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Abstract

OBJECTIVE: To investigate mechanisms of in utero death in normally formed fetuses by 

measuring amniotic fluid (AF) biomarkers for hypoxia [erythropoietin (EPO)], myocardial 

damage [cardiac troponin I (cTnI)], and brain injury [glial fibrillary acidic protein (GFAP)], 

correlated with risk factors for fetal death and placental histopathology.

MATERIAL AND METHODS: This retrospective, observational cohort study included 

intrauterine deaths with transabdominal amniocentesis prior to induction of labor. Women with a 

normal pregnancy and an indicated amniocentesis at term were randomly selected as controls. AF 

was assayed for EPO, cTnI and GFAP using commercial immunoassays. Placental histopathology 

was reviewed, and CD15-immunohistochemistry was used. Analyte concentrations >90th centile 

for controls were considered ‘raised’. Raised AF-EPO, AF-cTnI, and AF-GFAP concentrations 

were considered evidence of hypoxia, myocardial and brain injury, respectively.

RESULTS: There were sixty cases and sixty controls. Hypoxia was present in 88% (53/60), 

myocardial damage in 70% (42/60), and brain injury in 45% (27/60) of fetal deaths. Hypoxic 

fetuses had evidence of myocardial injury, brain injury, or both in 77% (41/53), 49% (26/53), and 

13% (7/53) cases, respectively. Histopathological evidence for placental dysfunction was found in 

74% (43/58) of these cases.
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CONCLUSION: Hypoxia, secondary to placental dysfunction, was found to be the mechanism of 

death in the majority of fetal deaths of structurally normal fetuses. Ninety-one percent of hypoxic 

fetal deaths sustained brain, myocardial or both brain and myocardial injuries in utero. Hypoxic 

myocardial injury was an attributable mechanism of death in 70% of the cases. Non-hypoxic cases 

may be caused by cardiac arrhythmia secondary to a cardiac conduction defect.
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INTRODUCTION

The rate of fetal death in the United States is 5.96 per 1,000 live births (1), and it is twice as 

common in African-American than in Caucasian women (1, 2). Several maternal and fetal 

disorders, such as maternal hypertension (3–9), diabetes mellitus (3, 10, 11), intrauterine 

infection (12–14) or inflammation (15–17), placental abruption (3, 7, 18–22), placental 

disorders associated with maternal vascular lesions of malperfusion (23–25), massive 

perivillous fibrin deposition (26, 27), and small-for-gestational-age (SGA) fetuses (3, 28–31) 

have been associated with fetal death. However, 25%−62% of all fetal deaths are not 

attributed to known maternal, placental, or fetal risk factors (32–38). These ‘unexplained’ 

fetal deaths comprise a progressively larger proportion of all fetal deaths as pregnancy 

advances (39), given that fetal deaths associated with congenital anomalies occur more 

frequently before the third trimester (32, 34, 35).

The term ‘unexplained fetal death’ is an unfortunate designation applied to cases of fetal 

death that occur in the absence of known risk factors: it implies that the mechanism of death 

in cases associated with maternal, placental, and fetal risk factors is known. Although our 

understanding as to why fetuses may die in utero has improved over time, this knowledge 

has allowed only educated guesses about possible causes (40–43).

Hypoxia, secondary to placental dysfunction, is believed to play an important role in most 

fetal deaths, yet evidence is indirect (25, 44–59). The more proximal factors that lead to fetal 

cardiac arrest are largely conjectural. Understanding of the causes of hypoxia, and the 

intermediary steps between hypoxia and fetal death, may allow identification of biomarkers 

that could be used to predict and prevent fetal death in women at risk for this complication 

(23, 60–62).

There is evidence that erythropoietin (EPO), cardiac troponin I (cTnI), and glial fibrillary 

acidic protein (GFAP) detected in maternal serum or plasma are specific biomarkers for 

hypoxia (44, 63–65), myocardial damage (66–68), and brain injury (69–71), respectively, 

and that prenatal myocardial and brain damage occur in 20% to 66% of stillborn fetuses 

(72–81). Furthermore, studies have shown that EPO is of both fetal (82–85) and placental 

(86, 87) origin and remains elevated in amniotic fluid after the fetus dies (63); that cTnI is 

specific to myocardial damage (66, 88, 89), and its concentration is elevated in hypoxic 

neonates (90–92); and that serum concentrations of GFAP are elevated in newborns with 

hypoxic-ischemic encephalopathy (HIE), which correlate with the severity of HIE (70, 71, 
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81). Although intrauterine brain injury is not generally as a mechanism of death, 

abnormalities of the cardiovascular center in the brainstem, and of the cardiac conduction 

system, have been reported in 92% of a series of unexplained fetal or infant deaths (93).

With these considerations in mind, we measured the concentrations of EPO, cTnI, and 

GFAP in samples of amniotic fluid collected from 60 structurally normal fetuses that died in 
utero to determine if, and to what extent, hypoxic myocardial and brain injury were 

implicated in these fetal deaths. We also correlated the findings with the histopathology of 

the placenta and known risk factors for intrauterine death.

MATERIALS and METHODS

This was a retrospective observational study of fetal deaths that occurred among pregnant 

women recruited into cohort studies conducted between January 2004 and January 2016 at 

Hutzel Women’s Hospital, Detroit, Michigan, USA. All study participants provided written 

informed consent and were followed until delivery. The use of clinical data and biological 

specimens obtained from these women for research purposes was approved by the 

Institutional Review Boards of Wayne State University and the Eunice Kennedy Shriver 
National Institute of Child Health and Human Development, National Institutes of Health, 

U.S. Department of Health and Human Services (NICHD/NIH/DHHS).

The study group of cases comprised all fetal deaths for which an amniocentesis had been 

performed prior to induction of labor, and for those patients who had sufficient amniotic 

fluid available for analysis. Women who had a normal pregnancy and an amniocentesis at 

term to assess fetal lung maturity prior to a scheduled cesarean section were selected as 

controls, provided they also had sufficient amniotic fluid available for analysis. We selected 

elective cesarean deliveries because labor is known to increase EPO concentrations in 

umbilical cord blood among live births (94). Some of the women had been subjects in prior 

studies.

