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Background. Previous reviews have generally reported cognitive//behavioral improvements after cognitively oriented treatments
(COTs) in persons with MCIL. However, comparatively little is known about the neural mechanisms associated with such
cognitive improvement. Objective. The primary aim of the current review was to examine neurophysiological changes measured
by functional magnetic resonance imaging (fMRI) and possible cognitive changes following COTs in those with MCI. Methods.
An extensive literature search was conducted up to August 2018. Inclusion criteria were (1) studies that evaluated the effects of
the COTs in patients with amnestic single- or multiple-domain MCI using fMRI, (2) the MCI patient sample having met
Petersen’s or Jack/Bond’s criteria, (3) randomized and/or controlled trials, (4) fMRI and cognitive assessments completed pre-
and post-intervention, and (5) articles available in English. Results. Amongst the 26 articles found, 7 studies were included
according to the above inclusion criteria. A total of 3 studies applied rehearsal-based strategies as the primary intervention, all of
which used computerized cognitive training. Four studies used fMRI to investigate the neurophysiologic and cognitive changes
associated with memory strategy training. The majority of the studies included in this review showed evidence of improved
objective cognitive performance associated with COTs, even in tasks similar to everyday life activities. In addition, there were
significant changes in brain activation associated with interventions, in both typical and atypical brain areas and networks
related to memory. Conclusions. Although additional studies are needed given the small sample size, these initial findings
suggest that cognitive improvement after COTs is generally associated with both compensatory (i.e., engaging alternative brain
regions or networks not “typically” engaged) and restorative (i.e., reengaging the “typical” brain regions or networks) mechanisms.

1. Introduction

The recent growth of interest in nonpharmacologic cogni-
tively oriented treatments (COTs), particularly cognitive
training, in those with mild cognitive impairment (MCI)
has been fueled by a combination of data showing limited
benefits of existing pharmacologic agents [1, 2] and recogni-
tion that cognitive and lifestyle factors may be protective

against disease-related decline [3]. While several reviews
have examined the efficacy of COTs in those with MCI and
generally found the results to be positive [4-8], less is known
about the neural mechanisms associated with such cognitive
improvement. Thus, the primary aim of the current review
was to examine the neurophysiological and cognitive changes,
as measured using functional magnetic resonance imaging
(fMRI), following COTs in those with MCI.
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A critical first step in understanding such neurophysio-
logical changes is to recognize the heterogeneity that exists
in both treatment and fMRI methods. In our previous meth-
odological COT review [9], we classified commonly used
approaches based on the presumed cognitive “mechanism
of action.” Specifically, we identified a group of approaches
that relied primarily on the rehearsal of information (sub-
tracting cues, spaced retrieval, and computerized cognitive
training), those that relied on the use of external compensa-
tory methods (e.g., notebooks, calendars), and those that
relied on internal compensatory methods (i.e., mnemonic
strategies). Our previous research supports such distinctions
as, for example, we revealed that mnemonic strategy training
(MST) enhanced memory for object location associations
significantly more than a tightly matched repeated exposure
active control group both 2 days after training and at a 1-
month follow-up [10]. MST requires the user to actively
hold and manipulate to-be-learned information, processes
that engage cognitive control mechanisms such as working
memory. As such, we would expect to see increased neuro-
physiologic functioning in lateral frontoparietal regions that
mediate such cognitive control processes. In contrast, fMRI
studies of repeated exposure have been shown to result in a
repetition suppression effect [11], which is characterized as
reduced blood oxygen level-dependent (BOLD) signal and
typically interpreted as evidence of enhanced processing
efficiency. Thus, rehearsal-based COTs may result in funda-
mentally different patterns of neurophysiologic change
relative to MST. Therefore, we maintain that the type of
COT is critical to consider when evaluating outcomes
(especially neurophysiological).

The second important source of heterogeneity is the type
of fMRI used to evaluate COT effects. While task-based fMRI
paradigms were the standard for the first decades of fMRI
research, recent years have seen a shift toward methods that
use “resting-state” fMRI (rs-fMRI) to evaluate within- and
between-network connectivity. While task-based paradigms
identify patterns of BOLD signal directly arising from task
performance, rs-fMRI relies on inherent low-frequency oscil-
lations and is dependent on correlations with cognitive/
behavioral performance. However, task-based paradigms
differ markedly across studies and may yield different
patterns of activation due to nothing more than the nature
of the stimuli used (e.g., verbal vs. visuospatial). In con-
trast, rs-fMRI can be easily implemented and standardized
across sessions and locations but, again, analytic methods
vary widely. These relative strengths and weaknesses are
critical to consider when examining the effects of COTs
and reinforce the need for a more nuanced review of the
available literature.

