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A B S T R A C T

Objective: Relapse rates are consistently high for stimulant user disorders. In
order to obtain prognostic information about individuals in treatment, machine learning models have been applied to neuroimaging and clinical data. Yet few efforts
have been made to test these models in independent samples or show that they can outperform linear models. In this exploratory study, we examine whether machine
learning models relative to linear models provide greater predictive accuracy and less overfitting.
Method: This longitudinal study included 63 methamphetamine-dependent (training sample) and 29 cocaine-dependent (test sample) individuals who completed an
MRI scan during residential treatment. Linear and machine learning models predicting relapse at a one-year follow up that were previously developed in the
methamphetamine-dependent sample using neuroimaging and clinical variables were applied to the cocaine-dependent sample. Receiver operating characteristic
analysis was used to assess performance using area under the curve (AUC) as the primary outcome.
Results: Twelve individuals in the cocaine-dependent sample remained abstinent, and 17 relapsed. The linear models produced more accurate prediction in the
training sample than the machine learning models but showed reduced performance in the testing sample, with AUC decreasing by 0.18. The machine learning
models produced similar predictive performance in the training and test samples, with AUC changing by 0.03. In the test sample, neither the linear nor the machine
learning model predicted relapse at rates above chance.
Conclusions: Although machine learning algorithms may have advantages, in this study neither model's performance was sufficient to be clinically useful. In order to
improve predictive models, stronger predictor variables and larger samples are needed.

1. Introduction

Addiction is a chronically relapsing condition (McLellan et al.,
2000). One of the fundamental challenges for clinicians is to assess a
patients' likelihood for relapse in an effort to help prevent negative
outcomes (Marlatt and Donovan, 2005). Prominent theories about
substance use disorders hold that they are brain-based diseases
(Robinson and Berridge, 1993; Koob and Volkow, 2010; Hyman and
Malenka, 2001; Wise, 1996; Paulus, 2007), implying that the brain
should contain information about an individual's current disease status
and prognosis (Paulus, 2015; Pine and Leibenluft, 2015). Accordingly, a
major research goal has been to identify patterns of brain activity that
predict relapse following treatment (Volkow et al., 2015). Recently, this
search has been aided by machine learning algorithms (Gowin et al.,
2015; Breiman, 2001; Pereira et al., 2009) that train computers to

iteratively improve performance at uncovering relationships between
variables. One application of these algorithms is to classify objects into
groups (LeCun et al., 2015), such as labeling substance-dependent in-
dividuals as likely to relapse or abstain. Potential advantages of ma-
chine learning algorithms relative to binary logistic regression are that
they typically incorporate internal cross-validation to increase model-
stability, include interactions by default, and are robust to outliers
(Breiman, 2001; LeCun et al., 2015; Scholkopf et al., 1997). All these
characteristics optimize exploratory analysis. In contrast, standard re-
gression approaches do not automatically include cross-validation, re-
quire the researcher to specify interactions, and may be sensitive to
outliers. These considerations taken together, machine learning ap-
proaches may produce models that have superior predictive ability,
which is why these techniques have recently expanded in use. Yet,
despite the proliferation of these techniques (Jordan and Mitchell,
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2015), few studies have attempted to replicate published models that
purport to predict relapse in new samples, which is a necessary step to
determine whether they can be developed into useful prognostic tools.