Clinical Definitions

The following definitions were used:

1. Gestational age was determined by the last menstrual period and confirmed by 

ultrasound examination or by ultrasound examination alone if the sonographic 

determination of gestational age was inconsistent with menstrual dating by more 

than one week in the first trimester (95);

2. Fetal death or stillbirth: death of the fetus diagnosed after 20 weeks of 

gestation confirmed by ultrasound examination prior to delivery (96);

3. Hypertensive disorders of pregnancy included four categories: preeclampsia, 

chronic hypertension, chronic hypertension with superimposed preeclampsia, 

and gestational hypertension, defined as follows:

Preeclampsia: presence of new-onset systolic blood pressure ≥140 mm 

Hg and/or diastolic blood pressure ≥90 mm Hg on at least two 

occasions, 4 hours to 1 week apart, after 20 weeks of gestation, and of 
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proteinuria ≥300 mg in a 24-hour urine collection or one dipstick with 

≥1+ for protein (97);

Chronic hypertension: maternal hypertension that predates pregnancy 

(98);

Chronic hypertension with superimposed preeclampsia: presence of 

chronic hypertension in association with preeclampsia (98);

Gestational hypertension: new-onset systolic blood pressure ≥140 mm 

Hg and/or diastolic blood pressure ≥90 mm Hg on at least two 

occasions, 4 hours to 1 week apart, after 20 weeks of gestation in the 

absence of systemic maternal organ damage (proteinuria, 

thrombocytopenia, elevated liver enzymes, elevated creatinine, 

pulmonary edema, and/or cerebral or visual disturbances) (98);

4. A small-for-gestational-age (SGA) neonate was defined as having a 

birthweight <10th percentile for gestational age at delivery according to a U.S. 

reference population (99);

5. An appropriate-for-gestational-age (AGA) neonate was defined as having a 

birthweight between the 10th and 90th percentiles for gestational age at delivery 

according to a U.S. reference population (99);

6. Diabetes mellitus in pregnancy included two categories: pre-gestational and 

gestational, defined as follows (100):

Pre-gestational diabetes mellitus: diabetes mellitus diagnosed prior to 

pregnancy based on a fasting blood glucose >126 mg/dL or A1C 

>6.5%;

Gestational diabetes mellitus diagnosed in a pregnant woman without a 

prior history of diabetes and with at least two values ≥ the following on 

a 3-hour, 100 g oral glucose tolerance test performed between 24 and 28 

weeks of gestation: fasting ≥ 95 mg/dL, 1-hour ≥180 mg/dL, 2-hour ≥ 

155 mg/dL, and 3-hour ≥ 140 mg/dL;

7. Placental abruption was diagnosed clinically by the presence of vaginal 

bleeding, abdominal pain, and a retroplacental blood clot not associated with 

vasa previa, placenta previa, or uterine rupture (101);

8. Placenta previa was defined as a placenta that overlies or is proximate to the 

internal cervical os based on transvaginal ultrasound examination (102);

9. Intra-amniotic inflammation was diagnosed when the interleukin (IL)-6 

concentration in the amniotic fluid was ≥2.6 ng/mL (103–112);

10. Intra-uterine infection was defined by the presence of intra-amniotic infection 

and Cytomegalovirus (CMV) placentitis. Intra-amniotic infection was defined as 

a positive amniotic fluid culture for microorganisms using cultivation techniques 

(113–116). CMV placentitis was defined by the presence of focal segmental 

chronic lymphoplasmacytic villitis, hemosiderin deposition, and an occasional 
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presence of owl-like-CMV inclusions (117). The latter was subsequently 

confirmed by immuno-histochemistry for CMV (118);

11. Control group comprised women who had no medical, obstetrical, or surgical 

complications, who were not in labor, and who had an elective cesarean delivery 

of a structurally normal singleton fetus at 37–42 weeks of gestation, whose 

birthweight was between the 10th and 90th percentiles for gestational age (99).

Amniotic fluid samples

Amniotic fluid was collected by transabdominal amniocentesis for medical indications, such 

as karyotype studies or fetal lung maturity, or to rule out intra-amniotic infection, using 

standard cultivation techniques for aerobic and anaerobic microorganisms, genital 

mycoplasmas, and fungi. Samples of amniotic fluid not required for clinical purposes were 

centrifuged to remove cellular and particulate matter. Aliquots of amniotic fluid were stored 

at −70ºC until analysis.

Analyte assays

Assay for erythropoietin—Concentrations of EPO in amniotic fluid were determined 

with a commercially available specific immunoassay [American Laboratory Products 

Company (ALPCO), Salem, New Hampshire, USA]. The sensitivity of this assay was 1.8 

mIU/mL, and the coefficients of variation for intra-and inter-assays were 6.1% and 9.2 %, 

respectively. All samples were assayed in duplicate.

Assay for cardiac troponin I—Concentrations of cTnI in amniotic fluid were 

determined with a commercially available specific immunoassay (LifeSpan BioSciences, 

Seattle, Washington, USA). The sensitivity of this assay was 26.89 pg/mL, and the 

coefficients of variation for intra-and inter-assays were 6.1% and 8.1 %, respectively. All 

samples were assayed in duplicate.

Assay for glial fibrillary acid protein—Concentrations of GFAP in amniotic fluid were 

determined using an enzyme-linked immunosorbent assay (Cloud Clone, Katy, Texas, USA). 

The sensitivity of this assay was 0.19 ng/mL, and the coefficients of variation for intra-and 

inter-assays were 8.2% and 15.1 %, respectively. All samples were assayed in duplicate.

Placental Histopathological Analysis

The placental disc of each patient was randomly sampled using a random sequence 

generator and software designed for this purpose as previously described (119). Slides 

stained with hematoxylin and eosin as well as cytokeratin-7 from cases and controls were 

reviewed by a placental pathologist (SJ) blinded to the pregnancy outcome and any previous 

histopathological diagnoses. The nomenclature adopted by the Amsterdam Placental 

Workshop Group was used to describe the vaso-occlusive lesions and villous maturational 

defects in these cases (120). Slides were also stained for the marker CD15; “immature” 

CD15-positive endothelium is a diagnostic marker of persisting villous immaturity and 

chronic placental dysfunction (121). The level of CD15 expression was considered as 
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pathological placental villous immaturity in both macrovasculature (chorionic plate and stem 

vessels) and microvasculature (terminal villi) with ≥50% villi exhibiting positive expression.

Accelerated villous maturation was defined as premature maturation of terminal chorionic 

villi (resembling term villi at more than 38 weeks of gestation) with conspicuous syncytial 

knotting in preterm placentas (122). Delayed villous maturation is a developmental placental 

abnormality defined by a monotonous villous population (at least 10 such villi) with 

centrally placed capillaries and decreased vasculosyncytial membranes, recapitulating the 

histology in early pregnancy (120, 123).The presence of stromal villous-vascular 

karyorrhexis, avascular villi, and stem villous vessel obliteration was noted but considered as 

post-mortem changes secondary to cessation of the fetal circulation, and used only to 

estimate the time of death prior to delivery, as previously described (124).

