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Abstract

Chemokines (chemotactic cytokines) are involved in a wide variety of biological processes. Following microbial
infection, there is often robust chemokine signaling elicited from infected cells, which contributes to both innate
and adaptive immune responses that control growth of the invading pathogen. Infection of the central nervous
system (CNS) by the neuroadapted John Howard Mueller ( JHM) strain of mouse hepatitis virus (JHMV) provides
an excellent example of how chemokines aid in host defense as well as contribute to disease. Intracranial
inoculation of the CNS of susceptible mice with JHMV results in an acute encephalomyelitis characterized by
widespread dissemination of virus throughout the parenchyma. Virus-specific T cells are recruited to the CNS,
and control viral replication through release of antiviral cytokines and cytolytic activity. Sterile immunity is not
acquired, and virus will persist primarily in white matter tracts leading to chronic neuroinflammation and de-
myelination. Chemokines are expressed and contribute to defense as well as chronic disease by attracting targeted
populations of leukocytes to the CNS. The T cell chemoattractant chemokine CXCL10 (interferon-inducible
protein 10 kDa, IP-10) is prominently expressed in both stages of disease, and serves to attract activated T and B
lymphocytes expressing CXC chemokine receptor 3 (CXCR3), the receptor for CXCL10. Functional studies that
have blocked expression of either CXCL10 or CXCR3 illuminate the important role of this signaling pathway in
host defense and neurodegeneration in a model of viral-induced neurologic disease.
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JHMV-Induced Acute Encephalomyelitis

The neuroattenuated J2.2v-1 John Howard Mueller
( JHM) strain of mouse hepatitis virus (JHMV), a well-

characterized laboratory strain derived from a mAb escape
mutant from the highly lethal JHM-DL virus, can cause severe
encephalomyelitis and demyelination in adult mice (9). Central
nervous system (CNS) infection with JHMV provides well-
accepted models for (i) viral-induced encephalomyelitis,
(ii) evaluating molecular and cellular mechanisms that
oversee neuroinflammation, (iii) defining mechanisms of
viral-induced immune-mediated demyelination, and (iv)
employing this model to assess therapeutic approaches to
enhance remyelination within the context of persistent viral
infection of the CNS.

In response to intracranial (i.c.) infection of susceptible
mice with JHMV, the virus rapidly spreads, infecting res-

ident cells of the CNS (92). Within 24 h, JHMV penetrates
into the parenchyma, and infects and replicates in astro-
cytes, oligodendrocytes, and microglia (15,92) (Fig. 1A).
Brain viral titers peak between days 5 and 7 postinfection
(p.i.), but decline below level of detection by plaque assay
(*100 plaque-forming unit/g tissue) between 10 and
14 days p.i. (69) (Fig. 2). Importantly, while both the in-
nate and adaptive immune responses effectively control
CNS viral replication, sterile immunity is not achieved,
and viral antigen and RNA persist within the CNS (52).
Viral persistence results in chronic neuroinflammation
leading to an immune-mediated demyelinating disease
with clinical and histologic similarities to multiple scle-
rosis (MS) (Fig. 3A).

In response to JHMV infection of the CNS, there is a
rapid increase in the expression of proinflammatory cyto-
kines and chemokines along with matrix-metalloproteinases
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(MMPs) (5,28,104,105). Both IFN-a and IFN-b are ex-
pressed early, and elegant studies by Bergmann and col-
leagues (30) have implicated an important role of these
cytokines in host defense by demonstrating an increase in
viral spread and mortality in JHMV-infected IFNAR-/-

mice. In addition, administration of type I interferons im-
pedes viral spread throughout the CNS, further supporting
an important role of these cytokines in host defense (58,75).
Type I interferons have also been suggested to augment

MHC class I expression arguing for a role in host defense
through increased antigen presentation to T cells (1).

Neutrophils, natural killer (NK) cells, and monocyte/
macrophages rapidly migrate to the CNS in response to
JHMV infection (Fig. 2) (51,82,97,105). Neutrophils and
monocyte/macrophages contribute to the permeabilization
of the blood–brain barrier (BBB) through secretion of
MMPs, and this subsequently promotes infiltration of virus-
specific T cells into the CNS (28,72,101,104,105). JHMV