One neural process that has shown promise for assessing substance
users' prognosis is assessment of risky decisions (Gowin et al., 2013;
Gowin et al., 2014a, 2017a). Colloquially, risk-taking indicates a de-
cision that has a possibility for harm, such as the decision to use sub-
stances despite the increased likelihood of legal or medical problems
(American Psychiatric Association, 2013). Researchers have oper-
ationally defined risk-taking as choosing an option with a higher level
of uncertainty in the outcome (Kahneman and Tversky, 1979) and have
shown that individuals with stimulant dependence choose risky options
at a higher frequency than non-dependent comparison groups (Gowin
et al., 2018). Many neuroimaging studies using both PET and fMRI have
also observed differences in the neural processing of risky decisions in
participants with stimulant dependence relative to healthy comparison
participants (Bolla et al., 2003; Tanabe et al., 2007; Cousijn et al., 2013;
Gilman et al., 2015). Meta-analytic evidence indicates that differences
in processing are present in a variety of brain regions, including the
insula, striatum, and anterior cingulate cortex (Gowin et al., 2013). We
have previously shown that neural processing of risk has also been
shown to distinguish individuals who relapse from those who remain
abstinent following treatment (Gowin et al., 2014b). Although pro-
mising, this finding has not been replicated, which is crucial for es-
tablishing model validity.

Here, we collected a large longitudinal sample of stimulant depen-
dent individuals who had completed a risk-taking task in an MRI
scanner during residential treatment. Two classes of stimulant users
were included: cocaine- and methamphetamine-dependent individuals.
Results from the methamphetamine-dependent sample have been
published previously (Gowin et al., 2014b, 2015). The first paper used a
linear model to show that insular processing of risk during the decision
phase of the task predicts relapse (Gowin et al., 2014b). The second
paper used a machine learning model to show that striatal activation
during the outcome phase of the task was among the best predictors of
relapse (Gowin et al., 2015, 2017b). Longitudinal data from the co-
caine-dependent individuals have not been published, and as the groups
were demographically similar (Table 1), we believe the cocaine-de-
pendent group constitute a reasonable test sample. We sought to de-
termine which analytic approach would provide more accurate pre-
dictions in the test sample and which was least likely to overfit (i.e.
perform well in the training sample, but poorly on the test sample). We
hypothesized that, relative to the linear model, the machine learning

model would produce more accurate predictions in the test sample and
show less evidence of overfitting.

2. Methods

2.1. Sample

Sixty-eight participants (Gowin et al., 2014b, 2015) with a diagnosis
of methamphetamine dependence (training sample) and thirty-two
participants with a diagnosis of cocaine dependence (test sample) were
recruited from 28-day inpatient treatment programs at the Veterans
Affairs (VA) San Diego Healthcare System and Scripps Green Hospital
(La Jolla, CA). Participants underwent study procedures during the
second or third week of treatment (days 10–24) and semi-structured
clinical interviews revealed that no subjects were experiencing symp-
toms of withdrawal during neuroimaging sessions. Participants were
randomly screened for the presence of drugs throughout the programs.
Participants were informed that the goal of the study was to examine
behavior and brain characteristics related to stimulant dependence.
Written informed consent was obtained from all participants after study
procedures were fully explained in accordance with the UC San Diego
Human Research Protections Program.

2.2. Intake assessment

Lifetime DSM-IV Axis I diagnoses (including substance abuse and
dependence) and Axis II antisocial personality disorder (ASPD) were
assessed by experienced interviewers using the Semi Structured
Assessment for the Genetics of Alcoholism (SSAGA), a validated, semi-
structured interview that allows for quantification of lifetime drug use
(Bucholz et al., 1994). Diagnoses were based on consensus meetings
with a clinician specialized in substance use disorders (MPP) and
trained study personnel. The following were exclusion criteria:
(McLellan et al., 2000) antisocial personality disorder; (Marlatt and
Donovan, 2005) current (past 6 months) Axis I panic disorder, social
phobia, post-traumatic stress disorder, major depressive disorder;
(Robinson and Berridge, 1993) lifetime bipolar disorder, schizophrenia,
and obsessive compulsive disorder; (Koob and Volkow, 2010) current
severe medical disorders requiring inpatient treatment or frequent
medical visits; (Hyman and Malenka, 2001) use of medications that
affect the hemodynamic response within the past 30 days; (Wise, 1996)
current positive urine toxicology test; and (Paulus, 2007) history of
head injuries with loss of consciousness for longer than 5min.

Table 1
Participant characteristics.