In cases for which light microscopy and hematoxylin and eosin-stained sections displayed 

focal segmental chronic lymphoplasmacytic villitis, hemosiderin deposition, and the 

occasional presence of owl-like inclusions in the stromal cells suggestive of CMV placentitis 

(117), the diagnosis of CMV placentitis was subsequently confirmed by 

immunohistochemistry (118). Cases of chronic villitis that did not exhibit 

lymphoplasmacytes in the villi nor had any evident inclusions or hemosiderin deposition 

were not considered as CMV villitis. Immunohistochemistry was performed in cases with 

lymphoplasmacytic villitis by the streptavidin–biotin complex method using a monoclonal 

anti-CMV antibody (Leica BOND, Buffalo Grove, Illinois, USA).

Statistical Analysis

We analyzed the results as multivariate discrete data. The analyte concentrations below the 

limit of detection were replaced by 99% of the minimum observed value for the analyte. The 

analytes were then categorized at the 90th centile for the controls, and values above the 90th 

centile were considered ‘raised.’ Fetal deaths were dichotomized based on the presence of 

known risk factors (i.e., placental abruption, chronic hypertension, preeclampsia, gestational 

hypertension, gestational diabetes mellitus, pre-gestational diabetes mellitus, SGA neonate, 

intra-amniotic infection, and placenta previa) to determine whether analyte concentrations 

differed between what have traditionally been labeled ‘explained’ and ‘unexplained’ deaths. 

Because the proportion of ‘unexplained’ fetal deaths has been found to increase with 

gestational age (32, 34, 35, 125, 126), we also examined the effect of gestational age on 

analyte concentrations and dichotomized gestational age arbitrarily at 28 weeks of gestation 

so that this analysis could be as close as possible to equal numbers in the two gestational-age 

categories.

We used the statistical package R to fit hierarchically nested log linear models to multi-way 

contingency tables of the data to analyze associations, partial and conditional, between the 

three analytes, presence of risk factors, and gestational age. The relationship between the 

variables was first examined by fitting a three-way contingency table to the three analytes 

dichotomized at the 90th centile for the controls. We next examined the effects of risk 

factors and gestational age individually in a model containing informative analytes and 

retained significant terms to arrive at a final model.

Pacora et al. Page 6

J Perinat Med. Author manuscript; available in PMC 2020 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A two-tailed Fisher’s exact test was used to test 2×2 marginal tables, and the Mann-Whitney 

U test was used to compare median analyte concentrations between the different causes of 

death and placental perfusion categories. Values for statistics below the 5% significance 

level were considered statistically significant.

RESULTS

Of 279 fetal deaths in the database, 45 had congenital anomalies. The proportion of fetal 

deaths associated with congenital anomalies was significantly higher before, rather than 

after, 28 weeks of gestation [20% (27/134) vs. 11.6% (18/155), p=0.03]. Cases with 

congenital anomalies were excluded from further analysis because amniotic fluid was 

available for only two fetal deaths associated with congenital malformations.

Of the 234 cases of structurally normal singleton fetuses that died in utero, 119 had 

undergone amniocentesis, and amniotic fluid was available for analysis in 60 cases. Among 

these, clinical abruption occurred in 10 (16.7%) cases, diabetes mellitus in 11 (18.3%; pre-

gestational diabetes in 5, gestational diabetes in 6 cases), hypertensive disorders of 

pregnancy in 16 (26.7%; gestational hypertension in 6, chronic hypertension in 4, 

preeclampsia in 4, and chronic hypertension with preeclampsia in 2 cases), SGA fetuses in 

18 (31%, 18/58), intra-uterine infection in 6 (10%; intra-amniotic infection in 4 and CMV-

chronic villitis in 2 cases), and one case with placenta previa (1.7%). Fifteen (25%) patients 

had more than one of these risk factors, and 15 (25%) had no risk factors (Figure 1). 

Birthweight was registered in 58 cases and autopsy reports were available for 37 cases. None 

of the fetal deaths was hydropic.

Sixty controls were randomly selected from 535 patients who had an amniocentesis at term 

when not in labor. There were no significant differences in median maternal age, body mass 

index, frequency of smoking status, or self-reported ethnicity (African-American) among the 

60 cases and 60 controls. Cases had significant lower median gestational ages at 

amniocentesis, at delivery, as well as lower birthweights, and a higher frequency of 

nulliparity than the controls (Table 1). The estimated time interval between death and 

delivery in cases estimated from placental histopathology is shown in Table 2. The percentile 

distribution of birthweight between cases and controls is shown in Figure 2A; the difference 

between the groups was not statistically significant (p=0.05). The distribution of birthweight 

centiles by gestational age for cases is shown in Figure 2B; there was a significant 

correlation between birthweight centile and gestational age (Spearman’s rho =0.3, p=0.034): 

earlier fetal deaths had lower birthweight centiles than later fetal deaths. There was a 

significant difference between cases and controls in the birthweight-to-placenta weight ratio 

(3.94 vs. 5.72, respectively, p<0.001; Table 1).

Analyte Concentrations

Distribution of the analyte concentrations in the cases and controls is shown for each analyte 

in Figures 3A–C. Amniotic fluid EPO was below the level of detection in 60% (36/60) of 

controls and in 1 (1.7%) case; amniotic fluid cTnI was below the level of detection in 25% 

(15/60) of controls and 2 (3.3%) cases; and amniotic fluid GFAP was below the level of 

detection in 1 (1.7%) control and 4 (6.7%) cases.
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Median amniotic fluid concentrations of EPO, cTnI, and GFAP were significantly higher for 

cases than controls (EPO: 17.33 mIU/mL vs. 1.27 mIU/mL, p <0.001; cTnI: 172.8 pg/mL 

vs. 52.29 pg/mL, p<0.001; GFAP: 2.56 ng/mL vs. 1.92 ng/mL, p=0.01) (Figures 3A–C). 

Median amniotic fluid concentrations of EPO were significantly higher among cases with 

risk factors than cases without risk factors (cases with risk factors: 23.19 mIU/mL vs. cases 

without risk factors 10.89 mIU/mL, p =0.03), but median amniotic fluid cTnI and GFAP 

concentrations were not significantly different between cases that had risk factors and those 

that did not (AF cTnI: cases with risk factors: 177.08 pg/mL vs. cases without risk factors 

124.48 pg/mL, p= 0.29; AF GFAP: cases with risk factors: 2.71 ng/mL vs. cases without risk 

factors: 2.48 ng/mL, p=0.53). There was no significant association between the presence of 

risk factors and gestational age (dichotomized ≥28 weeks of gestation at amniocentesis).

