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Abstract

Background: 25-Hydroxyvitamin D [25(OH)D] is a marker of nutritional status; however,
chronic kidney disease (CKD) results in alterations in vitamin D metabolism, including the loss of
vitamin D-binding proteins and alterations in CYP27B1 and CYP24 enzymes that metabolize
25(0OH)D. This study was designed to determine the predictors of responsiveness to correction of
vitamin D deficiency with oral vitamin D, (ergocalciferol) in adults.

Methods: A retrospective study of 183 veterans with 25(OH)D level <30 ng/mL, who were
treated with 50,000 IU per week of vitamin Do, was performed. Logistic regression models were
developed to determine the factors predicting the response to treatment, defined as either the
change in serum 25(OH)D level/1000 1U of vitamin D, or the number of vitamin D, doses (50,000
IU per dose) administered.

Results: The mean age of the patients was 63 + 12 years. About 87% were men and 51%
diabetic, and 29% had an estimated glomerular filtration rate of <60 mL/min/1.73 m2. The average
number of vitamin D, doses was 10.91 + 5.95; the average increase in 25(OH)D level was 18

+ 10.80 ng/mL. 25(0OH) D levels remained <30 ng/mL in 61 patients after treatment. A low
estimated glomerular filtration rate and the presence of diabetes mellitus were significant
independent predictors for inadequate response to vita-min D5 treatment in logistic regression
models. Patients with CKD required greater amounts of vitamin D, to achieve similar increases in
25(0OH)D levels, versus non-CKD patients.

Conclusions: The presence of CKD and diabetes mellitus is associated with resistance to
correction of 25(0OH)D deficiency with vitamin D5 therapy. The underlying mechanism needs to
be evaluated in prospective studies.

For personal use only. No other uses without permission.

Correspondence: Barry M. Wall, MD, Veterans Affairs Medical Center, 10<30 Jefferson Avenue, Memphis, TN 38104
(Barry.Wall@va.gov).

Presented in abstract form: “Evidence of Disordered Vitamin D Metabolism in Chronic Kidney Disease,” J Investig Med
2011;59:459A.

The authors have no financial or other conflicts of interest to disclose.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Alshayeb et al. Page 2

Keywords
Vitamin D deficiency; Ergocalciferol; Chronic kidney disease; Vitamin D,; Resistance

Native vitamin D is a secosteroid that is available in the diet from either animal sources as
cholecalciferol (vitamin D3) or plants, as ergocalciferol (vitamin D).} With ultraviolet light
exposure, 7-dehydrocholesterol is endogenously converted in the skin to vitamin D3.2
Vitamin Ds is then hydroxylated in the liver by 25-hydroxylase to 25-hydroxyvitamin D
[25(0OH)D],! that subsequently is converted to 1,25-dihydroxyvitamin D, [1,25(OH),D] by
la-hydroxylase in the kidneys.3# This step is upregulated by parathyroid hormone (PTH)
and downregulated by phosphate and fibroblast growth factor-23 (FGF23).% 25(0OH) D and
1,25(0OH),D are metabolized by 24-hydroxylase to inactive metabolites, a step that is
upregulated by FGF23 and downregulated by PTH.

Measurement of the serum level of 25(OH)D is considered to be the best biochemical index
of vitamin D nutritional stores.8 Vitamin D deficiency is typically defined as a level <30
ng/mL.7 25(0OH)D deficiency is a common problem in the general population, with a
prevalence of 36% to 57%.8 Low circulating concentrations of 25(OH)D is even more
prevalent in patients with chronic kidney disease (CKD), with a prevalence of 50% to 86%.°
Factors contributing to reduced levels of 25(OH)D in CKD include associated chronic
ilinesses, inadequate nutrition and lack of adequate sun exposure, similar to the general
population. In addition, patients with CKD have more complex abnormalities of vitamin D
metabolism that may contribute to reductions in 25(OH)D level that do not represent a true
vitamin D deficiency. In this regard, patients with CKD may have nephrotic-range
proteinuria that is associated with the loss of vitamin D-binding proteins (VDBPSs) with
subsequent 25(OH)D deficiency and resistance to vitamin D replacement therapy.10 In
addition, elevated levels of FGF23 act as a vitamin D counterregulatory hormone by
decreasing 1,25(0OH),D production through the downregulation of 1-a hydroxylase
(encoded by CYP27B1) and the upregulation of 24-hydroxylase (encoded by CYP24).11.12
FGF23-mediated increments in CYP24 may also lead to reduced 25(OH)D levels and
resistance to vitamin D replacement therapy by increasing the catabolism of 25(OH)D. This
study was designed to evaluate the predictors of resistance to vitamin D, (ergocalciferol)
replacement therapy in a cohort of vitamin D-deficient patients who had a wide range of
underlying kidney function, including patients with both CKD and normal kidney function.