Methamphetamine (N=63) Cocaine (N=29)

N % N % Chi-square p-value

Relapse 18 28.6 17 58.6 0.006
Male 48 76.2 25 86.2 0.270
VA patienta 43 68.3 22 75.9 0.457
Generalized anxiety disorder 3 4.8 0 0 0.232
Major depressive disorder 2 3.2 0 0 0.332
Alcohol dependence 20 31.8 9 31.0 0.792
Cannabis dependence 13 20.6 9 31.0 0.277
Opioid dependence 2 3.2 5 17.2 0.018

Median IQR Median IQR Mann-Whitney p-value
Age 37 18 46 12.5 0.040
Verbal IQ 109 13 105 15 0.031
Years of education 12 2 13 3 0.252
Days since last use 27 14 30 15.5 0.323
Cigarettes/day 15 12 10 20 0.147
Lifetime uses of cocaine 150 2298 6752 19,192 <0.001
Lifetime uses of methamphetamine 5195 9900 0 128.5 <0.001

Bold font indicates p < .05.
a Participants were recruited from either a Veterans Affairs treatment program or a community hospital's treatment program.
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Participants in the methamphetamine- and cocaine-dependent groups
could have co-morbid substance use disorders so long as their drug of
choice was methamphetamine or cocaine, respectively.

During evaluation, participants also performed the North American
Adult Reading Test (Uttl, 2002) as a measure of verbal intelligence
(VIQ). Characteristics are summarized in Table 1.

2.3. Relapse assessment

Follow-up phone interviews were conducted 3, 6, 9, and 12months
after treatment to assess relapse. The interview was based on the sub-
stance use module of the SSAGA. For participants recruited through the
VA, their medical records were examined to assess substance use fol-
lowing treatment in addition to the phone interviews. If there were
discrepancies between medical records and self-reported responses, we
assumed that any report of substance use was accurate, so the earliest
date of relapse was used. Relapse was defined based on participants'
self-reported substance use, and a single lapse constituted a relapse
event. Since the treatment program advocated for abstinence from all
substances, the use of any substance (e.g., alcohol) other than nicotine
was counted as a relapse event. Five training and three test participants
were lost during follow up; complete follow-up data were available for
92% of the sample.

2.4. Risky Gains Task (RGT)

The RGT (Paulus et al., 2003) is a risk-taking task that allows par-
ticipants to earn money. Participants selected one of three sequentially
appearing options—20¢, 40¢, or 80¢—on each of 96 trials. Each option
appeared on the screen for 1 s in ascending order, and if the participants
pressed the button when the option was shown, they received that
amount. Participants were told that choosing 20¢ resulted in a guar-
anteed gain of 20¢, but choosing 40¢ or 80¢ resulted in a chance of
either gaining or losing 40¢ or 80¢, respectively. Probabilities were not
disclosed. All trials lasted three-and-a-half seconds regardless of which
option was chosen. Participants were notified with text on the screen
indicating whether they won or lost. There was no advantage to making
risky or safe choices, as the task was designed so that choosing the same
option on each trial would earn the same final payment of $19.20.

2.5. Image acquisition

A functional MRI scan was performed using a Signa EXCITE 3 T
scanner (GE Healthcare, Milwaukee, Wisconsin T2*-weighted echo-
planar imaging; TR=2000ms, TE= 32ms, FoV=230×230 mm2,
64×64 matrix, 30 2.6mm axial slices with 1.4 mm gap, flip
angle= 90°, total duration: 8min, 32 s, 3.59× 3.59×2.6mm3

voxels). Six resting trials were collected at preset points during the task,
which used to establish baseline activity level. For anatomical re-
ference, a high-resolution, T-1 weighted image (TR=8ms,
TE= 3msec, FoV=250×250 mm2, 192× 256 matrix interpolated
to a 256×256 matrix, flip angle= 12°, 172 sagittally acquired slices,
.97×.97×1 mm3 voxels) was collected during the same session.