The percentile distribution of the analytes in amniotic fluid is shown in Table 3. The 90th 

centile concentration of amniotic fluid EPO, cTnI, and GFAP in controls was 6.44 mIU/mL, 

111.11 pg/mL, and 2.85 ng/mL, respectively. Amniotic fluid EPO, cTnI, and GFAP 

concentrations were ‘raised,’ i.e., above the 90th centile for the controls, in 88% (53/60), 

70% (42/60), and 45% (27/60) of fetal deaths, respectively (Table 3). The proportion of 

cases in which amniotic fluid EPO, cTnI, or GFAP was raised was not significantly different 

between cases that had or did not have risk factors for fetal death.

The relationship among the three analytes, dichotomized as above or equal or below the 90th 

centiles for the controls, is shown in Table 4. No amniotic fluid analyte was ‘raised’ in five 

(8.3%) cases. Only amniotic fluid EPO was ‘raised’ in five (8.3%) cases; only amniotic fluid 

cTnI or only amniotic fluid GFAP was ‘raised’ in one case each (1.7%). It should be noted 

that in these two latter cases, amniotic fluid EPO was above the 80th and 70th centiles, 

respectively. Therefore, these two cases were considered as cases with hypoxic cardiac and 

brain injury occurring at slightly lower concentrations of EPO than the criteria used in this 

study.

Thus, when including these two cases (‘raised’ cTnI and EPO >80th and ‘raised’ GFAP and 

EPO >70th centiles), the concentration of GFAP in hypoxic fetal deaths was ‘raised’ in the 

same proportion of cases regardless of whether the concentration of cTnI was or was not 

raised [45.2% (19/42) vs. 44.4% (8/13), p=0.36]. In addition, there was no significant 

difference in median GFAP concentration between these two groups of fetal deaths (2.65 

ng/mL vs. 2.98 ng/mL, p=0.95).

There was no association between cases with ‘raised’ amniotic fluid cTnI and those with 

‘raised’ amniotic fluid GFAP concentrations; amniotic fluid GFAP was ‘raised’ in 45.2% 

(19/42) of fetal deaths with ‘raised’ amniotic fluid cTnI, and in 44.4% (8/18) of those that 

did not have ‘raised’ amniotic fluid cTnI (p=1). The difference between the proportion of 

SGA and AGA neonates with fetal death that had ‘raised’ amniotic fluid cTnI concentrations 

did not reach statistical significance (15/40 (37.5%) vs. 3/18 (16.7%), p=0.14; data not 

shown).

The mean amniotic fluid concentrations of EPO, cTnI, and GFAP, and the proportion of fetal 

deaths with birthweights below the 50th centile for gestational age, and of SGA neonates, as 
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well as the birthweight-to-placenta-weight ratio for each ‘raised’ amniotic fluid EPO 

combination are shown in Table 5. The mean amniotic fluid cTnI concentration was 

significantly higher among cases with ‘raised’ concentration for all analytes (amniotic fluid 

EPO, cTnI and GFAP) than among cases that had amniotic fluid with either ‘raised’ cTnI 

and GFAP or ‘raised’ EPO alone (p<0.001). Furthermore, the mean amniotic fluid cTnI 

concentration in cases with ‘raised’ amniotic fluid EPO, cTnI and GFAP was higher than in 

those for which amniotic fluid EPO and cTnI were ‘raised’ (380.38 pg/ml vs. 232.48 pg/ml, 

p=0.03).

Model Selection

The three amniotic fluid analytes were not mutually independent (Pearson’s Χ2= 18.124, 

df=4, p=0.001). EPO was conditionally dependent on cTnI (p=0.001)—i.e., the interaction 

among the biomarkers was statistically significant—but the interactions between GFAP and 

cTnI, and between GFAP and EPO, were not significant (p=0.96, and p=0.07, respectively). 

When entered into the model containing the main effects of the three analytes and the 

interaction between EPO and cTnI, the effects of gestational age dichotomized at 28 weeks 

of gestation and the presence of prognostic factors were not statistically significant.

Histopathology

Placental histology was available for 58 of 60 cases and all 60 controls. The frequency of 

placental lesions consistent with maternal and fetal vascular malperfusion and of placental 

inflammatory lesions was significantly higher in cases compared to controls (Table 6).

Two cases with missing pathology slides had raised amniotic fluid EPO and cTnI 

concentrations: one patient had late-onset preeclampsia with an SGA neonate and delivered 

at 37.1 weeks; the other patient had placental abruption and delivered at 22.4 weeks.

Sections from normal term placentas may display immature villi, and this physiological 

immaturity occurs in less than 10% of cases (127). Therefore, to establish the pathogenicity 

of these immature villi, immunohistochemistry with CD 15 was performed in any placental 

section that showed monotonous villous population (defined as at least 10 such villi) with 

centrally placed capillaries and decreased vasculo-syncytial membranes, recapitulating the 

histology in early pregnancy. CD15 immunohistochemistry was used in 53 samples, 

including 40 controls and 13 cases. In the control group, 3/40 of the samples examined 

showed immunohistochemistery consistent with pathological delayed villous maturation, 

while 12/13 of the cases examined displayed this pathological pattern.

Of 53 hypoxic fetal deaths (EPO > 90th percentile), placental histology was available for 51 

cases. Among these 51 hypoxic fetal deaths (EPO > 90th percentile), vaso-occlusive lesions, 

accelerated or delayed maturational villous defects, retroplacental hemorrhage or fetal 

vascular lesions were present in 38 (74.5%) cases. There were twelve cases of fetal deaths 

with delayed villous maturation: eleven (92%) had raised EPO and one case (8%) was 

associated with placental abruption. Four of the five fetal deaths in which only the amniotic 

fluid EPO concentration was raised had delayed or accelerated villous maturation in the 

placenta, and the fifth had hypervascular villi, a characteristic response to hypoxia. Three of 

the five fetal deaths not associated with any raised analytes in amniotic fluid had histological 
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evidence of abruption consisting of retroplacental and/or intravillous hemorrhage, one had a 

massive subchorial hematoma (a Breus’ mole), and one displayed delayed villous 

maturation. Therefore, a histopathological explanation for placental insufficiency was found 

in 74% (43/58) of cases.

Eleven fetal deaths showed evidence of acute histologic chorioamnionitis: four had 

intermediate (stage 2) disease with intra-amniotic inflammation diagnosed in two, and seven 

cases were mild (stage 1), and six of them had intra-amniotic inflammation (128). Amniotic 

fluid cultures were negative for nine cases of histological chorioamnionitis, except for one 

case with candida placentitis, which was culture positive for Candida spp. and had intra-

amniotic inflammation, and another with coagulase-negative Staphylococcus species without 

intra-amniotic inflammation.