FIG. 1. JHMV infection of the CNS induces rapid expression of CXCL10. In situ hybridization showing distribution of
(A) viral RNA and (B) CXCL10 mRNA in brains of MHV-infected mice. Two sequential sagittal sections of paraffin-
embedded brain from infected mice at indicated time points were probed with 35S-labeled antisense riboprobes specific to
either JHMV or CXCL10. Signal was detected by autoradiography after a 5-day exposure to film. The probes used for each
section are indicated. Note the strict colocalization of CXCL10 mRNA with viral RNA at days 2 and 7 postinfection. (C)
GFAP-positive astrocyte (purple) cells express CXCL10 mRNA in the CNS of JHMV-infected mice. Combined immu-
nohistochemistry for GFAP and in situ hybridization for CXCL10 mRNA were performed on the brain of a mouse following
infection. Astrocytes and their processes are stained purple, and are identified as being positive for CXCL10 mRNA
expression at day 7 p.i. by overlaying silver grains (arrows). Original magnification, · 400 (35). CNS, central nervous
system; JHMV, John Howard Mueller strain of mouse hepatitis virus; mRNA, messenger RNA; p.i., postinfection.
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infection of IL-15 knockout mice, which lack functional NK
cells, is able to effectively control viral replication, arguing
that NK cells are not required for host defense (106).

JHMV-specific CD4+ and CD8+ T cells expand to viral
antigens presented within draining cervical lymph nodes, and

traffic into the CNS through a permeable BBB (105). Anti-
viral effector mechanisms associated with viral clearance
within the CNS include the elevated expression of MHC class
I and MHC class II on antigen-presenting cells (APCs), after
secretion of IFN-c by both CD4+ and CD8+ T cells as well as
perforin-mediated cytolysis of astrocytes and microglia by
virus-specific CD8+ T cells (40,61,69). Within the context of
the JHMV model, CD8+ T cell expansion and antiviral ef-
fector function are enhanced through CD4+ T cells (67).
Further support for the role of CD4+ T cells in enhancing
antiviral CD8+ T cell function is provided through studies in
which CD4+ T cells were depleted resulting in reduced CD8+

T cell expression of IFN-c and granzyme B combined with
elevated CD8+ T cell apoptosis (67). These findings support
earlier studies (80,103), demonstrating that CD4+ T cells play
a crucial role in both enhancing peripheral activation of CD8+

T cells and prolonging their antiviral function within the
CNS; IL-21 has been suggested to be a critical factor in
controlling these specific events (67).

Oligodendrocytes infected with JHMV appear resilient to
lytic effects of CD8+ T cells but are able to respond to IFN-c
secreted from virus-specific T cells and control viral repli-
cation through this mechanism (19,41,49,61). More re-
cently, microglia have been shown to be important in host
defense following JHMV infection of the CNS. Wheeler
et al. (96) demonstrated increased morbidity/mortality as-
sociated with impaired antiviral effector responses by T
cells following targeted deletion of microglia. These find-
ings highlight that microglia are able to shape both innate
and adaptive immune responses following infection with a
neurotropic virus. With regard to B cells and their role in
host defense following JHMV infection of the CNS, neu-
tralizing JHMV-specific antibody is detected during chronic
disease and is critical in preventing viral recrudescence
(40,54,68,70) (Fig. 2).

FIG. 2. JHMV infection of the CNS invokes rapid infil-
tration of defined immune cell subsets. Cartoon depiction of
immune response following i.c. infection of the CNS of
susceptible C57BL6 with JHMV. Cellular components of the
innate immune response, for example, neutrophils, macro-
phages, and NK cells are rapidly mobilized, and migrate to
the CNS and contribute to opening the blood–brain barrier
and controlling viral replication. Infiltrating CD4+ and CD8+

T cells reduce viral titers below level of detection through
IFN-c secretion and cytolytic activity. Neutralizing virus-
specific antibody is required to suppress viral recrudescence
during chronic disease. i.c., intracranial; NK, natural killer.

FIG. 3. Persistent JHMV infection results in an immune-mediated demyelinating disease. (A) Cartoon depiction of viral
persistence within the CNS and demyelination following i.c. infection of C57BL/6 mice with JHMV. Viral titers within the
CNS peak between 5 and 7 days p.i., and then decline below levels of detection as a result of infiltrating virus-specific T
cells. Sterile immunity is not achieved, and viral RNA/antigen can be detected out to 1 year p.i. Robust immune-mediated
demyelination occurs as a result of viral persistence resulting in chronic neuroinflammation. (B) Representative in situ
hybridization showing viral RNA (virus-specific 35S-labeled antisense riboprobes) present within a spinal cord white matter
tract; sequential spinal cord section stained with LFB/H&E, showing that viral persistence results in immune cell infiltration
into white matter tracts accompanied by myelin damage. H&E, hematoxylin and eosin; LFB, luxol fast blue.
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More recently, Perlman and colleagues have provided
important insight into the functional role of regulatory T
cells (Tregs) during acute JHMV-induced CNS disease
(2,102). Tregs are detected within the CNS at the same time
as effector CD4+ T cells, indicating that the emergence and
accumulation of both populations of cells are on a similar
timeline following viral infection. Further, virus-specific
Tregs express both IFN-c and IL-10 suggesting immune
regulatory capacities mediated through cytokines secreted
following antigen stimulation. Indeed, virus-specific Tregs
dampen proliferation of virus-specific effector CD4+ T cells,
and depletion of Tregs increases mortality (2,102). These
data suggest that within the context of acute JHMV-induced
neurologic disease, Tregs limit immunopathological CNS
disease without negatively impacting viral clearance (2).