2.6. Structural MRI processing

Cortical reconstruction and volumetric segmentation was performed
with the FreeSurfer 6.0.0 image analysis suite, which is documented
and freely available for download online (http://surfer.nmr.mgh.
harvard.edu/) (FreeSurfer, 2012).

2.7. fMRI processing

Data were preprocessed using Analysis of Functional NeuroImages
(AFNI) software (Cox, 1996). Echoplanar images were aligned to ana-
tomical images. Outlier voxels were identified in the aligned images

and time points that had two standard deviations above the mean
number of outlier voxels were excluded from subsequent analyses.
Images were warped to Talairach space using an affine transformation
and then visually inspected. Spatial smoothing was conducted using a
4mm Gaussian kernel at full-width half-maximum. Data were analyzed
using a multiple regression model based on a BOLD response function.
Separate general linear models were performed using AFNI's 3dDe-
convolve function for the decision and outcome phases. For the decision
phase, regressors for 20¢, 40¢, and 80¢ choices were defined as starting
at trial onset and concluding when the subject made a response. The
sequential design meant that a participant could lose 40¢ and have the
trial end even if they intended to choose 80¢. Thus, trials that resulted
in a loss were excluded since the participant's intent was unknown. For
the outcome phase, regressors for −80¢, −40¢, +20¢, +40¢,
and+ 80¢ were defined as starting when notification of the outcome
was delivered and concluding at the end of the trial. Neural response
was modeled based on a blood‑oxygenation level dependent (BOLD)
signal with a 4–6 s peak after stimulus onset. Baseline activation was
calculated from the BOLD signal during intertrial intervals and null
trials (i.e., fixation on crosshairs without responding). Six motion
parameters (roll, pitch and yaw; x, y, and z drift) were included as
regressors of non-interest. Percent signal change was calculated by di-
viding the regressor of interest by the baseline regressor.

2.8. Linear model of relapse applied to test sample

We previously used a general linear model (the training model) to
compare methamphetamine dependent individuals who relapsed with
those who remained abstinent (Gowin et al., 2014b). The independent
variables in the training model included 1) days since last drug use
prior to treatment, 2) total lifetime stimulant uses (log-transformed due
to skewness), 3) percentage of risky choices made during the Risky
Gains Task, and 4) the difference in right anterior insula activity during
a risky relative to a safe decision. A binary logistic regression was
conducted, such that the dependent variable was the probability of
relapse. A probability> .5 was classified as a relapse and a classifica-
tion table was generated to assess accuracy.

The estimated probability of relapse was calculated for each in-
dividual. We examined probability as a continuous variable and gen-
erated receiver operator characteristic curves using the pROC package
in R software, version 3.5.1 (Robin et al., 2011). Receiver operating
characteristic curves show how classification ability changes as the
discrimination threshold varies, as there is an inevitable tradeoff be-
tween sensitivity and specificity (Greiner et al., 2000). Area under the
curve (AUC) was assessed with bootstrapping to estimate the 95%
confidence interval, and this was used to determine whether the model
performed better than chance (AUC=0.5) based on the lower bound of
the 95% confidence interval.

The same four variables were obtained for the test sample of cocaine
dependent individuals. Using the regression coefficients from the
training sample model, estimated probability of relapse was calculated
for each cocaine dependent individual. A classification table and re-
ceiver operating characteristic analysis was conducted to assess per-
formance.

Lastly, a machine learning model was generated in the training
sample using the same four variables. The model we used was random
forest (Breiman, 2001), implemented in R software using the random-
Forest package, with 2000 trees grown and two variables tested at each
node. The model was also applied to the test sample. Classification
tables and receiver operating characteristic analysis were conducted to
assess performance.