Two 22-week-old fetal deaths displayed chronic villitis due to CMV infection with raised 

amniotic fluid EPO and cTnI concentrations as well as intra-amniotic inflammation.

The proportion of cases that had no significant placental pathology was not significantly 

different between the various amniotic fluid analyte groups, nor was there a difference 

between the groups in the type of pathological lesions present.

DISCUSSION

Principal findings of the study

The study indicated that 88% (53/60) of fetal deaths were hypoxic; that 91% (48/53) of 

hypoxic fetal deaths had sustained brain, myocardial or both brain and myocardial injuries in 
utero; and that circulatory failure and cardiac arrest, secondary to hypoxic myocardial 

damage, was the mechanisms of death in 70% (42/60) of cases.

Since we considered the two isolated cases, in which only the concentration of cTnI or 

GFAP was raised, as instances of hypoxic cardiac and brain injury occurring at slightly 

lower concentrations of EPO than the criteria used to conduct this study (>80th centile and 

>70th centile, respectively); we may conclude that: 1) 92% (55/60) of fetal deaths were 

hypoxic; 2) 91% (50/55) of hypoxic fetal deaths sustained myocardial, brain, or both 

myocardial and brain injuries in utero; 3) myocardial injuries alone occurred significantly 

more frequently than brain injury alone (23/50 vs. 8/50, p< 0.01), but myocardial and brain 

injuries occurred independently of each other; and 4) vaso-occlusive lesions, villous 

maturational defects, histologic evidence of abruption or fetal vascular lesions were present 

in 74.5% (38/51) of hypoxic fetal deaths.

Difficulty in determining the cause of fetal death

The use of objective data to assess the cause of fetal death, including clinical information, 

placental examination, and fetal autopsy, allows for the identification of potential etiologies 

of fetal death in 40% of cases (42). Given that the risk factors for stillbirth are also present in 

live born neonates, one cannot attribute the presence of these risk factors as direct causes of 

fetal demise (40). Instead, potential etiologies of fetal death should be classified as a 

probable cause, a possible cause, or a present condition based on the best available scientific 
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evidence (41). The Stillbirth Collaborative Research Network found that 31% (161/512) of 

fetal deaths in 59 tertiary care and community hospitals from 2006 to 2008 had more than 

one probable or possible cause of death (59). In the current study, we found that 25% 

(15/60) of cases with fetal death had more than one risk factor. The result of these two 

studies supports the notion that the cause of death is multifactorial in at least one-quarter of 

cases of fetal death. Because multiple conditions may contribute to a stillbirth, the practice 

of recording the chain of events that led to death, rather than the single most probable cause 

of death, is recommended (40, 129, 130).

In the current study, 75% (45/60) of fetal deaths had a known risk factor, and these fetuses 

had significantly increased median concentrations of EPO than fetuses without a risk factor. 

The clinical implication of this finding is that pregnancies with risk factors for fetal death are 

more likely to present placental dysfunction due to fetal hypoxia in the index pregnancy. 

Previous studies reported that pregnancies with risk factors for fetal death, such as diabetes 

mellitus (131), hypertensive disorder of pregnancies (64), and fetal growth restriction (132) 

have increased amniotic fluid/umbilical cord concentration of EPO as compared to normal 

pregnancies without these risk factors. Furthermore, Lamont et al. (133) reported that, 

compared to women who had a live birth in their first pregnancy, those who experienced a 

stillbirth were almost five times more likely to experience a fetal death in their second 

pregnancy. In addition, a recent systematic review and meta-analysis has demonstrated that 

neonates of mothers who had a previous preterm birth or an SGA neonate are more likely to 

be stillborn; the risk of stillbirth in the following pregnancy is doubled if the previous 

neonate was preterm and SGA, and neonates of mothers who had a previous fetal death were 

more likely to be preterm or SGA (134). Collectively, these findings are consistent with the 

concept that the outcome of previous pregnancies influences the risk of a poor outcome in 

the subsequent pregnancy (133, 134).

Birth occurring before 28 weeks of gestation appears to be strongly associated with an intra-

amniotic infection, whereas late preterm births are less likely to have an associated 

intrauterine infection (135, 136). Indeed, our study showed that 66.7% (4/6) of cases with 

intrauterine infection occurred before 28 weeks of gestation. In addition, we found that 

CMV infection accounted for 33.3% of intrauterine infection in cases with fetal death and 

was present in 3% of cases with fetal death. An Australian study showed that 9% of blood 

samples taken from fetal deaths by cardiac puncture were PCR-positive for CMV (137). A 

study from Greece, using PCR, showed significantly increased levels of CMV (16%) in the 

placentas of fetal deaths compared to controls (3%) (138). Since CMV is the most common 

cause of congenital infection associated with fetal growth restriction and central nervous 

system damage, and as a recent meta-analysis has demonstrated that maternal CMV 

infection increases the risk of spontaneous abortion and fetal death (139), we suggest that 

every placenta and fetus submitted for autopsy should be examined for CMV infection.

The usefulness of placental histopathology in evaluating fetal death

Normal placental maturation involves transition of immature intermediate villi in the first 

and second trimesters of pregnancy to mature intermediate and terminal villi, defined by 

small-caliber (40–100 μm), minimal stroma and abundant syncytio-capillary membrane 
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formation in the third trimester (140). This transition results from an increasing number of 

peripherally placed, thin-walled vascular sinusoids and formation of syncytio-capillary 

membranes in villi, thereby shortening the distance between the maternal and fetal 

circulations and increasing the efficiency of gas exchange across the placenta (123, 141). In 

contrast, delayed villous maturation involves a higher percentage of centrally placed villous 

vessels, a reduced number of syncytio-capillary membranes, and an increase in the distance 

between the maternal and fetal circulations (121, 142, 143). A reduced number of syncytio-

capillary membranes prevents maternal supply from meeting fetal demand for oxygen and 

nutrients, increasing the risk of antenatal fetal hypoxia (121, 142), unexplained fetal death 

(121, 142), and increased neonatal mortality (121, 142).