METHODS
Study Population

This is a retrospective study of veterans diagnosed with vitamin D deficiency [serum
25(OH)D level <30 ng/mL], between April 2009 and July 2010, who received vitamin D
supplementation with vitamin D, (ergocalciferol). The study was approved by the Veterans
Affairs Medical Center Institutional Review Board (Memphis, TN). The inclusion criteria
were as follows: (1) men and women over the age of 18 years, (2) serum 25(OH)D levels
<30 ng/mL and (3) patients who received vitamin D, replacement therapy. The exclusion
criteria were as follows: (1) an estimated glomerular filtration rate (eGFR) of <15 mL/min/
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1.73 m? and chronic dialysis; (2) cirrhosis, sarcoidosis, lymphoma, malabsorption
syndrome, solid organ transplant or hyperparathyroidism; and (3) the chronic use of
medications known to alter vitamin D metabolism, including rifampin, corticosteroids,
antiepileptics, phosphate binders, active forms of vitamin D and calcimimetics. Initially, 598
patients with vitamin D deficiency were identified. Of these, 183 patients were included in
the final analysis (Figure 1). The following information was obtained from the medical
records: demographic data (age, sex and race), clinical characteristics (body weight, height,
presence or absence of CKD, hypertension and diabetes mellitus [DM]), and the number of
vitamin D, doses. Treatment with vitamin D, was confirmed by reviewing the pharmacy
records for prescribing and releasing the medication to the patients. All patients received
weekly doses of 50,000 1U of vitamin D,. The patient’s primary care provider determined
the total number of vitamin D, doses. Baseline laboratory data included the following:
concentrations of serum creatinine, albumin, calcium, and 25 (OH)D, and urinary protein
excretion. Serum 25(OH)D level was measured at baseline and at the end of the vitamin D,
treatment. Urinary protein excretion was measured as a ratio of spot urine protein-creatinine
(UPC) ratio or as spot urine albumin-creatinine ratio (ACR). UPC ratios were converted to
urine ACR by the following equation: ACR = UPC(1.054) x0,596.13 All data used in the
study were collected as part of usual patient care.

Assays and Calculations

Response to vitamin D, treatment was assessed as (1) the ratio of change in serum 25(0OH)D
level and the total amount of vitamin D5 received [final serum 25(OH)D concentration —
baseline 25(OH)D concentration/1000 U ergocalciferol], and (2) the total number of
vitamin D, doses (50,000 U per dose) received by each patient. Serum 25 (OH)D levels
were measured by immunochemiluminometric assay (ICMA) using the DiaSorin (Stillwater,
MN) Liaison instrument in all samples, serum albumin levels by bromocresol green assay
and serum creatinine levels by isotope dilution mass spectrometry traceable Jaffe method
from Roche (Stillwater, MN). The eGFR was calculated according to the 4-variable
Modified Diet in Renal Disease formula.1* CKD was defined as an eGFR <60 mL/min/
1.73m2. Body mass index (BMI) was calculated by person’s weight in kilograms divided by
his or her height in square meters.

Statistical Analysis

Continuous variables were presented as means and standard deviations, and categorical
variables as percentages, unless otherwise specified. In this cohort, the median number of
vitamin D, doses was 10, which was used as the cutoff value between the high (>10) and
low (<10) number of vitamin D, doses. The median number of vitamin D, dose was used as
the dependent variable in the first logistic regression model. The median value of the ratio of
change in serum 25(OH)D level/1000 IU ergocalciferol dose was 0.03. This value was used
as the cutoff value between the high (=0.03) and low (<0.03) ratio, and was used as the
dependent variable in the second logistic regression analysis. Impaired response (resistance)
to vitamin D, treatment was defined as the requirement for higher number of vitamin D,
dosages (>10 doses) or by a low ratio (<0.03) of change in 25(OH)D/1000 IU of vitamin D,.
The following predictor variables were used for both logistic regression analyses: age; sex;
race; BMI; DM; season during which 25(OH)D levels were obtained; baseline
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concentrations of albumin, calcium and 25(OH)D; and eGFR. A season variable (summer,
winter) was created based on the timing of blood collection for baseline 25(0OH)D, as sun
exposure can affect previtamin D synthesis in human skin. The estimated odds ratio along
with the corresponding 95% confidence intervals and Pvalues are reported for all regression
covariates. Only variables with a Pvalue <0.10 were included in the multivariable stepwise
logistic regression analysis. The final multivariable models were formally assessed for the
presence of multicollinearity among the explanatory variables by using the variance inflation
factor.1® Pretreatment and posttreatment laboratory test results were compared using paired ¢
test and Wilcoxon signed-rank test. All tests were 2-sided, and a P value <0.05 was
considered significant, unless otherwise stated. Statistical analysis was conducted using SAS
version 9.1 (SAS Institute Inc, Cary, NC).

