion for all interellipsoid bead
pairs
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with the bead diameter σ. ε and εr are the interaction strengths of
interellipsoid attraction and repulsion, respectively. b is the
parameter characterizing the interaction range.

Multiparticle Collision Dynamics Fluid. The MPC
approach is a particle-based simulation technique, which
incorporates thermal fluctuations and hydrodynamic correla-
tions,25−27 and, thus, provides a solution for fluctuating
hydrodynamic equations (Landau−Lifshitz Navier−Stokes
equations).27,34 In addition, it is easily coupled with other
simulation techniques, such as molecular dynamics simulations
for embedded particles.25,26,35,36 In MPC, the fluid is
represented by point particles, Ns in the current study, of mass
m, which interact with each other by a stochastic process.25−27

The algorithm consists of two steps: streaming and collision. In
the streaming step, the particles move ballistically and their
positions are updated according to

+ = +t h t h tr r v( ) ( ) ( )i i i (3)

where ri and vi are the position and velocity of particle i, and h is
the time between collisions. In the collision step, a coarse-
grained interaction between the fluid particles is imposed by a
stochastic process. Thereby, particles are sorted into cells of a
cubic lattice, defining the collision environment, with lattice
constant a. Various collision schemes have been intro-
duced.25,26,30,37 Here, we apply the stochastic rotation version
of MPC,38 where for all particles in a cell, their relative velocity
with respect to the center-of-mass velocity vcm of the cell is
rotated by the fixed angle α. This yields the new velocities

α+ = + [ − ]t h t t tv v R v v( ) ( ) ( ) ( ) ( )i icm cm (4)

with the rotation matrix R(α) around a randomly oriented axis
chosen independently for every collision cell and collision step.
These steps conserve the linear momentum on the collision cell
level and thereby yield proper hydrodynamic correlations.34 The
MPC procedure can be considered as a coarse-grained
description of pairwise elastic collisions of hard-sphere fluid
particles. In the center-of-mass reference frame, such a two-
particle collision leads to particle scattering by a certain angle
defined by their energy and momenta. The MPC rotation of
relative velocities can be considered as the net effect of various
collisions averaged over time and space.
The colloid−solvent coupling is implemented by including

the beads in the collision step. Hence, the particle center-of-mass
velocity vcm(t) of a cell containing beads is
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where Ns
c and Nm

c are the number of solvent particles and beads
in the cell, respectively.25 In the MPC collision step, the velocity
of colloid beads is updated via eq 4, in the same way as for the
solvent particles, leading to a local exchange of momentum
between the fluid particles and the colloid beads, while
conserving the overall momentum in the collision cell. During
the MPC streaming step, the beads are propagated using
standard molecular dynamics (with the velocity Verlet

Figure 1. (A) Intermediate scattering function (ISF) for different
volume fractions of attractive ellipsoids. The ISF of 0.02τ ≤ t ≤ 0.2τ is
used for the fit to obtain the short-time collective diffusion coefficient
Ds(q), where τ = Rh

2/D0 is the characteristic time of colloids. (B)Mean-
square-displacement (MSD) for different volume fractions of attractive
ellipsoids. The MSD of 0.02τ ≤ t ≤ 0.6τ is used for the fit to obtain the
short-time self-diffusion coefficientDs

s. Inset: bead configuration for the
model ellipsoid.
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algorithm), taking into account only the direct interactions with
neighboring beads of the same colloid and any nearby beads of
other colloids, to ensure conformational colloid integrity and
accurate colloid−colloid interactions.
The applied MPC approach results in a translational and

rotational diffusive motion of a colloid, with, in dilute solution,
diffusion coefficients agreeing quantitatively with those
predicted by the solution of Stokes equation for a colloid of
nonslip boundary conditions.28 Moreover, colloid center-of-
mass and rotational velocity autocorrelation functions exhibit a
long-time tail consistent with a solution of the linear fluctuating
hydrodynamics equations (Landau−Lifshitz Navier−
Stokes).28,34