JHMV-Induced Demyelination

Infection of susceptible mice with JHMV results in a
chronic immune-mediated demyelinating disease making
this an excellent and well-accepted model for the human

demyelinating disease MS (6,7,36,39,50,60). Virus persists
within the CNS, and in situ hybridization reveals viral RNA
colocalizing with areas of demyelination in spinal cords of
mice at day 35 p.i. with virus (Fig. 3A, B). A hallmark
feature of JHMV infection of the CNS is characterized by
viral spread into the spinal cord, with astrocytes and oli-
godendroglia being primary targets of infection and persis-
tence. As a result, animals develop demyelinating lesions
within the brain and spinal cord that are associated with
clinical manifestations, including awkward gait and hin-
dlimb paralysis.

Staining of JHMV-infected spinal cords with either luxol
fast blue (LFB) or toluidine blue reveals demyelinating le-
sions concentrated within the anterior funiculus and lateral
white matter columns of the spinal cord (Fig. 4A, B) (92). In
addition, electron microscopic analysis of spinal cords from
JHMV-infected mice reveals the extensive loss of myelin
surrounding axons (Fig. 4C, D).

Axonopathy within the white matter tracts of the spinal
cord is present as observed through the use of the SMI-32
staining or Bielschowsky’s silver impregnation stain and

FIG. 4. JHMV-induced demyelination and axonal damage. Toluidine blue stained spinal cord sections from (A) control (day
0, D0) and (B) day 28 (D28) postinfection. Demyelination is spread throughout ventral funiculus and lateral white matter
columns with notable loss of toluidine blue staining. Electron microscopy reveals extensive loss of myelin sheath at (D) day 28
p.i. compared with (C) noninfected control mice in which thick myelin sheaths are present. Boxed areas in (A, B) indicate
regions analyzed for electron microscopic analysis. Focal axonal degeneration occurs in the ventral side of JHMV-infected
Thy1-YFP mouse (F) spinal cords when compared with control (E) spinal cords at day 7. 2-Photon time-lapse images (times
marked in min:sec) depicting absence of FAD in a noninfected Thy1-YFP spinal cord, scale bars in (E) = 20 lm (21).
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initial observations suggested that this occurred concomi-
tantly with demyelination, whereas axonal degeneration has
been argued to precede oligodendrocyte dysregulation in
MS (11,12). Indeed, our laboratory has recently employed 2-
photon (2P) microscopy to visualize axonal damage in re-
sponse to JHMV infection of Thy1-YFP mice in which
medium-to-large caliber axons fluoresce yellow. Using this
approach, we were able to detect axonal damage occurring
as early as 7 days p.i. with virus, further supporting the
notion that axonopathy can precede demyelination in this
model (Fig. 4E, F) (21).

Current evidence suggests that demyelination in JHMV-
infected mice is not the result of induction of an autoimmune
response against neuroantigens, that is, epitope spreading, as
has recently been reported to occur during Theiler’s virus-
induced demyelination (55,56). However, transfer of T cells
from JHMV-infected animals into naı̈ve recipients results in
demyelination (95). More recently, Stohlman and colleagues
(71) clearly demonstrated the presence of APCs capable of
activating self-reactive (SR) T cells in JHMV-infected mice.
SR T cell accumulation within the CNS of infected mice was
shown to peak in mice persistently infected with JHMV; yet,
these cells were not retained arguing for minimal pathologic
function. In addition, a recent report has suggested that in-
fection with mouse hepatitis virus strain A59 promotes acti-
vation of autoreactive T cells specific to myelin basic protein,
although the contributions of these cells to demyelination
remain to be fully defined (25).