2.9. Machine learning model of relapse applied to test sample

We previously used a machine learning technique called random
forest (Breiman, 2001) to classify individuals as either relapsed or
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abstinent in the year after treatment (Gowin et al., 2015). The predictor
variables were neural activity during the reward processing phase of
the Risky Gains Task, as well as demographic (age, sex), percentage of
risky choices made during the Risky Gains Task, psychometrics (Barratt
Impulsiveness Scale, Sensation Seeking Scale, Temperament and
Character Inventory), and clinical variables (total methamphetamine
uses, total cocaine uses, drinks per week, cigarettes per day). For brain
activity, the percent signal change was extracted from 72 anatomically-
defined regions covering the entire brain (Fonzo et al., 2013). Reward
processing activity was defined as the difference between percent signal
change during the +80¢ relative to the +20¢ outcomes. The random
forest model was generated in R using the randomForest package (Liaw
and Wiener, 2002).

The random forest training model consisted of 2000 unpruned
classification trees. As there were more individuals who remained ab-
stinent, and this would bias the model toward predicting that every
individual would remain abstinent, upsampling was used, such that
each tree was generated with a random subsample of the total sample
with the restriction that the subsample included equal numbers of in-
dividuals who relapsed and remained abstinent. Each decision tree was
grown by randomly selecting 10 of the 109 predictor variables, and
then determining which of those 10 variables could produce the best
split of the sample. Random forest models generated using different
numbers of trees or trying different numbers of variables at each node
did not produce models that were more accurate. The best split was
defined by the greatest increase in purity in the children nodes, such
that if the parent node had a 50/50 split of relapsers and abstainers, the
best split would produce one child node with a high proportion of re-
lapsed individuals and another child node with a high proportion of
abstinent individuals. The tree was grown until every terminal node
resulted only a single class, either “relapsed” or “abstinent.” Since each
tree was generated with only a subsample of the total training sample,
the remaining participants constituted a test sample. Each participant
was used in the test sample on approximately 1/3 of all trees, or 666
times. The proportion of trees that classified an individual as “relapse”
was the dependent variable of the model, and this value is analogous to
the dependent variable from the binary logistic regression: P(relapse).
Thus, the same steps were taken to assess model performance. A pro-
portion of relapse votes> 0.5 was classified as a relapse in the binary
model. A classification table was generated to assess accuracy. The
proportion of trees voting for “relapse” for each individual was used for

receiver operating characteristic analysis, as described above.
For the test sample of cocaine dependent individuals, the same 109

predictor variables were obtained. Using the collection of decision trees
generated from the training sample model, each cocaine dependent
individual was classified as either “relapsed” or “abstinent” in all 2000
trees. The proportion of trees voting for relapse was calculated for each
cocaine dependent individual. A classification table was generated
using a threshold of 0.5 to assess the accuracy of the model. The pro-
portion of trees voting for relapse was used for receiver operating
characteristic analysis, as described above.

3. Results

3.1. Sample characteristics

The samples shared similar demographic profiles (see Table 1), but
a larger percentage of cocaine-dependent individuals (58.6%) relapsed
in the year after treatment relative to methamphetamine-dependent
individuals (28.6%). The cocaine dependent group was older and had a
lower average IQ (p < .05). However, the groups had a similar per-
centage of males, patients from the VA hospital, and patients with an
alcohol dependence. Cocaine- and methamphetamine-dependent in-
dividuals were similar in duration of abstinence prior to treatment and
cigarettes smoked per day.

3.2. Linear model of relapse applied to test sample

The previously published linear model of relapse for the training
sample had an overall accuracy rate of 79.4%, and successfully classi-
fied 91.1% of individuals who remained abstinent but only 50.0% of
individuals who relapsed (Table 2). The model showed that less dif-
ferentiation in the right anterior insula for safe versus risky decisions
was associated with a greater likelihood for relapse (Table 3). The re-
ceiver operating characteristic plot (Fig. 1) showed that predicted va-
lues were significantly better than chance (AUC=0.83, 95% CI:

Table 2
Performance of the models of relapse prediction.