To control and maintain a constant temperature, we apply a
local Maxwellian thermostat by scaling velocities.39 For this
purpose, the kinetic energy is taken from the Γ distribution,
which describes the distribution of kinetic energy, accounting
for the number of degrees of freedom of the particles in a
collision cell. A scaling factor is determined as the ratio between
the actual kinetic energy of the particles in the respective cell and
the value from the distribution function. Then, the relative
velocities vi− vcm of all of the particles in a cell are multiplied by
the scaling factor. This algorithm ensures conservation of
momentum in a collision cell and a Maxwell−Boltzmann
distribution of the particle velocities.
Simulation Setup and Parameters. An ellipsoid is

comprised of Nm = 101 beads, and the semiprincipal axes are
ra = 5σ, rb = 2.95σ, and rc = 2.5σ. The shape of the ellipsoid is
chosen tomimic themodel protein γB-crystallin, for which short-
time diffusion and phase behavior are experimentally well-
characterized.22,23 The direct interactions are characterized by ks
= 2000kBT/σ

2, b = 15, and εr = kBT, where kB is the Boltzmann
constant and T the absolute temperature. Note that the
deformation of ellipsoids during simulations is less than 0.1%
(cf. Figure S1). The attraction strength ε = 2.9kBT for attractive
ellipsoids is chosen such that the system is in the one-phase
region above the coexistence curve for metastable liquid−liquid
phase separation,22,2322,23 which is typically observed for
colloids and proteins with short-range attraction.40,41 We
employed a cubic simulation box of side length Ls = 100a,
corresponding to a total number of ellipsoids ranging from N =
245 (ϕ = 0.05) to 1485 (ϕ = 0.3). The volume fraction is defined
as ϕ = (4/3)π(ra + rh)(rb + rh)(rc + rh)N/Ls

3, where rh = 0.3σ is
the hydrodynamic radius of the surface bead.28 The parameters
for the MPC fluid are a = σ, M = 10m, α = 130°,

=h ma k T0.1 /2
B , and the mean number of fluid particles in

a collision cell ⟨Ns
c⟩ = 10. This choice of MPC fluid parameters

leads to a sufficiently large Schmidt number (Sc≈ 20), such that
the momentum diffusion exceeds mass diffusion and transport
properties are dominated by the hydrodynamics.36 By settingM
= ⟨Ns

c⟩m = 10m, we ensure an adequate hydrodynamic coupling
between a colloidal bead and the MPC particles in a collision
cell, because of their comparable momenta. Newton’s equations
of motion for the beads were solved by the velocity Verlet
algorithm with time step hp = h/10.42

The hydrodynamic radius of the ellipsoid is Rh = 3.9σ
calculated from the free diffusion coefficient D0 = kBT/(6πηRh)
with the solvent viscosity η, where D0 was obtained from the
extrapolation of the short-time self-diffusion coefficient Ds

s(ϕ)
toward ϕ = 0. Here, the short-time self-diffusion coefficient Ds

s

was calculated from the mean-square-displacement (MSD)

⟨Δr2⟩ = 6Ds
st of the colloids at short times (t < 0.6τ), where τ =

Rh
2/D0 is the characteristic time of colloids.
As a remark on the MPCmethod, for the first few MPC steps,

the hydrodynamics are not fully developed and almost the same
MSD is found for any concentration. As apparent in Figures 1B
and S2B, the curves for the various concentrations approach
each other at short times. After a sufficient number of steps,
hydrodynamic interactions are established and cause a diffusive
regime with a MSD linear in time. The crossover between the
initial nonhydrodynamic regime and the diffusive regime shifts
to shorter times with increasing concentration,28 resulting in the
diffusive regime extending down to 0.001τ for ϕ = 0.3.
The dynamic properties are investigated in the short-time

regime, i.e., on a time scale shorter than the characteristic time of
the colloids. Correspondingly, we denote the observed self- and
collective diffusion as short-time diffusion. We remark that our
notion might differ from the formal definition of short-time
diffusion based on the instantaneous mobility tensor, as the
latter is not necessarily observable from trajectories in dense,
attractive, and anisotropic systems. The basic reason is that a
clear separation of the Brownian time scale (on which particles
become diffusive) and interaction time scale (on which
interaction potentials become effective) may not be ensured
for all conditions.

