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Introduction
Lung cancer is one of the most common causes of 
cancer-related death in the world.1 A number of surgical, 
percutaneous, and medical therapies can achieve a cure in 
many individuals provided the diagnosis is a small local-
ised tumour.2 Unfortunately, since there are little to no 
symptoms in the early stages of the disease, diagnosis will 
occur in 75% of lung cancers during the later stages with 
advanced local disease, nodal spread, and/or metastatic 
disease.3 Thus, according to Australian research, patients 
diagnosed with lung cancer have an overall 5-year survival 
rate of 15%.4

Fundamental to the early diagnosis of lung cancer is the 
detection of malignant pulmonary nodules.3,5 Pulmonary 
nodules have traditionally been defined radiologically 
as intraparenchymal circular opacities less than 3 cm in 
diameter. Unfortunately, not all pulmonary nodules repre-
sent malignancy, and not all lung cancers appear as well- 
defined nodules. Additionally, end-on pulmonary vessels 

can mimic the appearance of solitary nodules.6 It is due to 
these multifactorial components when detecting and classi-
fying pulmonary nodules that false-positives have become 
problematic in large-scale screening programs, with one 
low dose CT program citing a round of false-positive 
results around 96.4%.7 Thus, the intrinsic appearance of the 
nodule, in conjunction with the patient's history and risk 
factors, must be considered.

It is essential to establish if a pulmonary nodule is benign or 
malignant while maintaining a low false-positive rate. Since 
the advent of lung cancer screening via CT, radiologists 
have spent countless working hours evaluating, character-
ising and detecting pulmonary nodules.8 This has resulted 
in targeted research relating to the sensitivity of radiologists 
to accurately identify and characterise pulmonary nodules, 
with varying sensitivities (dependent on departmental 
reference standards) ranging from 30 to 97% and a false 
positive rate as high as 2.1 per scan.8
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Abstract

Lung cancer is one of the leading causes of cancer-related fatality in the world. Patients display few or even no signs 
or symptoms in the early stages, resulting in up to 75% of patients diagnosed in the later stages of the disease. Conse-
quently, there has been a call for lung cancer screening amongst at-risk populations. The early detection of malignant 
pulmonary nodules in CT is one of the suggested methods proposed to diagnose early-stage lung cancer; however, 
the reported sensitivity of radiologists’ ability to accurately detect pulmonary nodules ranges widely from 30 to 97%. 
2012 saw Alex Krizhevsky present a paper titled “ImageNet Classification with Deep Convolutional Networks” in which 
a multilayered convolutional computational model known as a convolutional neural network (CNN) was confirmed 
competent in identifying and classifying 1.2 million images to a previously unseen level of accuracy. Since then, CNNs 
have gained attention as a potential tool in aiding radiologists’ detection of pulmonary nodules in CT imaging. This 
review found the use of CNN is a viable strategy to increase the overall sensitivity of pulmonary nodule detection. 
Small, non-validated data sets, computational constraints, and incomparable studies are currently limited factors of the 
existing research.
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CNN’s potential saw heightened attention in 2012, when the paper 
“ImageNet Classification with Deep Convolutional Networks” 
successfully identified and classified 1.2 million high-resolution 
images, sourced from the internet, to a previously unseen level of 
accuracy.9 Although the paper’s subject was not of a radiological 
nature; instead the classification of everyday images, it sparked 
interest for broader use.9–15

This review attempts to explore and delineate the current liter-
ature pertaining to the use of CNNs in improving pulmonary 
detection with CT.