Although an assessment of the presence of delayed placental villous maturation is 

subjective, and the concordance for this lesion is poor among pathologists and subject to 

much inter-observer variability (144), the subjectivity and variability can be enhanced by the 

use of CD15 immunohistochemistry, a diagnostic marker of persisting villous immaturity 

and chronic placental dysfunction. The level of CD15 expression in the macro-and 

microvasculature reflects the degree of pathological placental villous immaturity (121). The 

usefulness of placental pathology for identification of potential causes of fetal death in the 

current study was enhanced by the use of an immunohistochemistry marker of CD15 to 

diagnose delayed villous maturation as reported by Seidmann et al. (121, 145–147). Indeed, 

the contribution of placental pathology for the identification of potential causes of fetal 

death in the current study was higher (74%) compared to that reported by Page et al. (148) 

who also reported that the most useful test in the diagnostic evaluation of fetal death is 

placental pathology (65% of the cases). Therefore, we propose that the evaluation of late 

fetal death should include placental pathology with the use of a CD15 

immunohistochemistry marker to identify delayed villous immaturity as a marker of fetal 

hypoxia. Indeed, all twelve cases of fetal deaths with CD15-confirmed delayed villous 

maturation were hypoxic: eleven (92%) had ‘raised’ AF EPO concentration, and one case 

(8%), associated with placental abruption, did not have ‘raised’ AF EPO concentration since 

fetal death from an acute event prevents the elevation of AF EPO concentration (63). Raised 

amniotic fluid EPO concentration indicates chronic fetal hypoxia (65).

Placental dysfunction

Decreased placental function, due to either abnormal placental development, placental 

damage, or both, leads to decreased blood flood, oxygen, and nutrient transfer to the fetus 

(149). The results of the current study establish that placental dysfunction was the 

underlying cause of death in more than 90% of cases of fetal deaths. Consistent with this 

conclusion, birthweight was below the 50th centile in 81% (47/58) of the cases for which it 

was recorded, and that 31% (18/58) of fetal deaths were SGA neonates. Although the 

apparent birthweight centile may have been affected by the death-to-delivery time interval 

(150), the fact that the birthweight-to-placenta-weight ratio for the cases was significantly 

lower than that for the controls (3.94 vs. 5.72, p< 0.001) makes it unlikely that this was a 

significant factor affecting the birthweight centile. Placental pathology ‘explained’ 74% 

(43/58) of these fetal deaths, and the proportion may have been higher, but for the inability 

to differentiate post-mortem from ante-mortem histologic changes of fetal vascular 
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malperfusion in the chorionic plate and in the stem villous and terminal villous vessels that, 

therefore, were excluded.

Fetal response to acute and chronic hypoxia

The likely mechanisms of death can be inferred from the fetal physiological responses to 

acute and chronic hypoxia, which have been investigated extensively in vivo in chronically 

instrumented, unanesthetized fetal lambs. Because fetal arterial partial pressure of oxygen 

(PO2) is only about 25% of maternal arterial PO2, comparable to the PO2 on Mount Everest 

(151), and fetal oxygen supply is limited by uterine and umbilical blood flow, the fetus is 

vulnerable to sudden interruptions of its oxygen supply, and has thus evolved cardiovascular 

and neuro-endocrinal mechanisms to maintain oxygen supply to its vital organs during 

episodes of acute hypoxic episodes and to survive in a chronically hypoxic intrauterine 

environment. The net effects of these compensatory mechanisms are to redistribute the fetal 

cardiac output away from peripheral organs and the carcass to the brain, myocardium, and 

adrenal glands (‘centralization of the circulation’), and to reduce oxygen consumption (152, 

153).

Mechanisms for fetal blood redistribution

Redistribution of blood to vital organs is mediated partly by vasoconstriction and increased 

peripheral vascular resistance, and partly by increased perfusion of vital organs, which is at 

first passive and pressure dependent, but is maintained by active vasodilation and increased 

conductance in the cerebral, myocardial, adrenal, and umbilical circulations (154, 155). 

These and other adaptations allow the fetus to withstand moderate reductions in PO2 and to 

maintain cerebral and myocardial oxygen consumption at normal values and centralization 

of its circulation more or less indefinitely. However, this comes at the cost of reducing fetal 

growth (156–163), and reprograming tissue development (164), which predisposes the fetus 

to develop a variety of diseases in adult life (164–166).

The increase in peripheral vascular resistance in response to acute hypoxia involves 

cardiovascular, neuro-endocrine, and local vascular mechanisms. The cardiovascular 

response consists of transient fetal bradycardia, systemic hypertension, and peripheral 

vasoconstriction triggered by carotid sinus chemoreceptors that transmit afferent impulses to 

the cardiovascular center in the medulla, which then sends parasympathetic and α-and β-

adrenergic efferent discharges to the heart, peripheral vasculature, and adrenal glands (154). 

Blood flow to the brain, heart, and adrenal glands increase, as do plasma concentrations of 

catecholamines, adrenocorticotropic hormone (ACTH), and cortisol, and the cortisol 

response to ACTH(154, 167, 168), but cardiac output and umbilical blood flow are unaltered 

unless there is acidosis, in which case both umbilical blood flow and cardiac output are 

reduced (152, 169).

If hypoxia continues, redistribution of blood flow to vital organs is maintained by continued 

peripheral vasoconstriction mediated by the circulating vasoconstrictors norepinephrine, 

arginine vasopressin, neuropeptide Y, and angiotensin II (155), and also by the local balance 

between vasoconstriction and vasodilation in peripheral vascular beds (170). Hypoxia 

increases both nitric oxide synthesis by vascular endothelium by a mechanism involving 
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calcitonin gene-related peptide (cGRP) (170, 171) and the production of oxygen-free 

radicals that quench nitrogen oxide (172, 173). The ratio of oxygen-free radicals to nitric 

oxide determines the balance between vasoconstriction and vasodilation. In the peripheral 

vascular beds, this balance usually favors vasoconstriction, but this balance can change in 

fetuses compromised by chronic hypoxia (170–173).

Nitric Oxide

Chronic hypoxia increases nitric oxide production and attenuates the cardiovascular 

response to acute hypoxia by diminishing the vasoconstrictor response (174). Baseline 

cerebral and femoral blood flow is higher, but cerebral blood flow does not increase, and 

femoral blood flow increases less during acute hypoxia (175). These findings have been 

interpreted to indicate a shift in the compensatory mechanism to chronic hypoxia from 

increased peripheral vasoconstriction to enhanced central vasodilation (175). This effect is 

seen even if the ‘chronic’ hypoxia is transient, as when induced by reduction of umbilical 

flow by 30% for three days, and the effect lasts up to one week (176).