■ RESULTS AND DISCUSSION

In a crowded solution such as the cytoplasm, numerous factors
affect the phase behavior and diffusion of proteins. An increasing
volume fraction as the control parameter directly linked to
crowding enhances hydrodynamic and direct interactions,
resulting in a slowing down of diffusion and the eventual arrest
of macroscopic dynamics at the glass line.1,16,17,21,45 A second
commonly considered factor is attractive interactions that cause,
e.g., molecular docking, cluster formation, gelation, and liquid−
liquid phase separation, which in turn affect the diffusion in
complex and crucial ways.1,18,22,23

Interestingly, much less is known about crowding effects on
diffusion in the presence of interaction and shape anisotropy,
although these are ubiquitous in proteins, and patchy particle
models have been shown to successfully reproduce the phase
behavior of such protein solutions quantitatively.46−49 Very
recent studies outlined coupled rotational−translational protein
diffusion due to anisotropic attraction,45 and a drastic slowing
down of short-time diffusion due to attractive patches on
spheres.23 These findings on anisotropic attraction emphasize
that the statistical−mechanistic understanding of crowding is
hampered by the lack of information on the effects of anisotropy.
Moreover, systematic studies on the influence of a nonspherical
shape are missing so far, because of the challenge of including
hydrodynamic interactions for nonspherical particles.
To address the mechanism of how a nonspherical shape

affects crowding, we focus on the initial step of structural
relaxation on the nearest-neighbor distance, i.e., the short-time
cage diffusion.23,43 Short-time cage diffusion as a collective effect
characterizes the dynamical relaxation of structural correlations
between neighbor particles (cf. Figure 2 inset), and is thus
qualitatively different from self-diffusion rattling in and out of a
cage (cf. Figure 3 inset). Short-time cage diffusion is interesting
not only from a colloidal point of view, where it has been studied
in detail,43 but also in physiology because of its crucial role for
cellular processes such as enzymatic reactions and recogni-
tion.1−3,23

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.8b07901
J. Phys. Chem. B 2018, 122, 12396−12402

12398

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.8b07901/suppl_file/jp8b07901_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.8b07901/suppl_file/jp8b07901_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcb.8b07901


In experiment, short-time cage diffusion can be studied using
dynamic scattering techniques, where the nearest-neighbor
distance d* is defined by the position q* = 2π/d* of the principal
peak in the structure factor S(q) with the scattering wavenumber
q. In our simulation approach, we calculated the intermediate
scattering function S(q,t) from the positions of all particles and
subsequently obtained the short-time cage diffusion coefficient
Ds(q*) from a single exponential fit of S(q*,t) ≈ S(q*,0)-

e−q*
2Ds(q*)t at short times (t < 0.2τ) (cf. Figures 1A and S2A).

Normalized by the respective free diffusion coefficients D0
observed in the limit of infinite dilution, the short-time cage
diffusion coefficients Dcage′ = Ds(q*)/D0 of hard and attractive
ellipsoids are displayed in Figure 2A as a function of the volume
fractionϕ, together with published results for hard and attractive
spheres23 for a comparison. Figure 2A evidences two factors
affecting the short-time cage diffusion. First, already a weak
nonspherical shape, as found for many globular proteins, causes
a slowing down at intermediate volume fractions 0.05≤ϕ≤ 0.2,
whereas no significant effect of anisotropy is observed at higher
volume fractions. The nonmonotonic characteristic of the
additional crowding effect due to the nonspherical shape is
clearly seen from the difference between cage diffusion of
ellipsoids and spheres (Figure 2B). Second, attraction causes an
overall slowing down of cage diffusion independent of the shape.
The effect of a nonspherical shape appears more pronounced at
a lower volume fraction. The difference for attractive particles
initially exhibits a decay similar to that of hard particles, but
passes for larger concentrations (ϕ ≥ 0.15) through a minimum
and even becomes positive for ϕ ≥ 0.25.
To understand these two effects, it is important to recall the

fundamental factors affecting short-time cage diffusion. The
collective diffusion coefficient Ds(q) is linked to the structure
factor S(q) and the hydrodynamic function H(q) via43

=
D q

D
H q
S q

( ) ( )
( )

s

0 (6)