Oligodendrocytes are an important viral reservoir during
chronic JHMV-induced disease (15,92). Nonetheless, viral-
induced lysis of oligodendrocytes is not considered a primary
mechanism contributing to demyelination, as evidenced by
JHMV infection of immunodeficient mice (lacking thymically-
educated T and B lymphocytes), resulting in widespread viral
replication within oligodendrocytes with very limited demye-
lination (97). Moreover, adoptive transfer of splenocytes from
JHMV-immunized immunocompetent mice into immuno-
deficient mice infected i.c. with JHMV results in robust
demyelination, implicating T cells as mediators of white
matter damage (29,93,97).

Early studies from our laboratory demonstrated that
JHMV-infected CD4-/- or CD8-/- mice develop demyelin-
ation demonstrating the importance of both T cell subsets in
augmenting demyelination, yet CD4+ T cells may have a
more important role compared with CD8+ T cells (37).
CD4+ T cells secrete the chemokine CCL5, a potent che-
moattractant for inflammatory macrophages, and we have
shown that this is a mechanism that contributes to de-
myelination in JHMV-infected mice (37). IFN-c release
by CD8+ T cells also contributes to macrophage migration
and accumulation within the CNS that subsequently en-
hance demyelination (64). Activated CD4+ T cells not
specific to defined viral antigens, for example, bystander
CD4+ T cells have also been shown to contribute to de-
myelination in JHMV-infected mice (26). Although acti-
vated CD4+ T cells are thought to amplify demyelination,
in part, through recruitment of macrophages, these cells
clearly exert a protective role through IFN-c-mediated
control of viral replication and/or additional undefined
mechanisms (63,81). Macrophages have been shown to be
important in development of demyelinating lesions within
spinal cord white matter during chronic JHMV infection

(16,97). Furthermore, antibody-mediated neutralization of
the chemokine CCL5 or genetic ablation of its receptor Ccr5
is associated with reduced macrophage infiltration correlat-
ing with a reduction in demyelination (17,18).

Adding additional insight into how T cells contribute to
either disease or defense are studies from Trandem et al.
(85), showing that adoptive transfer of Tregs to JHMV-
infected mice attenuates clinical disease severity, and this is
associated with dampened neuroinflammation and demye-
lination. Clearly, T cell infiltration into the CNS of mice
persistently infected with JHMV is important in the patho-
genesis of disease, although a unifying mechanism(s) at-
tributed to how these cells contribute to disease progression
as well as protection remains elusive.

The Chemokine CXCL10 and JHMV-Induced
Acute Encephalomyelitis

Chemokines, small (8–10 kDa) proteins expressed by al-
most all nucleated cell types, are divided into four sub-
families based upon the number and spacing of conserved
cysteine residues present within the amino terminus of the
protein. Chemokine function is controlled through often
promiscuous signaling through seven transmembrane G-
protein-coupled receptors. While initially characterized as
important in inflammation by targeting distinct leukocyte
populations, chemokines are now considered critical me-
diators of a variety of biological processes, including de-
velopment, tissue homeostasis, and coordinated immune
responses during viral infection.

The human CXCL10/IP-10 (interferon-inducible protein
10 kDa) was originally cloned and characterized following
IFN-c treatment of the human monocyte-like U937 in 1985
by Luster et al. (48). The mouse ortholog, originally dubbed
cytokine response gene-2 (crg-2), was subsequently cloned
and characterized in 1990 by Vanguri and Farber (89). The
molecular and biochemical characterization of CXCL10
are outside the scope of this review, yet there are numer-
ous articles detailing these specific biological aspects of
this chemokine related to apoptosis (31,74), cell growth,
and proliferation (38,53), as well as regulating angiostasis
(99).

CXCL10 is a member of the non-ELR CXC chemokine
along with CXCL9 and CXCL11, and these three chemo-
kine ligands all bind to the surface receptor CXC chemokine
receptor 3 (CXCR3) that is expressed on numerous different
cell types. Binding of CXCL10 to CXCR3 expressed by
cells of the immune system has been shown to influence
migration/homing of macrophages, dendritic cells, NK cells,
and activated T cell subsets to areas of inflammation
(24,44,47). Initially described as potentially important in
attracting T cells to psoriatic plaques (20), CXCL10 has
subsequently been shown to be expressed in numerous hu-
man inflammatory diseases (24,32,44,47). In addition,
CXCL10 is expressed in response to microbial infection,
and is important in attracting targeted CXCR3-positive
leukocytes to sites of infection that help control/eliminate
the invading pathogen (88).