Baseline Characteristics

Characteristics of the study cohort (n = 183) are depicted in Table 1. A total of 159 (87%)
were men, 94 (48%) were African American, 93 (51%) were diabetic, 53 (29%) had an
eGFR <60 mL/min/1.73 m2, 39 (21%) with stage 3 CKD and 14 (8%) with stage 4 CKD.
The severity of serum 25(OH)D deficiency varied, with severe reductions (< 5 ng/mL) in 2
(1%), moderate reductions (5-15 ng/mL) in 79 (43%) and mild reductions (16-30 ng/mL) in
102 (56%) patients.

Effects of Ergocalciferol Treatment

The average number of ergocalciferol doses administered was 10.91 + 5.95, and the average
duration of therapy was 2.5 months. Changes in concentrations of serum 25(OH)D, calcium,
PTH and phosphorous levels are shown in Figure 2 and Table 2. The average increase in
serum 25(0OH)D level after vitamin D, supplementation was 18.0 + 10.8 ng/mL. In 61
patients (33%), serum 25(OH)D level remained below normal (,<30 ng/mL) after treatment.
Baseline serum 25(0OH)D concentrations correlated significantly with the female sex (r =
0.18, P=0.01) and African American race (r = 0.25, £=0.0007), but not with age, DM,
baseline eGFR, winter season or the number of prescribed vitamin D, dosages. Baseline
eGFR inversely correlated with the number of vitamin D, doses (r = 20.21, A= 0.003) and
with patient’s age (r = 0.44, P=0.0001), and positively correlated with the female sex (r =
0.17, £=0.02) and serum albumin level (r = 0.16, 2= 0.04). Despite similar baseline
25(0OH)D concentrations, patients with CKD required significantly greater amounts of
vitamin D, (640 + 296 versus 506 * 291 thousand units, 25 0.0006) to achieve similar
increases in serum 25(0OH)D levels, as compared with the non-CKD patients.

Resistance to Ergocalciferol Treatment

The change in serum 25(0OH)D level after the ergocalciferol treatment correlated
significantly with the eGFR (Figure 3). Univariate logistic regression analysis of the change
in serum 25 (OH)D level/1000 1U of vitamin D, showed statistically significant association
of female sex, baseline eGFR, baseline serum 25(OH)D level and the presence of DM (Table
3). These 4 variables and the interaction terms between DM and baseline eGFR and baseline
25(0OH)D were used to construct a multivariable model for the response to vitamin Dy
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supplementation. In the final multivariable model, lower baseline eGFR, higher baseline
serum 25(0OH)D level and the presence of DM without the interaction terms significantly
predicted inadequate response to vitamin D, supplementation (Table 3).

The response to vitamin D, supplementation in relation to the number of ergocalciferol
doses administered was evaluated separately. In univariate logistic regression analysis, the
presence of DM, low baseline eGFR and white race significantly predicted >10 weekly
doses of ergocalciferol (Table 4). Lower baseline eGFR and the presence of DM were found
to be significant predictors of a higher number of vitamin D, doses in the final multivariable
model (Table 4). To help visualize analysis results, conditional effect plot for outcome
prediction of high vitamin D, dose was drawn on the basis of the fitted final logistic
regression model (Figure 4). It plotted the estimated probability of having a high vitamin D,
dose (>10) against a chosen continuous covariate, eGFR, with the values of the other
discrete and continuous covariates held in constant. The probabilities of resistance increased
with worsening eGFR. The plot also showed that for a given value of eGFR, probabilities of
resistance to vitamin D, supplementation were higher in diabetic patients, as compared with
nondiabetic patients.

Urinary ACR was available in a subset of patients (n = 133). Thirteen patients had an ACR
of >0.6 g/g and 3 patients had nephrotic-range proteinuria (ACR >.2.2 g/g). Urinary ACR
failed to contribute to either of the final multivariable logistic regression models for the
response to vitamin D, supplementation.