Computer-aided detection
The escalation in radiology workload due to higher volumes of 
lung screening CT scans, combined with a variable sensitivity 
rate in assessing for pulmonary nodules, has resulted in substan-
tial research into the use of computer-aided detection (CAD) 
systems.5,16,17 These systems hope to reduce reporting time, 
increase sensitivity, and potentially reduce the rate of false-pos-
itives.18 CAD is utilised to "flag” pulmonary nodules that meet 
a pre-set criterion based on elements such as shape index and 
curvedness. Nodules flagged are then reviewed by a radiologist 
to determine whether or not they should be considered suspi-
cious, requiring further assessment or follow-up.17

CAD in pulmonary nodule assessment with CT has been utilised 
in radiology departments sine as early as 2002.19 Traditional 
means of CAD have a low threshold for specificity, resulting 
in a considerable quantity of false positives requiring manual 
rejection, with some systems citing a false positive rate of up 
to 25.4 per scan.20 Although CAD has been proven to improve 
reporting efficiency, its high dependence on image processing 
and false-positives remains a crucial flaw.12,17

Convolutional neural network
The application of CAD is an example of carefully crafted 
task-specific engineering, with a well-designed feature-set, and 
considerable human skill and time employed to teach the system 
how to interpret various features of a nodule, and when to flag it 
as suspicious.17–19,21

Recent advances in computer power and graphics processing 
have, however, allowed for a method of a computational 

modelling known as CNN, which is a form of neural network 
that exclusively processes multiple array data such as images.9

Unlike bespoke CAD systems, CNNs can self-determine previ-
ously unknown features, maximising classification with limited 
direct supervision.

Based on a hierarchical structure of analysis and retrospective 
adjustment, its primary advantage is in its ability to learn from 
abundant sources of verified data, differing from the funda-
mental processes of CAD.13

A CNN is purpose-built to compare and assess images portion 
by portion. Once provided an input (an image), the CNN will 
apply multiple feature-based convolution filters to the matrix, 
resulting in a set of filtered images otherwise known as feature 
maps. This is the first layer, known as the “convolution layer” 
(Figure 1).

Once the set of filtered images is created, they are processed 
through the second layer, known as “pooling”, where they are 
downsized to a smaller matrix. An advantage of pooling is its 
ability to preserve important information via maintenance of the 
maximum pixel value from each filtered set. During the convolu-
tion and pooling processes, pixels may have negative values. The 
additional “rectified linear unit” layer ensures all negative values 
are set to zero, maintaining a mathematically sound matrix to 
analyse.22,23

The final results of the convolution feed into a “fully connected 
layer” that presents each separate filtered image as a “vote”. Each 
vote has a “weight” in determining the category of an image. 
Before a CNN can detect nodules in practice; it is presented 
with a large number of input images where the answer is already 
known, allowing it to learn, via backpropagation. Each time the 
CNN makes an error, it will self-adjust, assigning higher or lower 
weights to the “vote” of each feature pixel in the process that feeds 
into the fully connected layer.24 Each CNN must experience this 
period of adjustment, known as the “training phase”.23 This is, of 
course, easier said than done, as it is no small feat to establish an 
extensive image database with genuinely accurate diagnoses for a 
CNN to learn. However, the advent of lung cancer screening has 
consequently provided researchers with a substantial amount of 

Figure 1. Typical steps of a simple CNN depicting (a) segmentation of the region of interest (b) convoluted maps and pooling 
of feature extraction (c) the various layers of the fully-connected layer (d) prediction based on a predetermined variable. CNN, 
convolutional neural network.
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validated data, much of which has been used to train CNNs in 
the learning phase of pulmonary nodule detection.

Training a CNN is known as supervised learning, a process that 
has succeeded in achieving accurate large-scale photographic 
image classification.23

The recent success of a CNN in photographic image classifica-
tion9 has lead researchers to explore its viability as a diagnostic 
tool to detect and characterise pulmonary nodules on CT images.

CNN methods
Each paper featuring the use of CNNs as a tool for detecting and 
evaluating pulmonary nodules has employed a different method-
ology to train, assess, and validate data sets. The architecture of a 
CNN is dependent on the size of the input image, often referred 
to as the region of interest (ROI). The ROI must be pre-deter-
mined and all images resized to fit that value before beginning 
the study. Factors that differ from study to study include the 
number of convolution layers in the CNN, differences in CNN 
architecture, the layer depth, and testing methods. These are 
summarised in Table 1.

