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Resting trans-membrane potential difference (E,,) of
skeletal muscle is correlated to the energy status of the
organism: the more severe the illness, the lower the E,.
In 1971, Cunningham demonstrated this association
with severely debilitating medical conditions, showing
an increase in intracellular sodium concentration pos-
sibly due to a “generalized cellular abnormality” [1]. The
study posed the basis for considering local (muscle)
bio-electrical events generated by excitable tissues as
indicative of the well-being of the entire organism. In
1995, Leijten showed that patients with electrophysio-
logical signs of polyneuropathy had increased intensive
care unit (ICU) mortality, more prolonged rehabilitation,
and persistent 1-year motor handicap than those without
[2]. In 1996, Latronico demonstrated normal nerve hist-
ology, despite electrophysiological findings of axonal
neuropathy, in biopsies taken in the early stage of acute
disease. In late biopsies, however, axonal nerve degener-
ation was evident [2]. This generated the hypothesis that
functional (electrical) impairment may precede struc-
tural (histologic) changes and that electrophysiological
study (EPS) might be used to look indirectly but
non-invasively at cell functioning. During sepsis, a
prototypical low-energy hyper-catabolic state, the nerves
were trying to maintain their structure and survive by
reducing or abolishing the function, a phenomenon eas-
ily documented by EPS. If sepsis persisted, the energy
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supply and/or use might not be restored and the histo-
logic alterations would eventually ensue. According to
this theory of the bioenergetic failure, “stunned but still
living peripheral nerves and muscles may serve as a sen-
tinel for the development of multiple organ dysfunction
syndrome” [3]. In 1999, Hotchkiss described a similar
divergence between in vivo clinical evidence of organ
failure and post-mortem histologic absence of extensive
organ damage sufficient to explain the morbidity and
mortality of sepsis [4]. They also hypothesized that in
situations of energy failure the cells may revert to a low
energy state, a “hibernation” of the cell, to avoid cell
death. The theory received support from two
multi-center clinical studies, CRIMYNE [5] and
CRIMYNE-2 [6], showing that the peroneal nerve, a long
lower limb motor nerve, was the most commonly
affected nerve. The axons are devoid of the machinery
for biosynthetic processes, and all axonal components
are synthesized in the cell body. Their anterograde
transportation to the nerve terminal requires consider-
able energy expenditure and may fail if the nerve does
not receive adequate nourishment [5].

A reversible neuropathy was exactly matched in a rat
sepsis model, with decreased action potential amplitudes
of dorsal root axons by day 3 of sepsis with normal
nerve morphology [7]. At this time point, there was no
major resting membrane depolarization, nor decrease in
membrane input resistance that could explain the re-
duced availability of voltage-gated Na*-channels (VGSC)
for action potential transmission. Also, electrolytes were
unaltered. Instead, a hyperpolarizing shift in Na"-chan-
nel inactivation was found as the predominant factor
underlying the reversible nerve inexcitability [7]. This
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acquired VGCS channelopathy seems one of the earliest
consequences of critical illness [7, 8]. Even preceding
this electrical failure in axons may be the ability for co-
ordinated repetitive firing within the motor neurons in
the early phases of sepsis where nerve conduction still
appears normal. Unstable motor neuron spikes during
maintained direct current stimulation of spinal cord
motor neurons in septic rats prevented a steady force
production in muscle [9]. Decreased VGSC availability
in skeletal muscles during experimental sepsis is attrib-
uted to upregulated expression of Na,l1.5 isoforms
(normally expressed during early maturation) over the
adult Na,1.4 isoform [7]. Na,1.5 have a more negative
half-inactivation potential compared to Na,1.4; thereby,
the availability of activatable VGSC at normal E, is
already markedly reduced and the rheobase action po-
tential is small and eventually fades. It has been specu-
lated that this differential isoform expression represents
a universal reaction of excitable organs to systemic
inflammation [7]. The mechanism by which VGSC
availability can also be reduced is through posttransla-
tional modifications, e.g., phosphorylation. The VGSC
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a-subunit has several intracellular phosphorylation sites
to modify Na™ ion gating as well as channel inactivation.
Intriguingly, very fast phosphorylation of VGSCs
(~minutes) was shown by exposure to pro-inflammatory
cytokines (e.g., TNF-a, IL-2, CNTF ciliary neurotrophic
factor), producing a maximum inhibition of 75% of Na*
currents through channel phosphorylation and hyperpo-
larizing shift of steady-state inactivation. This was abol-
ished by protein kinase C blockade and also almost
completely reversible after cytokine washout. This links
the severity of neuropathy (and myopathy) in critical ill-
ness to the flush of pro-inflammatory cytokines, which,
over time, crosses towards bioenergetics failure and, ul-
timately, structural damage. Inflammation, hypoxia, and
ischemia increase local nitric oxide and reactive oxygen
species production that lead to mitochondrial dysfunc-
tion and ATP depletion in nerve axons [8]. ATPase
run-down results in depolarized E,, with persistent Na*
influx through nerve Na,1.6 and intracellular Ca**
overload (reverse Na/Ca-exchanger activity) [8].
Cytokine-dependent activation of ATP-consuming pro-
teolytic pathways worsens the situation and, in time,
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Fig. 1 Mechanisms leading to neuromuscular inexcitability during early to intermediate phases of sepsis and critical illness. The very early phases
of systemic inflammation are reflected by motor neuron repetitive firing failure followed by development of an acquired channelopathy of
voltage-gated Na*-channels (VGSC) in peripheral nerves and muscles. In the course of critical illness, metabolism-related inexcitability adds
another level through ATP depletion. At later stage, structural changes prevail (not shown). Reversibility declines with each added layer of
mechanism. PKC, protein kinase C; CNTF, ciliary neurotrophic factor; ROS, reactive oxygen species
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drives structural axonopathy, which is also promoted by
glucose toxicity. These complex series of events, which
are summarized in Fig. 1, find their clinical counterpart in
the systemic inflammation and critical illness with artifi-
cial ventilation and mechanical silencing that ultimately
lead to structurally-related organ failure, i.e., in nerves
with structural axonopathies and in muscle with preferen-
tial myosin loss and muscle necrosis (reviewed in [10]).
Several clinical studies have shown an association of
EPS alterations with clinical severity, most notably stud-
ies on intensive insulin treatment in surgical and med-
ical ICU patients (reviewed in) [11], as well as an
association with morbidity [12], and with hospital [13]
and 1-year mortality [14]. Most recently, Kelmenson and
colleagues have shown that patients with abnormal EPS
had significantly fewer 28-day ICU-free days, a worse
discharge disposition and higher mortality in the ICU
and in the hospital when compared to patients with nor-
mal EPS [15]. So, in the last half century, a considerable
amount of evidence has demonstrated that reduced bod-
ily energy production, as it can be inferred from altered
EPS, can be associated with disease severity and can be
predictive of ominous prognoses. The time has come
that we, as a clinical and scientific community devoted
to unraveling the complex pathophysiology and timely
treatment of multiple organ failure, would consider a
wider adoption of EPS into the daily clinical practice.
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