The carotid chemoreceptor

The carotid chemoreceptor response that initiates the response to acute hypoxia and the 

humoral response that maintains it are actually enhanced by chronic intrauterine conditions, 

including chronic hypoxia (177, 178). However, the vasoconstrictor effect of these responses 

is offset by increased nitric oxide production; the net vascular response, i.e., whether there is 

vasodilation or vasoconstriction, will be determined by the balance between the 

catecholaminergic and nitrergic activities, which may be different in different vascular beds 

(174). In the femoral circulation, the increased nitric oxide activity in chronically hypoxic 

fetuses overcomes the vasoconstrictor influences, and these fetuses have a markedly 

diminished capacity to increase peripheral vascular resistance in response to an episode of 

acute hypoxia (174–176).

Centralization of the fetal circulation

Centralization of the circulation occurs if uterine blood flow is reduced experimentally to 

50% of the baseline for 15 minutes, but fails if uterine blood flow is reduced to 25% of the 

baseline. Respiratory and metabolic acidosis then develop, and there is generalized 

vasoconstriction, reduction of blood flow in all vascular beds, followed by hypotension, 

bradycardia, and decreased cardiac output prior to fetal death (179). Centralization of the 

circulation is maintained for about five minutes following complete occlusion of the 

umbilical cord, after which loss of vasoconstriction, increase in femoral blood flow, further 

decrease in fetal heart rate, and progressive hypotension develop as peripheral 

vasoconstriction is lost, cardiac glycogen stores are depleted, and acidosis impairs cardiac 

contractility (180).

Failure of centralization of fetal blood as a mechanism of fetal death

In 91% (50/55) of hypoxic fetal deaths in this study, centralization of the circulation failed or 

could not be maintained. In 35% (19/55) of cases, there was global failure of centralization 

resulting in both myocardial and brain injuries; in 56% (31/55) of cases, blood flow was 
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insufficient to meet the metabolic requirements of the heart or brain. Myocardial damage 

occurred in 70% (42/60) of cases, and brain damage occurred in 45% (27/60) of cases.

The mean EPO concentration in fetal deaths that had only myocardial injury was not 

significantly different from those that had only brain injury (Table 4), but significantly more 

fetal deaths had only myocardial injury than only brain injury (23/50 vs. 8/50, p< 0.01), 

which implies either that the fetal heart is more vulnerable to hypoxia than the fetal brain, or 

that the oxygen-free radical-to-nitric-oxide ratio in the cerebral and myocardial circulations 

was such as to cause greater blood flow and oxygen delivery to the brain than to the heart.

Poudel et al. (181) measured blood flow to the brain, heart, and adrenal glands in fetal lambs 

rendered chronically hypoxic and growth-restricted by carunculectomy prior to pregnancy (a 

procedure that restricts placental size in a subsequent pregnancy), and found that blood flow, 

as well as oxygen and glucose delivery, increased only in the adrenal glands; blood flow and 

oxygen delivery to the whole brain did not increase; and oxygen and glucose delivery to the 

heart actually decreased compared to controls. A similar distribution of blood flow would 

explain why the frequency of myocardial injury alone was almost three times higher than 

brain injury alone among these fetal deaths (23/50 vs. 8/50, p< 0.01).

Myocardial injury is an insufficient cause of brain injury in fetal death

There was no association between the frequency of brain and myocardial injury, as the 

concentration of GFAP was raised in the same proportion of hypoxic fetal deaths in which 

the concentration of cTnI was raised as in those in which cTnI was not raised; nor was there 

a significant difference in median GFAP concentration between these two groups of fetal 

deaths. Therefore, myocardial injury does not appear to have been the direct cause of the 

brain injury where both myocardial and brain injury were present.

A role for fetal hypotension

However, the mean cTnI concentration in fetal deaths that had both myocardial and brain 

injuries was significantly higher than the mean concentration in fetal deaths that had only 

myocardial injury (380.38 pg/mL vs. 232.48 pg/mL, p= 0.03), implying that there was an 

indirect relationship between myocardial and brain injuries. Hypotension likely links these 

two types of injuries because the amount of brain damage during acute hypoxia correlates 

strongly with the depth and duration of hypotension (165), and hypotension is likely related 

to the extent of the myocardial injury, which, in turn, is reflected in the cTnI concentration.

When redistribution of the cardiac output fails to sustain myocardial oxygenation, there is 

cardiac glycogen depletion, anaerobic respiration, metabolic acidosis, myocardial 

depression, circulatory failure, and cardiac arrest (176, 179). Whether there is also brain 

injury will depend on the duration of hypotension prior to cardiac arrest (165). When there is 

no evidence of intrauterine myocardial injury, the mechanism of brain injury and death is 

less clear.

If hypotension is a pre-requisite for brain injury, as appears to be the case (165), it suggests 

that the cause of hypotension in fetal deaths that have brain injury without myocardial injury 

is not cardiac failure, but rather inadequate peripheral vasoconstriction, although it is far 
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from clear how hypotension might cause brain injury and death without cardiac damage. 

However, we speculate that increased nitric oxide production in response to chronic 

hypoxemia could simultaneously decrease systemic vascular resistance and cerebral blood 

flow while maintaining adequate myocardial perfusion long enough for brain injury to occur 

before cardiac glycogen stores are depleted, anaerobic respiration has run its course, and the 

cycle of cardiac decompensation leading to circulatory failure and cardiac arrest 

commences.

Nitric oxide attenuates the sensitivity of the fetal baroreceptor reflex (182), which means 

that a drop in blood pressure caused by nitric oxide-mediated reduction in resistance in 

peripheral vascular beds would not elicit a sufficient increase in heart rate to restore blood 

pressure. Cerebral blood flow can be expected to drop in parallel with the decrease in 

systemic arterial blood pressure as autoregulation of the cerebral vasculature operates within 

a narrow range in the fetus (165). However, coronary blood flow could be maintained by 

nitric oxide-mediated coronary vasodilation sufficiently long enough for brain injury to 

occur before cardiac decompensation and death supervene, as the fetus has a significant 

coronary vasodilator reserve, 3.5-fold greater than in adults (183).

Fetal cardiac arrhythmia as a potential cause of fetal death in cases without evidence of 
myocardial and neuronal injuries

The mechanism of death in hypoxic fetal deaths that had no evidence of myocardial or brain 

injury cannot be determined from the data in this study. Each autopsy report showed some 

evidence of brain damage in all three of the five cases for which one was available: diffuse 

white matter and periventricular damage with calcifications in one case; bilateral 

ventriculomegaly with focal germinal matrix hemorrhage, and scattered petechial 

hemorrhages most prominent in white matter, in another; and evidence of brain stem gliosis 

in the third case. Brain injury, however, does not explain intrauterine death, and this was 

caused either by the previously described mechanisms without being reflected in an increase 

of cTnI and/or GFAP in amniotic fluid, or, we suggest, more likely by a fetal cardiac 

arrhythmia. A fetal arrythmia could have been caused by: 1) a cardiac conduction defect, 

which has been described in 39% of fetal deaths (93); 2) autosomal recessive inheritance of 

a gene that predisposes to atrial fibrillation (184); 3) mutation of the potassium voltage-

gated channel subfamily H member 2 (KCNH2) gene that involves the pore region of the 

potassium channel (185); or 4) mutation in the sodium channel alpha-subunit gene (SCN5A 
gene) that interferes with sodium transport in cardiac sodium channels that predisposes to 

long QT intervals and ventricular arrhythmias (186, 187).