Lung image database consortium image collection
The Lung Image Database Consortium (LIDC) Image Collec-
tion is an open source globally available resource of 1018 chest 
CTs, collected during lung cancer screening in the USA. The 
purpose of the database is to provide a web-accessible resource 
of a format suitable to aid and test the development of CAD of 
pulmonary nodules.

Each image on the database has undergone a two-phased blinded 
then unblinded process conducted by four experienced consul-
tant thoracic radiologists.

For each nodule, information regarding how the diagnosis was 
made is provided, ranging from unknown diagnosis, review of 
radiological appearance over two years, biopsy, surgical resec-
tion, to the progression or response. Where possible, diagnosis 
at both the patient level and the nodule level was recorded and 
included in the database.28

Each nodule that measured 3 mm or more in diameter 
included freehand annotations on each CT slice, including a 

subjective rating on a 5 to 6 point scale regarding the calcifica-
tion, internal structure, population, margin sharpness, texture, 
and spiculation.28

This wealth of validated annotated data is the foundation of the 
majority of the literature reviewed regarding supervised training 
of a CNN to detect pulmonary nodules.

Current literature
Throughout the literature evaluated, a primary motive remained 
evident: to achieve a sensitive yet accurate CNN that can detect 
and classify pulmonary nodules on chest CT scans to a similar 
level to that of the expert radiologist results in the LIDC.12,13,25–27

The results of the individual CNN papers in comparison to the 
current state-of-the-art CAD can be observed in Table 2.

Simplified, assessed the sensitivity and accuracy of the compu-
tational models on the LIDC data  set, segmenting ROIs into 
training, validation and testing portions. Because the LIDC is an 
already validated source of data, measuring the effectiveness of 
a CNN is somewhat more straightforward.23,28 The method by 
which these data were inputted, scaled and measured demon-
strate a high degree of variability throughout the research, with 
some studies focusing solely on accurate nodule detection, 
and others nodule detection in conjunction with malignancy 
classification.

A notable observation seen throughout the literature was the 
inherent difficulty in comparing different studies due to the differ-
ences in algorithms and input data style. Although most studies 
drew from the same image database (LIDC), each study utilised 
varying amounts of the data in different ways. For example, a 
study by Li et al produced promising results. However, when 
attempting to compare their research with other methods it was 
found similar studies used a comparatively smaller portion of the 
data for training and validation, and hence comparison would be 
inaccurate.12

In contrast, other research yielded superficially less accurate 
results. However, a detailed examination of their methodology 
reveals that the manner in which they tested their algorithm was 
significantly more stringent, not only exploring the detection of 
pulmonary nodules but accurate characterisation as well.30

Table 1. Summary of different CNN architecture used in the current literature12,13,25–27

Study Region of interest size Convolution layers Testing method
Li et al12 32 * 32 pixels 2 10-fold cross-validation test and a data set divided 

into both training data and testing data

Hussein et al27 0.5 * 0.5 mm 5 + Gaussian process 
regression

10-fold cross-validation test and a data set divided 
into both training data and testing data

Cheng et al26 28 * 28 pixels 2 10-fold cross-validation test

Gruetzemacher and Gupta25 36 * 36 pixels 3–6 Cross-validation test

Nibali et al13 64 * 64 pixels 3-column network that is 
“fully convolutional.”

Modified k-fold cross-validation

CNN, convolutional neural networks.
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The overall accuracy in detection and classification of pulmo-
nary nodules on CT using a CNN was comparable and in most 
cases superior to the traditional methods of CAD used in lung 
screening today. Most notable is the reduction of false-positives, 
a factor that has the potential to improve radiologists’ reporting 
workflow by decreasing the volume of examinations that require 
detailed analysis and ultimately rejection.26

An advantage of a CNN over CAD is its ability to “learn from 
data.22–24 When provided with validated data, a CNN will 
undergo automated iterations to adjust individual weights within 
layers based on the parameters of the supervised learning. This 
review found that in all papers it was concluded that as itera-
tions increased, sensitivity initially increased considerably, i.e. 
during the learning phase, followed by a period of incremental 
improvements.11,13

The work of Gruetzemacher & Gupta observed that a CNN with 
three convolution layers possessed an absolute classification 
accuracy of 81.08%, compared to a CNN with five convolution 
layers which had a classification accuracy of 82.50%.25 However, 
when that same model possessed six convolution layers, the 
classification accuracy dropped to 81.50%, raising the point that 
although there has been a general move towards more compli-
cated architectures, merely adding additional layers does not 
necessarily impart an advantage.