We became interested in host factors governing neu-
roinflammation in response to JHMV infection of the CNS.
Previously, numerous cytokines had been shown to be in-
creased in response to CNS infection, yet it was unclear
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whether chemokines were expressed (62). Using a RNAse
protection assay (RPA) targeting chemokines, we demon-
strated that transcripts encoding a number of different che-
mokines are rapidly synthesized in response to JHMV
infection of the CNS (35). Of these, the chemokine CXCL10
is the predominant transcript detected at both acute and
chronic stages of disease arguing for a potentially important
role in both host defense and disease. In situ hybridization of
CXCL10 transcripts revealed strict colocalization of
CXCL10 messenger RNA (mRNA) transcripts with viral
transcripts (Fig. 1A, B), arguing that soluble factors released
from infected cells, for example, type I interferons may
enhance CXCL10 expression.

We have determined that resident glial cells including
astrocytes (Fig. 1C) as well as inflammatory macrophage/
microglia express CXCL10 within the CNS of JHMV-
infected mice (35). The early and dominant expression of
CXCL10 following CNS infection by JHMV argued for a
potential role as a key sentinel molecule in host defense. In
support of this notion, treatment of infected mice with an
anti-CXCL10-neutralizing antibody resulted in increased
mortality and impaired ability to control JHMV replication
that correlated with reduced levels of IFN-c-producing T
cells within the CNS (45). Therefore, these results argued

that early expression of CXCL10 aided in host defense by
attracting CXCR3-positive virus-specific T cells. These
findings were further supported by subsequent studies em-
ploying JHMV infection of germline CXCL10-/- mice (13)
that resulted in decreased entry of IFN-c-positive T cells
into the CNS and reduced ability for JHMV replication.
These findings indicated that blocking CXCL10 signaling,
through use of either neutralizing antibody or genetic ab-
lation, reduced activated virus-specific T cell entry into the
CNS.

Interestingly, we demonstrated through flow cytometry
for staining of CXCR3 and intracellular IFN-c following
stimulation with virus-specific peptides that >90% of these
virus-specific T cells expressed the CXCL10 receptor (79).
However, CXCL10 neutralization selectively reduced ac-
cumulation and/or retention of virus-specific CD4+ T cells
to the CNS, yet exhibited a milder effect on virus-specific
CD8+ T cells (79). Furthermore, administration of anti-
CXCR3 antibody to JHMV-infected mice reduced CD4+ T
cell infiltration, while CD8+ T cell trafficking was not dra-
matically affected (78). The selective effect of anti-CXCR3
treatment on CD4+ T cells was not the result of either re-
duced proliferation or modulation in chemokine recep-
tor gene expression. Therefore, CXCR3 signaling has a

FIG. 5. MHV-CXCL10 and MHV have genetic similarity. Both viruses were generated by a recombination reaction with
the thermolabile N gene deletion (designated by asterisk) mutant MHV-Alb4 and mRNA generated from a transcription
reaction using plasmids that encode from upstream of gene 4 to the 3¢ end of MHV-CXCL10 and MHV. (A) The
recombination reaction for MHV results in a recombinant that is genetically identical with the WT virus. MHV-CXCL10 is
identical with MHV except that gene 4 is replaced by the coding sequence for CXCL10. (B) CXCL10-/- mice i.c. infected
with MHV-CXCL10 exhibit 100% survival, whereas only 60% of MHV-infected mice survive to day 12 p.i. (C) Treatment
of MHV-CXCL10-infected mice with an anti-CXCL10-neutralizing Ab results in significantly increased (*p £ 0.05) clinical
scores compared with treatment with an isotype control Ab (data shown are presented as mean – standard error of the mean)
(89). E, E protein (small envelope protein); HE, hemagglutinin-esterase; M, membrane protein; N, nucleocapsid protein; S,
surface protein; UTR, 3¢ untranslated region; WT, wild type.
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nonredundant role in T cell subset trafficking in response to
viral infection, and argue that differential signals are re-
quired for trafficking and retention of virus-specific CD4+

and CD8+ T cells in response to JHMV CNS infection.
As an additional method to assess the importance of

CXCL10 in host defense against JHMV-induced neurologic
disease, we generated a recombinant virus strain of MHV
capable of expressing CXCL10 (86,91). The CXCL10-
expressing recombinant of MHV (MHV-CXCL10) was
generated through targeted recombination using a reverse
genetic approach (86). In addition, an isogenic wild-type
control virus was constructed in the same manner (86). For
both viruses, the exogenous gene was inserted into open
reading frame (ORF)4 of the MHV-A59 parental virus
(Fig. 5A). Notably, the A59 strain of MHV is capable of
replicating in both the CNS and the liver following i.c. in-
oculation, allowing us the opportunity to explore whether
the protective effects of CXCL10 are restricted to the CNS.
Importantly, MHV ORF4 encodes for a nonstructural pro-
tein that is not essential for growth in tissue culture or within
the mouse CNS (59,100).