After vitamin D, supplementation, serum 25(OH)D level decreased in 9 patients. The eGFR
was =60 mL/min/1.73 m2 in 6 of the 9 patients. A sensitivity analysis performed after
excluding these patients showed the same predictors of inadequate response to vitamin D
therapy.

DISCUSSION

In the current study, we evaluated the effectiveness of weekly vitamin D, treatment to raise
serum 25(0OH)D levels in a cohort of vitamin D-deficient patients that included patients with
both normal and impaired renal function (CKD stages 3 and 4). We found that DM and CKD
were significant independent predictors of resistance to vitamin D replacement therapy.
Response to vitamin D, treatment showed progressive worsening with decreasing eGFR,
and the effect was more pronounced in diabetic than in nondiabetic patients. The association
of resistance to vitamin D supplementation with CKD and DM was independent of age, sex,
ethnicity, seasonal variation, BMI and hypertension.

Despite similar baseline 25(OH)D levels, patients with CKD, as compared with non-CKD
patients, required significantly greater amounts of ergocalciferol (640 + 296 versus 506

+ 291 thousand units, 2= 0.0006) to achieve similar increments in serum 25(OH)D levels.
In the current study, the change in serum 25(OH)D level correlated significantly with eGFR
(r=10.25, =0.0004), and baseline eGFR was inversely correlated with the number of
vitamin D, doses (r = 20.21, £=0.003). Moreover, in this cohort, the presence of low
baseline eGFR and DM was associated with higher probabilities of resistance to vitamin D
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therapy and for the requirement of high doses of vitamin D, to achieve normal vitamin D
levels (Figure 4).

To our knowledge this is the first study to identify the contribution of CKD and DM in a
general group of patients with vitamin D deficiency. Previous studies that investigated
possible resistance to treatment of 25(OH)D deficiency with vitamin Do, as evidenced by the
difficulty in achieving target 25(OH)D levels, only included patients with CKD.16-18 The
response was not compared to a group with normal renal function. Al-Aly et all’ treated
vitamin D-deficient CKD patients with a vita-min D, regimen according to the National
Kidney Foundation Kidney Disease Outcomes Quality Initiative-recommended protocol (15
doses).1® After 6 months of follow-up, serum 25(OH) D level increased by an average of
16.6 ng/mL to 27.2 ng/mL. However, the increase in 25(OH)D level was <5 ng/mL in 45%
of the patients. In another study by Zisman et al, 16 vitamin D-deficient CKD stage 3 and 4
patients were treated according to the National Kidney Foundation Kidney Disease
Outcomes Quality Initiative protocol. Serum 25(OH)D levels increased to a range of 31 to
35 ng/mL in 60% of patients. In contrast, 33% of patients in the current study had serum
25(0OH)D levels <30 ng/mL after treatment. This was influenced by the presence of renal
disease, in that 17% of the patients in the low eGFR group (eGFR <60 mL/min) and 8%
patients in the normal eGFR group (eGFR >60 mL/min) had <5% increase in serum
25(0H)D level (P=0.09). We observed a somewhat better response in patients with CKD in
the current study compared with the prior study, which may be related to the higher number
of vitamin D, doses, because 40% of the patients with CKD in the current study received
>15 vitamin D5 doses.

There is controversy as to whether vitamin D, is less potent and effective than vitamin D3 in
raising serum 25(OH) D levels in the general population and that vitamin D, may enhance
degradation of 25-hydroxyvitamin D3.29-22 The mechanism for these differences is not clear
but could be secondary to the lower affinity of vitamin D, to VDBPs to differences in
metabolism between vitamin D, and vitaminDs, and to a shorter shelf life of vitamin
D,.29To our knowledge, there have been no direct comparison studies of vita-min D,
(ergocalciferol) versus vitamin D3 (cholecalciferol) therapy for correction of vitamin D
deficiency in patients with CKD.

The mechanism underlying the resistance to vitamin D, in diabetics and CKD is not known.
Inadequate intake, hypoalbuminemia and albuminuria have been implicated as possible
reasons for low 25(OH)D levels in diabetic patients.23:24 There is no evidence that
gastrointestinal absorption of 25(OH)D is altered in patients with CKD or diabetes.2®
Vitamin D metabolites are transported in the blood bound to VDBPs (85%-88%) and
albumin (12%-15%), with very little circulating in the free form.3:5.10 Because the liver
produces VDBPs and albumin, and these proteins can be lost in the setting of nephrotic
syndrome, these conditions can result in low levels of the transport proteins.28:27 This results
in low total levels of vitamin D metabolites [25(OH)D and 1,25(0OH),D] without necessarily
changing the free circulating levels.10.27