While some articles explored the influence the number of layers 
had on learning, others investigated the effect of tailoring a 
CNN to address a particular element such as nodule shape or 
texture.

Discussion
This literature review found that using a CNN as a tool for image 
recognition and classification in medical imaging is a relatively 
new technology with most practical applications still in the 
proposed phase.

Given the burden lung cancer will have on society, a reliable 
detection system is needed to help address the rate of false-posi-
tives seen in the current lung screening literature.4,7,8

The current literature confirms that if trained correctly in the 
context of lung cancer screening, CNNs could play an active role 
in reducing radiology workload via a precise detection system, as 
well as potentially increasing diagnostic accuracy. However, the 
defining feature of neural networks is also its limitation. Neural 
networks require an extraordinary amount of validated data to 
aid in the supervised learning phase of implementation. It is not 
an entirely automated process and still requires expert human 
input to verify.9,22–24 The use of the LIDC as an initial training 
tool for CNN research is practical, given the volume of the cases 
prepared and authorised by a specialist. Nevertheless, this may 
pose a problem in the future, as a well-documented flaw of CNNs 
is a phenomenon known as overfitting, a result of undertraining 
where a CNN functions well within the control data (LIDC), 
however, is unable to replicate similar results in test data.31 These 
results could have significant implications due to the variability 
of anatomy and scan quality at individual centres.

Another notable shortcoming in using CNNs is the inability 
of an observer to reasonably determine how a system came 
to a conclusion without analysing hundreds of thousands of 
weighted vectors. Here lies a conundrum, as a CNN requires 
large amounts of accurate, validated data to train the original 
algorithm. If this does not occur, the result may be highly inac-
curate, but the reasons for this may be so complicated as to be 
practically imperceptible.23

The advantage that a CNN has over the traditional methods of 
CAD is in the design of the algorithm. CAD requires constant 
human input and engineering to ensure it functions at an 
acceptable level.19 In comparison, via the use of iterative self-
learning, a CNN can improve the overall detection rate of 
pulmonary nodules every time an output is flagged as incorrect. 

Table 2. Summary of CNN performance in accurately detecting pulmonary nodules compared to the industry leaders in 
CAD12,13,18,25–27,29

Study System used Database used Output value Results
Li et al12 CNN LIDC Nodule vs Non-nodule 87.1% sensitivity with a false-positive rate of 

4.622 per scan

Hussein et al27 TumorNet (CNN) LIDC Malignancy score 1–5 92.31% regression accuracy with a standard 
error of 1.59%

Cheng et al26 OverFeat (CNN) LIDC Benign vs malignant 90.8% ± 5.3 sensitivity

Gruetzemacher and 
Gupta25

CNN LIDC Benign vs malignant 78.2% sensitivity with a specificity of 86.13% 
and a classification accuracy of 82.10%

Nibali et al13 Modified residual network 
(CNN)

LIDC Malignancy probability 91.07% sensitivity with an 89.90% accuracy

Murphy et al29 Shape index and 
curvedness algorithm 
(CAD)

The Nelson Trial Nodule vs non-nodule 80% sensitivity with a false-positive of 4.2 
per case

Ye et al18 Shape-based detection 
(CAD)

A validated clinical 
data set

Nodule vs non-nodule 90.2% sensitivity with a false-positive of 8.2 
per case

CAD, computer-aided detection; CNN, convolutional neural networks; LIDC, Lung Image Database Consortium.
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