Inclusion of CXCL10 into the genome of MHV did not
alter virus-specific RNA synthesis or virus-specific proteins,
and resulted in secretion of CXCL10 in tissue culture (86).
In addition, in vitro growth kinetics of the CXCL10-
engineered virus did not alter viral replication as compared
with the isogenic control virus (86). To determine whether
CXCL10 expression derived from the recombinant MHV-
CXCL10 resulted in enhanced protection from disease,
CXCL10-/- mice were i.c. injected with either MHV-
CXCL10 or control recombinant virus, MHV. MHV infec-
tion resulted in *40% mortality out to day 12 p.i. (Fig. 5B).
In marked contrast, 100% of mice infected with MHV-
CXCL10 survived until day 12 p.i. (Fig. 5B). Our previous
studies indicate that localized expression of CXCL10 within
virally infected tissues is important in host defense, and
peripheral expression of CXCL10 in noninfected tissues
does not dramatically impact the immune response. In
support of this notion, CXCL10 transcripts in CXCL10-/-

mice infected with MHV-CXCL10 were selectively ex-
pressed in the CNS and liver, yet transcripts were absent in
CXCL10-/- mice infected with control virus. Not surpris-
ingly, CXCL10-/- mice infected with MHV-CXCL10
showed reduced viral titers within the brains and livers, and
this correlated with increased T cell accumulation within
these tissues compared with control mice. This protection
from viral-induced CNS and liver disease in MHV-CXCL10-
infected mice was dependent upon CXCL10 derived from the
recombinant virus as treatment of anti-CXCL10 virus ame-
liorated these effects (Fig. 5C) (91).

Given that CXCL10 signaling has been implicated in
coordinating both effector T cell generation and trafficking,
we wanted to determine if CXCL10 expression following
JHMV infection was important in attracting T cells into the
CNS or in contributing to antiviral effector function. We
have determined that MHV infection of CXCL10+/+ or
CXCL10-/- mice results in comparable levels of T cell ac-
tivation and similar numbers of virus-specific CD4+ and
CD8+ T cells (77). We did not detect any differences in T
cell proliferation, IFN-c secretion by virus-specific T cells,
or CD8+ T cell cytolytic activity. Analysis of chemokine
receptor expression on CD4+ and CD8+ T cells obtained

from MHV-immunized CXCL10+/+ and CXCL10-/- mice
revealed comparable levels of CXCR3 and CCR5, which are
capable of responding to ligands CXCL10 and CCL5, re-
spectively. Adoptive transfer of splenocytes acquired from
MHV-immunized CXCL10-/- mice into MHV-infected
RAG1-/- mice resulted in T cell infiltration into the CNS,
reduced viral burden, and demyelination comparable with
RAG1-/- recipients of immune CXCL10+/+ splenocytes.
Collectively, these data imply that CXCL10 functions pri-
marily as a T cell chemoattractant and does not significantly
influence T cell effector response following JHMV infection
(77).

While T cells clearly have an important role in controlling
JHMV replication within the CNS during acute disease,
antibody and B cells have a critical role in preventing viral
recrudescence in persistently infected mice (54,68,70). Gi-
ven the importance of antibody-secreting cells (ASCs) in
suppressing re-emergence of virus, understanding how these
cells migrate into the CNS is critical with regard to under-
standing host defense mechanisms associated with viral
persistence within the CNS.

To this end, Bergmann and colleagues (65,87) have
shown that ASCs express CXCR3 arguing for an important
role in signaling through this receptor, and allowing these
cells to migrate and accumulate within the CNS of JHMV-
infected mice in which ligands CXCL9 and CXCL10 are
expressed. A definitive role for CXCL10 in attracting
CXCR3-positive ASCs into the CNS was confirmed
through experiments in which either CXCL10-/- or
CXCL9-/- were infected with JHMV and virus-specific
antibody within the CNS evaluated (66). Phares et al. (66)
clearly showed that ASC recruitment to the CNS of in-
fected CXCL10-/- mice, but not CXCL9-/- mice, was
dramatically impaired, thus highlighting that CXCL10 is
critical for ASC recruitment. In addition to attracting
ASCs to the CNS, CXCL10 was required for parenchymal
entry.