First, the structure factor S(q) represents the dependence of the
collective diffusion on the volume-fraction-dependent time-
averaged structural correlations between particles (i.e., the
configuration of the nearest-neighbor cage). Second, hydro-
dynamic interactions modulate the collective diffusion, ex-
pressed in the hydrodynamic function H(q). H(q) follows
roughly the functional form of S(q) in a dampened way, and has
a high-q limitH(q→∞) =Ds

s/D0. Given that S(q→∞) = 1, the
collective diffusion D(q) thus approaches self-diffusion Ds

s at
high q. We remark that the appearance of S(q) in eq 6 expresses
the insight that the relaxation of correlated featurese.g., cage
diffusionis slowed down compared with individual mobi-
litiesi.e., self-diffusion. Thus, both self-diffusion (i.e., mobi-
lity) and structure (i.e., the cage configuration and formation of
transient clusters) need to be characterized for a comprehensive
explanation of the slowing down of cage diffusion.
Starting with the mobility effect, Figure 3A shows the

normalized short-time self-diffusion coefficientDself′ =Ds
s/D0 as a

function of the volume fraction ϕ, as calculated from the mean-
square-displacement ⟨Δr2⟩ = 6Ds

st of the colloids at short times
(t < 0.6τ) (cf. Figures 1B and S2B). The short-time self-diffusion
of ellipsoids is clearly slowed down compared with that of
spheres, as expected from the increased hydrodynamic friction
of ellipsoids compared with spheres of a similar volume.50

Importantly, the slowing down due to a nonspherical shape also
occurs for volume fractions around 0.2−0.35, where the

Figure 2. (A) Normalized short-time cage diffusion Dcage′ = Ds(q*)/D0
as a function of the volume fraction ϕ. Results for the hard (HE) and
attractive (ATT_E) ellipsoids are displayed, together with results for
the hard (HS) and attractive (ATT_S) spheres.23 Inset: short-time cage
diffusion as a collective effect characterizes the dynamical relaxation of
structural correlations between neighboring particles. (B) The
nonmonotonic contribution to the crowding effect due to a
nonspherical shape can be clearly seen from the normalized difference
between short-time cage diffusion of ellipsoids and spheres, as obtained
from theoretical predictions for hard spheres43 (solid black line in panel
A) and polynomial guide-to-the-eyes (dashed lines in panel A).

Figure 3. (A) Normalized short-time self-diffusion coefficient, Dself′ =
Ds

s/D0, as a function of the volume fractionϕ. Results for the hard (HE)
and attractive (ATT_E) ellipsoids are displayed, together with results
for the hard (HS) and attractive (ATT_S) spheres. Ellipsoids show a
lower mobility than spheres because of the larger effective hydro-
dynamic size. Inset: short-time self-diffusion describes the Brownian
motion within the cage of neighboring particles. (B) The normalized
difference between self-diffusion of ellipsoids and spheres, as obtained
from theoretical predictions for hard spheres43,44 (solid black line in
panel A) and polynomial guide-to-the-eyes (dashed lines in panel A).
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monotonic effect is clearly seen from the difference between self-
diffusion of ellipsoids and spheres (Figure 3B). Thus, the
nonmonotonic effect due to a nonspherical shape on the short-
time cage diffusion is not caused by mobility alone, but is tightly
linked to the structure of the cage.
Indeed, significant differences between structural properties

of spheres and ellipsoids are evident when comparing the
particle configurations. The representative snapshots of
attractive spheres and ellipsoids at ϕ = 0.1 shown in Figure 4

illustrate the formation of transient clusters, as previously
discussed in ref 23. The clusters are only transient and the size of
the clusters fluctuates in time. Importantly, attractive ellipsoids
show a pronounced network structure, where many ellipsoids
(∼50%) form a single large and extended cluster. Attractive
spheres also exhibit clusters, but these are more compact and
comprise only about 20% of the spheres. The average number of
connected neighbors (cf. Figure S3) of the ellipsoids is also
higher than that of spheres for low and intermediate volume
fractions (ϕ ≤ 0.15), which correspond to pronounced clusters

of ellipsoids, whereas the largest cluster comprises most of the
colloids for both systems for higher volume fractions (ϕ ≳ 0.2),
and presents a similar local environment for ellipsoids and
spheres. Note that only a weak orientational ordering of
ellipsoids is observed even for the attractive ellipsoids (cf. Figure
S4).
To understand the reason behind the nonmonotonic