Accuracy (%) Sensitivity Specificity AUC 95% CI

Linear
Linear implementation
Training 79.4 0.50 0.91 0.83 0.72–0.94
Testing 55.2 0.35 0.83 0.65 0.45–0.86

Machine learning implementation
Training 73.0 0.33 0.89 0.69 0.54–0.83
Testing 62.1 0.47 0.83 0.64 0.43–0.86

Machine learning
Linear implementation
Training 75.4 0.27 0.95 0.72 0.57–0.87
Testing 41.3 0.06 0.92 0.53 0.32–0.76

Machine learning implementation
Training 65.6 0.39 0.77 0.59 0.42–0.75
Testing 51.7 0.41 0.67 0.62 0.40–0.84

The linear model contained four variables (fMRI and clinical) and was applied
directly to the test sample. The same four variables were also used in a machine
learning implementation of that model. The machine learning model contained
110 variables (fMRI and clinical) and was also applied directly to the test
sample. The four variables from the machine learning model that performed
best were used to generate a linear model in the training sample, and this linear
model was also applied to the test sample.

Table 3
Linear and machine learning approaches using the variables from the original
linear model.

Linear model specification

Coefficient Odds
Ratio

95% Confidence
interval

p value

Risky choices (percent) −1.97 0.14 0.01, 2.51 0.181
Lifetime stimulant uses (log

transformed)
−0.32 0.73 0.44, 1.21 0.216

Days since last use 0.02 1.02 0.99, 1.06 0.191
Right insula activation to

risky decision
−0.09 0.91 0.86, 0.96 <0.001

Machine learning model specification

Mean decrease
accuracya

Mean decrease in Gini
coefficientb

Risky choices (percent) −0.98 4.14
Lifetime stimulant uses (log

transformed)
4.19 4.24

Days since last use −4.33 3.15
Right insula activation to risky

decision
25.48 6.47

a Mean decrease in accuracy indicates how much random permutation of a
variable's values reduces the performance of the model, where large values for
decrease in accuracy indicate that the variable is important.

b The Gini coefficient indicates how well splits of the sample on the predictor
variable lead to increased purity in the children nodes. High purity is a child
node with a large majority of one class, such as 95% of individuals who re-
lapsed.
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0.72–0.94). When this model was applied to the test sample, perfor-
mance decreased by 0.18 and was no longer significantly better than
chance (AUC=0.65, 95% CI: 0.45–0.86).

3.3. Machine learning model using linear model variables

When a random forest model was generated from the four variables
in the linear model, the accuracy on the training sample was 73.0%,
which was similar to the linear model. Receiver operating characteristic
analysis showed that predictions were better than chance (AUC=0.69,
95%CI: 0.54–0.83). When the model was applied to the test sample,

performance was similar to the training sample (AUC=0.64, 95%CI:
0.43–0.86), with a decrease of 0.05, but predictive accuracy was no
longer significantly better than chance. In the training sample, right
anterior insula activation was the most important variable in the model
(Table 3).

3.4. Machine learning model of relapse applied to test sample

The previously published machine learning model of relapse on the
training sample had an overall accuracy rate of 65.6%, and successfully
classified 76.7% of individuals who remained abstinent but only 38.9%

Fig. 1. Receiver operating characteristic curves for the predictive models. The linear model produced the best performance in the training sample, but had decreased
performance in the test sample as assessed by area under the curve (ΔAUC=−0.18). The machine learning model performed modestly in the training sample, but
had a similar performance in the test sample (ΔAUC=0.03). Neither model produced useful predictions in the test sample.
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of individuals who relapsed (Table 2). The receiver operating char-
acteristic analysis (Fig. 1) did not perform significantly better than
chance (AUC=0.59, 95% CI: 0.42–0.75). When this model was applied
to the test sample, it performed similarly (AUC=0.62, 95% CI:
0.40–0.84), with an increase in AUC of 0.03. The four top performing
variables in this model were activation levels in the right globus pal-
lidus, the left transverse temporal gyrus, the cingulate, and the right
inferior temporal gyrus.