CXCL10 and JHMV-Induced Demyelination

We have previously determined that CXCL10 is associ-
ated with demyelinating lesions in mice persistently infected
with MHV (Fig. 6A) (35). To determine the role of CXCL10
in contributing to demyelination in mice persistently in-
fected with JHMV, experimental animals were treated with
anti-CXCL10 or control antisera beginning on day 12 p.i.,
which represents a time in which demyelination is estab-
lished and neurologic deficits such as hindlimb paralysis are
evident. Blocking CXCL10, but not CXCL9, resulted in a
dramatic reduction in clinical disease severity as animals
exhibited an almost complete restoration of motor skills.
Importantly, clinical disease returned when we stopped anti-
CXCL10 injection, further supporting an important role of
CXCL10 in contributing to clinical disease (46).

We were also able to show that the muted clinical disease
in anti-CXCL10-treated mice correlated with a targeted re-
duction in CD4+ T cells and macrophages entering the CNS
as well as muted expression of IFN-c and the macrophage
chemoattractant chemokine CCL5. Furthermore, analysis
of demyelination by toluidine blue staining of spinal cord
sections revealed that mice treated with control sera dis-
played numerous inflammatory foci and robust demyelination
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throughout the ventral, lateral, and dorsal columns (Fig. 6D).
In contrast, demyelination was limited to the ventral column
in mice treated with anti-CXCL10, supporting the obser-
vation that progression of disease is impeded (Fig. 6C).
Removal of anti-CXCL10 treatment correlated with a
marked increase in the severity of demyelination. Evalua-
tion of electron micrographs from anti-CXCL10-treated
and control animals showed evidence of remyelination as
indicated by a thin myelin sheath surrounding axons,
whereas the majority of axons in control mice were entirely
demyelinated (Fig. 6E, F).

The potential role of CXCL10 in contributing to demy-
elination in JHMV-infected mice by attracting inflammatory
T cells and macrophages into the CNS was supported by
additional studies, showing that demyelination was reduced
in JHMV-infected CXCL10-/- mice (13) as well as in in-
fected animals treated with anti-CXCR3 antisera (78). In
both instances, the reduction in demyelination correlated
with reduced CD4+ T cell and macrophage infiltration.
These findings argue that blocking CXCL10 signaling re-
sults in a reduction in white matter damage by specifically
inhibiting CD4+ T cells gaining access to the CNS and se-
creting IFN-c that increases expression of the macrophage
chemoattractant chemokine CCL5.

Interestingly, CXCL10 is increased within the cere-
brospinal fluid and CNS lesions of MS patients (76), sug-
gesting that this may be a relevant target for therapeutic
intervention. Early reports using experimental autoimmune
encephalomyelitis (EAE), an autoimmune-mediated neuroin-
flammatory disease, indicated that antibody targeting of
CXCL10 blocked CD4+ T cell recruitment to the CNS, re-
sulting in diminished clinical disease severity (14). However,
subsequent studies contested these findings, and demonstrated
that blocking CXCL10 either made disease worse (73) or had
no effect (8). More recently, Pleasure and colleagues (57)
employed a unique transgenic model in which CXCL10 was
selectively ablated in astrocytes, and showed dampened dis-
ease onset that correlated with reduced CD4+ T cell entry and
demyelination. Collectively, these diverse findings in different
preclinical animal models of MS emphasize that the model
employed may dictate experimental outcome when evaluating
how CXCL10 expression influences chronic neuroinflamma-
tion and demyelination.

CXCL10 and Oligodendroglia Biology

Exposure of cultured oligodendrocyte progenitor cells
(OPCs) to IFN-c restricts proliferation and differentiation, as

FIG. 6. Antibody targeting of CXCL10 in mice persistently infected with JHMV reduces demyelination and increases
remyelination. (A) CXCL10 mRNA transcripts were detected by in situ hybridization in white matter tracts of demyelinating
spinal cords at day 35 p.i. (A) CXCK10-positive cells (arrows) adjacent to demyelinating lesions. (B) Spinal cord section in
which the sense control probe for CRG-2 was used. No positive cells were detected. Original magnification · 400 (35).
Toluidine blue-stained transverse section of an (C) anti-CXCL10-treated mouse, showing that the region of demyelination is
well defined and limited to the ventral column, whereas in (D) control-treated animals lesions extend throughout the ventral
and lateral columns. (E) Electron micrograph of an anti-CXCL10-treated mouse showing axons within the ventral column with
thin myelin sheaths (denoted by M and arrow) surrounding axon (a) characteristic of remyelination. (F) Electron micrograph
of a control mouse, showing axons (a) within the ventral column with no evidence of remyelination (46).
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well as triggers apoptosis (3,4,10,22,23,27,43,90,94). More-
over, overexpression of IFN-c within the CNS of transgenic
mice results in severe behavioral deficits associated with
deleterious consequences on oligodendrocytes that corre-
late with hypomyelination. These studies highlight the
potential detrimental effect of sustained IFN-c expression
by inflammatory leukocytes infiltrating into the CNS
(34,42). During chronic inflammatory diseases such as MS,
OPCs/oligodendrocytes are exposed to numerous inflam-
matory cytokines/chemokines that create a hostile and
damaging environment. Therefore, it is important to evaluate
how these cells are protected from the damaging effects of
IFN-c signaling.