Placental abruption

In the remaining five cases for which none of the analytes was raised, there was histological 

evidence of a placental abruption in three of them, delayed villous maturation in one case, 

and a massive subchorial hematoma (Breus’ mole) in the fifth. Autopsy of the brain and 

heart showed only autolytic changes. Amniotic fluid EPO concentrations can increase 

exponentially with severe hypoxia—by as much as 22–25 mIU/mL daily among high-risk 

pregnancies (64, 131). Nevertheless, these fetal deaths were most likely hypoxic, given the 

Pacora et al. Page 16

J Perinat Med. Author manuscript; available in PMC 2020 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



histological findings, but death from cardiac arrest or a cardiac arrhythmia occurred too 

rapidly for the EPO or the markers for heart damage to rise in amniotic fluid (63).

Limitations

The main limitation on the conclusions of this study is the lack of knowledge of the 

pharmacokinetics of cTnI and GFAP in amniotic fluid given that the length of time it takes 

for cTnI and GFAP to become detectable in amniotic fluid after brain or myocardial injury is 

not known; how frequently these analytes are detectable after brain or myocardial injury, i.e., 

their sensitivity in amniotic fluid, is not known; and the rate at which the concentrations of 

these analytes can increase in amniotic fluid, as well as their half-lives, is also unknown. The 

time of death prior to delivery was also not known in any of these cases, although it could be 

estimated based on the placental histological findings (124). From these estimates, one can 

be reasonably certain that the analyte patterns observed in these fetal deaths were not 

materially affected by clearance of the analytes from amniotic fluid.

Conclusion

Hypoxia, secondary to placental dysfunction, is the mechanism of death in the majority of 

structurally normal fetuses after 20 weeks of gestation. Ninety-one percent of hypoxic fetal 

deaths sustained brain, myocardial, or both brain and myocardial injuries in utero. An 

attributable mechanism of death in 70% of the cases is circulatory failure and cardiac arrest 

secondary to hypoxic myocardial injury. A histopathological explanation for placental 

dysfunction was found in 74% of these cases.
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Figure 1. Frequency of risk factors in cases of fetal death.
A: Frequency of different risk factors. B: Frequency of none, one, or more than one risk 

factor.
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Figure 2. Percentile distribution of birthweight in cases of fetal death and the controls.
A: There was no significant difference in the percentile distribution of birthweight between 

cases of fetal death and the controls (p=0.05). B: Distribution of birthweight centiles by 

gestational age for cases of fetal deaths. There was a significant correlation between 

birthweight centile and gestational age (Spearman’s rho = 0.3, p = 0.03): earlier fetal deaths 

had lower birthweight centiles than later fetal deaths.
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Figure 3. Amniotic fluid concentration of erythropoietin (EPO), cardiac troponin I (cTnI), and 
glial fibrillary acidic protein (GFAP) in controls and cases of fetal death.
A: The median amniotic fluid concentration of EPO in fetal death was significantly higher 

compared to controls [median (interquartile range): 17.33 mIU/mL (9.89–77.08) versus 1.27 

mIU/mL (1.27–4.03), p<0.0001]. The concentration at the 90th centile in amniotic fluid EPO 

for controls was 6.44 mIU/ml (dashed line). B: The median amniotic fluid concentration of 

cTnI in fetal death was significantly higher compared to controls [median (interquartile 

range): 172.8 pg/mL (97.51–326.30) versus 52.29 pg/mL (21.07–85.60), p<0.0001)]. The 

concentration at the 90th centile in amniotic fluid of cTnI for controls was 111.11 pg/mL 

(dashed line). C: The median amniotic fluid concentration of cTnI in fetal death was 

significantly higher compared to controls [median (interquartile range): 2.56 ng/mL (1.21–

3.65) versus 1.92 ng/mL (1.32–2.56), p=0.01)]. The concentration at the 90th centile in 

amniotic fluid of GFAP for controls was 2.84 ng/ml (dashed line).
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Table 1.

Demographic and clinical characteristics of the study group

Characteristics Cases of fetal death
(n=60)

Controls
(n=60) P value

a

Maternal age (years) 25.0
[16.0–42.0]

26.0
[17.0–42.0]

0.77

Body mass index (kg/m2)
b 28.3

[15.5–47.9]
30.1

[15.5–55.8]
0.38

Smoking status 19 (31.7) 13 (21.7) 0.30

Nulliparity 22 (35.5) 0 <0.001

African-American ethnicity 50 (83.3) 50 (83.3) 1.0

Gestational age at amniocentesis
(weeks)

29.9
[20.1–40.9]

39.1
[37.0 −41.4 ]

<0.001

Gestational age at delivery
(weeks)

30.0
[20.3–41.3]

39.1
[37.0–41.4]

<0.001

Birthweight
(grams)

1265.0
[91.0–3885.0]

3017.5
[2670.0–3970.0]

<0.001

Birthweight-to-placenta-weight
ratio

3.94 [0.6–9.66] 5.72 [3.4–7.6] <0.001

Continuous variables are expressed as median [range], and categorical variables are expressed as number (percentage).

a
Kruskal-Wallis test for continuous variables and a Fisher’s exact test for categorical variables.

b
Body mass index (BMI) was calculated as follows: BMI = (maternal pre-pregnancy weight [kg] / maternal height [m]2).
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Table 2.

Pattern of raised amniotic fluid concentrations of cardiac troponin I (CTnI) and glial fibrillary acidic protein 

(GFAP) according to the estimated death-to-delivery time interval in cases of fetal death

Death-to-delivery
time interval

Not raised
cTnI or GFAP
(n = 10)

Raised
cTnI only
(n = 21)

Raised
GFAP only
(n = 8)

Raised
cTnI and GFAP
(n = 19)

≤ 6 hours 0 0 0 1

6–24 hours 3 1 1 2

≥ 48 hours 7 9 4 12

2–7 days 0 6 3 3

7–14 days 0 5 0 1
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