Albuminuria in diabetics has been associated with higher urinary VDBP excretion, as
compared with the normal subjects,28 suggesting that higher requirements for vitamin D
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replacement therapy in albuminuric vitamin D-deficient CKD and diabetic patients may be
related to the loss of VDBPs. In the current study, however, proteinuria per se was not
associated with a diminished response to vitamin D replacement therapy in the subset of 133
of the 182 subjects in whom quantitative measurements for proteinuria were available. Lee
et al28 reported a significant association between resistance to vitamin D supplementation
and higher BMI. This study included a small number of patients (n 5 17) with an average
BMI of 25 kg/m? and the duration of cholecalciferol supplementation was also short.
Although DM is strongly associated with obesity, we did not find any significant association
between decreased response to ergocalciferol therapy and high BMI in the current study.

Other explanations for the increased vitamin D, requirements may be related to complex
derangements in vitamin D metabolism that occur in CKD, including PTH stimulation of
CYP27B1,11:2230 and FGF23 inhibition of CYP27B131-38 and stimulation of CYP24
expression.31-37.39 |n an adenine-induced animal model of CKD, mice with CKD had
elevated FGF23 and PTH levels and decreased 1,25(0OH),D levels with a 5-fold increase in
the messenger RNA expression of CYP24 and a 2-fold increase in the messenger RNA
expression of CYP27B1, as compared with control animals.38 The effects of FGF23 on
CYP27B1/CYP24 in CKD, with subsequent enhanced degradation of 25 (OH)D by the
CYP24 pathway, could potentially explain the decreased responsiveness to vitamin D
replacement associated with low eGFR. In advanced CKD, extrarenal CYP24 may play a
role in the degradation of 25(0OH)D.24 At present, we have no data on either CYP24 activity
in the kidney or catabolism of 25 (OH)D in diabetic patients with CKD. CYP24 expression
in peripheral blood monocytes, however, was reported to be similar among patients with
type 1 DM and healthy individuals.® Further prospective studies are needed to evaluate
whether increased vita-min D catabolism is associated with resistance to treatment with
vitamin D therapy in CKD.

Limitations of the current study include the observational and cross-sectional nature of the
study. Most patients included in this study were men and >60 years of age, which may limit
generalizability. Measurements of quantitative proteinuria were available only in a subset of
patients (133 of the 183 patients) and direct measurements of 1,25(OH),D, intact PTH and
FGF23 were not available. Vitamin D, dosing was standardized (50,000 1U per week) in the
study with pharmacy documentation that the medication was dispensed to the patient.
Adherence to the medication, however, could not be further verified because of the
retrospective study design. The total duration of ergocalciferol therapy was determined by
the patients’ primary care providers and, therefore, was not standardized.

This retrospective cohort study provides evidence for resistance to vitamin D, replacement
therapy in vitamin D-deficient patients with CKD and DM. This may reflect underlying
altered metabolism of vitamin D associated with these conditions. Prospective studies of
vitamin D metabolism in vitamin D-deficient patients treated with nutritional vitamin D
supplements are needed to define the underlying altered mechanism.
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Total number of patients evaluated for
serum 25(OH)D deficiency (n = 598)

Patients who did not meet inclusion criteria:

.| Serum 25(OH)D > 30 ng/ml (n = 175)

"| Did not receive ergocalciferol supplementation (n = 82)
Received cholecalciferol supplementation (n = 4)

A 4
Patients who met inclusion criteria (n=337)

Patients excluded:

Missing serum creatinine value (n = 12)
Patients with eGFR < 15 ml/min (n = 11)
Patients with co-morbid conditions or
proscribed medications (n = 131)

v

A 4

Final study cohort (n = 183)

FIGURE 1.
Flow diagram for derivation of study cohort. 25(OH)D, 25-hydroxyvitaminD; eGFR,

estimated glomerular filtration rate.
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FIGURE 2.
Relationship between serum 25(OH)D and serum creatinine level showing pre- (@) and post

(&) treatment 25(0OH) D level. 25(0OH)D, 25-hydroxyvitaminD.
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FIGURE 3.

Relationship between actual change in serum 25 (OH)D level and estimated glomerular
filtration rate. 25(OH)D, 25-hydroxyvitaminD.
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Conditional effect plot showing the relationship between the estimated probability of
inadequate response to ergocalciferol treatment (ergocalciferol dose >10) and estimated
glomerular filtration rate in diabetic and non-diabetic patients.
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