We have examined the mechanisms by which IFN-c
mediates apoptosis of cultured OPCs, and found that IFN-c
induces CXCL10 expression in cultured OPCs and con-
tributes to apoptosis through a caspase-dependent mecha-
nism (Fig. 7A, B) (84). Cultured OPCs express CXCR3, and
cultures derived from either CXCR3+/+ or CXCR3-/- mice
exhibited reduced sensitivity to either IFN-c- or CXCL10-
induced apoptosis (Fig. 7C, D). Moreover, signaling through
the CXC chemokine receptor 2 (CXCR2) through engage-
ment with ligand CXCL1 restricts both IFN-c- and
CXCL10-mediated apoptosis associated with limiting
cleavage of caspase 3 and increased expression of the
antiapoptotic Bcl2 protein. Therefore, we would argue that

in addition to contributing to demyelinating diseases
through attraction of CXCR3-bearing lymphocytes,
CXCL10 may have a more direct role in white matter
damage through promoting oligodendrocyte loss through
induction of oligodendroglia.

This increased susceptibility of OPCs to IFN-c/CXCL10-
induced apoptosis is not restricted to mice as we have also
determined that treatment of human embryonic stem cell-
derived OPCs with either IFN-c or CXCL10 results in in-
creased apoptosis through a caspase 3-mediated effect (83).

Concluding Remarks

Studies over the past 20 years from our laboratory and
others have helped shape our understanding of the functional
role of CXCL10 in host defense and disease in response to
JHMV infection of the CNS. Using either antibody targeting
or genetic silencing of CXCL10, it has been determined that
early expression of CXCL10 is beneficial as it serves to
attract CXCR3-positive T cells into the CNS that subse-
quently aid in controlling viral replication. Equally important
is the demonstration that ASCs respond to CXCL10 ex-
pression in the CNS to enter the parenchyma and suppress
viral replication through secretion of virus-specific antibody.
Conversely, sustained expression of CXCL10 also contrib-
utes to JHMV-induced demyelination through attraction of

FIG. 7. CXCL10 treatment results in OPC apoptosis. (A) Secreted CXCL10 protein levels in supernatant from OPC
cultures treated with IFN-c (10, 50, and 100 U/mL—48 h) were measured by ELISA. (B) Treatment of OPC cultures for
6 days with CXCL10 (10 ng/mL) showed a significant increase (*p < 0.05; ***p < 0.0001) in TUNEL positive cells when
compared with untreated cultures; values are expressed as mean – standard deviation. (C) Western blotting of proteins
isolated from OPC-enriched cultures obtained from either CXCR3+/+ or CXCR3-/- mice confirms that CXCR3 is expressed
in WT cultures. (D) MTT assay showing cell death following 6 days of treatment of CXCR3-/- or WT OPC cultures with
either IFN-c or CXCL10. Cell death is significantly (***p < 0.0001; n = 3 different experiments) reduced in CXCR3-/-

cultures compared with WT cultures (82). CXCR3, CXC chemokine receptor 3; ELISA, enzyme-linked immunosorbent
assay; OPC, oligodendrocyte progenitor cell.
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CD4+ T cells that amplifies neuroinflammation through IFN-
c-mediated expression of other chemokines.

Importantly, subsequent studies by other investigators
have demonstrated that CXCL10 is important in host de-
fense against other neurotropic viruses, including Herpes
Simplex Virus-1 (HSV-1) (98) and West Nile Virus
(WNV) (33). Although much is known about CXCL10 and
how it shapes inflammation in acute and chronic diseases
following viral infection of the CNS, there are undoubt-
edly a number of additional questions that need to be
addressed with regard to how the CXCL10:CXCR3 sig-
naling pathway influences glial biology and repair in re-
sponse to viral-induced neurologic disease.
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