3.5. Linear model using best variables from machine learning model

When the four top performing variables form the machine learning
model were used to generate a linear model in the training sample, it
produced an overall accuracy rate of 75.4% and successfully classified
95.3% of individuals who remained abstinent but only 27.8% of in-
dividuals who relapsed. The model approximated the approach of as-
suming everyone would remain abstinent, and this led to performance
significantly better than chance (AUC=0.72, 95% CI: 0.57–0.87).
While this approach succeeded in the training sample, it produced poor
predictions in the testing sample, with an overall accuracy of 41.3%. It
performed at chance levels (AUC=0.53, 95% CI: 0.32–0.76), showing
a decrease in AUC of 0.19 relative to the training sample.

4. Discussion

This study investigated whether a machine learning model of
functional neuroimaging and clinical variables could produce superior
performance at predicting relapse to stimulant use when compared to a
linear model. This represents the first study to compare performance
across two independent samples using both linear and machine learning
models to predict relapse. As expected, the original linear model
showed evidence of overfitting to the training sample, as evidenced by a
decrease in AUC of 0.18 in the test sample. In contrast, a machine
learning model using the same variables resulted in a similar AUC in the
test and training samples. Similarly, the original machine learning
model produced similar AUC in the training and test samples whereas
the linear model performed well in the training sample but poorly in the
test sample. However, both models performed poorly overall, with
neither model performing better than chance in the test sample. This
indicates that relapse models acquired using small training samples
may no longer be predictive of relapse when applied to novel clinical
samples.

Linear and machine learning models each have advantages. For
example, linear models are easier to interpret. As shown in Table 3, the
coefficient estimates show how a change in each variable affects the
probability of relapse. In our study, the linear model suggests that in-
dividuals with greater differentiation in insular processing between
risky and safe decisions are more likely to maintain abstinence. In
contrast, although the machine learning model also shows that insula
activation is important for predicting relapse, it does not specify the
direction of the relationship. It is unclear from the measure of variable
importance whether increased insula activation increases or decreases
the probability of relapse. A strength of the machine learning model is
that accuracy was similar in the training and test samples, providing
confidence about a model's performance in a novel sample. Machine
learning models are also able to test many variables simultaneously
without violating model assumptions. For example, the original ma-
chine learning model had 109 predictor variables, but linear models
should not have more predictor variables than observations. The tra-
deoff between the mechanistic explanations of the linear model versus
the more stable performance of the machine learning model likely de-
pend on the goals of the analysis. If the goal is to generate a robust
predictive model, then a machine learning approach is likely preferable.
Once the best performing variables are identified, they can be examined
with a linear model in an independent sample to understand how the
variables affect outcomes.

The limitations of this study included method for relapse assess-
ment, the imaging task design, the largely male, veteran sample, and a
relatively small sample size. This study assessed relapse via retro-
spective self-reported drug use as opposed to urine samples.
Nonetheless, allowing for relapse assessment over the phone did facil-
itate higher retention. We used a risk-taking task that does not involve a
jitter between decision and outcome, so the neuroimaging variables are
not fully independent, which could influence the results and reduces the
ability to draw conclusions about specific neural processes.
Methamphetamine and cocaine do not produce identical effects on the
brain, so the classes of drugs used may have influenced results. The
relapse rate for the methamphetamine-dependent sample was low,
whereas the rate for the cocaine-dependent sample was higher. The
sample was primarily recruited from a Veterans Affairs hospital and
was predominantly male, so it will be important to test these effects in a
sample with more females to see if the results generalize. This study
also did not measure important predictors of relapse such as environ-
mental and genetic factors, which were therefore not captured in our
models. Lastly, with smaller sample sizes, parameter estimates can be
imprecise, so all the findings here should be reexamined in larger
samples.

Both linear and machine learning models derived from a training
sample of individuals with methamphetamine dependence did not ac-
curately predict relapse when applied to a test sample of individuals
with cocaine dependence. Future studies should make an effort to in-
clude cross-validation regardless of which analytic approach they use.
Furthermore, the use of larger samples with more diverse predictor
variables that address the wide range of factors which contribute to
relapse would likely produce more stable and valid models.
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