contribution to the crowding effect due to a nonspherical
shape at volume fractions up to 0.35, we examined a short-range
structural property. Figure 5A displays the average coordination
number Nb, which is the number of nearest neighbors, of
attractive spheres and ellipsoids as a function of the volume
fraction.We define neighboring colloids as those having a bead−
bead distance r ≤ 1.4σ, to account for all colloids with attractive
interaction. For low and intermediate volume fractions (ϕ ≤
0.1), both spheres and ellipsoids show a similar average number
of neighbors ⟨Nb⟩, and thus both colloids are surrounded by a
comparable number of neighbors. However, for higher volume
fractions (ϕ ≥ 0.15), ellipsoids show a lower ⟨Nb⟩, indicating
less homogeneous and less compact cage configurations. These
loose packings allow for a faster cage relaxation of ellipsoids
compared with spheres at larger volume fractions.
The essential structural influence on short-time cage diffusion

Ds(q*) as expressed by eq 6 is encoded in the structure factor
peak S(q*), which has been calculated from the simulations as a
second measure independent of a cluster analysis. S(q*) is
clearly lower for ellipsoids compared with spheres, in particular
at a larger ϕ (cf. Figure 5 inset), where the corresponding
structure factor S(q) is shown in Figure 5B,C. This difference in
cage configurations at large volume fractions combined with eq
6 causes a weaker slowing down for the Ds(q*) of ellipsoids
compared with spheres (cf. Figure 2). Thus, comparing
ellipsoids with spheres, the effects of structural nearest-neighbor
correlation and mobility effectively compensate each other for
cage diffusion at volume fractions around 0.3−0.35.
Interestingly, the compensation is observed for both attractive

and hard colloids, suggesting a steric origin, and not an origin
from special cage configurations induced by anisotropic
attraction. We stress that attraction should, however, not be
seen as an irrelevant aspect for the nonmonotonic additional
contribution to crowding, since attraction actually enhances the
effect, in particular at a lower ϕ as shown in Figure 2B. This
behavior supports the interpretation in terms of a steric origin,
since attraction simply induces a denser neighborhood already at
a lower ϕ because of cluster formation.
We remark that the reported nonmonotonic effect on short-

time cage diffusion due to the shape at volume fractions lower
than 0.35 is fundamentally different from the expected
nonmonotonic effect on mobility due to jamming at a higher
volume fraction. In the latter case, the higher volume fraction for
random closed packing for ellipsoids compared with spheres also
suggests a higher volume fraction for dynamical arrest of the
short-time self-diffusion. Given the stronger decay at low volume
fractions (cf. Figure 3), the self-diffusion of ellipsoids and
spheres have to cross somewhere, implying a nonmonotonic
effect of the shape on self-diffusion. In our case, we report a
nonmonotonic contribution to the slowing-down of cage
diffusion at volume fractions below 0.35 where the systems are
still clearly dynamic. Under these conditions, the short-time self-
diffusion shows no sign of nonmonotonic behavior (Figure 3),
and thus the observed nonmonotonic signature is an intrinsic
property of the short-time cage diffusion.

Figure 4. Configuration of (A) attractive spheres and (B) ellipsoids for
ϕ = 0.1. The color code of the colloids corresponds to the size of the
cluster, Nc/N, to which the colloid belongs.
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■ CONCLUSIONS
We have presented a nonmonotonic contribution to the
crowding effect on short-time cage diffusion due to a
nonspherical shape. Using mesoscale MPC-MD simulations
accounting for hydrodynamic interactions in semidilute
solutions with volume fractions up to 0.35, we can conclusively
link this effect to the interplay of two factors: first, the
normalized mobility of ellipsoids is reduced compared with
that of spheres for the full volume fraction range. Second, the
cage configuration in suspensions of ellipsoids is less
homogeneous and less compact than for spheres, enabling a
faster cage relaxation of ellipsoids compared with spheres. The
compensation of these two factors at larger volume fractions
causes the nonmonotonic characteristic of the additional
crowding effect due to a nonspherical shape.
Our findings show that the shape plays an important role in

dense suspensions already in the initial short-time regime. This
finding on the initial step of structural relaxation challenges the
prevailing concept of effective sphere models often used to study
and describe dense systems of weakly nonspherical particles in
various areas such as cell biophysics, formulation of
pharmaceuticals, nanotechnological applications, or fundamen-
tal colloid science. Moreover, it also provides interesting
perspectives for the statistical−mechanistic understanding of
dynamical arrest in anisotropic systems prevalent in soft and
biological matter.
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