With the above noted caveats in mind, the current review
specifically addressed the following questions: (1) Which
types of COT have been applied to MCI patients? (2) Can
COT effects in persons with MCI be generalized/transferred
to objective cognitive measurements? (3) Do the observed
changes represent evidence of compensation (i.e., engaging
alternative brain regions or networks not “typically” engaged)
and/or restoration (i.e., reengaging the “typical” brain regions
or networks)?
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2. Methods

2.1. Review Strategy. Studies focusing on the main objective
of this systematic review published up to August 2018 were
included. We selected only those studies that fulfilled the fol-
lowing criteria: (1) studies that primarily evaluated the effects
of the cognitive training in patients with amnestic single- or
multiple-domain MCI using fMRI, (2) the MCI patient sam-
ple having met Petersen or Albert’s criteria (single cognitive
test impaired per domain, >1.5 SD below expectations) [12]
or Jack/Bondi’s criteria (two tests impaired per domain, >1
SD below norms) [13], (3) controlled trials and case series,
(4) fMRI and cognitive assessments completed pre- and
post-intervention, and (5) articles available in English.

Databases included were PubMed, Medline, and Google
Scholar. The search terms were specified to be found in the
title of the studies and were (1) mild cognitive impairment,
(2) cognitive training, (3) attention training, (4) executive
training, (5) memory training, (6) and fMRIL. The search
terms combinations in the database were (1)+(6)+(2),
(1)+(6) +(3), (1) + (6) + (4), and (1) +(6) + (5).

A summary of the study selection is shown in Figure 1,
and the results of the studies included in the current review
are shown in Table 1. From the 26 articles found, 10 were
excluded due to duplication. Amongst the remained 19
articles, we excluded 5 as they investigated multidomain
interventions such as physical exercises or meditation in
addition to cognitive training, 2 that used volumetric mea-
sures only, 4 using other types of neuroimaging (i.e., not
fMRI), and 1 article that grouped patients with Alzheimer’s
type dementia and those with MCI - since this precluded a
clear understanding of the effects in MCI. Thus, a total of 7
studies met the inclusion criteria and they will be discussed
according to the questions elaborated for the present review.

3. Results

3.1. Which Types of COT Have Been Applied to MCI Patients?
Key details for the selected COT studies are presented in
Table 1.

3.1.1. Rehearsal-Based Approaches. A total of 3 studies
applied rehearsal-based strategies as the primary interven-
tion, all of which used computerized cognitive training.
One randomized controlled trial [14] investigated the effects
of computerized cognitive training on memory ability in 12
patients with MCI (6 experimental and 6 active control)
using a computer-based program developed by Posit Science
Corporation (San Francisco, CA). The program included 7
exercises developed to improve processing speed and accu-
racy in auditory processing, such as (a) determine whether
2 sounds were moving upward or downward, (b) identify a
particular syllable while it interrupted a similar sounding syl-
lable, (c) differentiate 2 close sounds, (d) group sounds on a
spatial framework, (e) identify 2 similar sounding words,
(e) follow instructions with increasing difficulty, and (f) iden-
tify the picture that is related to a sentence. The experimental
training program was performed for 100 minutes per day, 5
days per week for 24 sessions (2 months on average). The
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Articles identified of brain changes after cognitive training (n = 26)

l

Articles identified after excluding duplications (n = 19)

Articles excluded (n = 12)

(i) Multimodal training studies with FMRI
[14, 15, 16, 17, 18]
(ii) Effect of cognitive training on volumetric
measures of the brain [10, 19]
(iii) Effect of cognitive training on brain activations

measured by other brain image parameters
[20, 21, 22, 23]

(iv) Included Alzheimer disease patients [24]

!

Articles included (n = 7)

(i) Cognitive training program
[25, 26, 27]
(ii) Memory training [28, 29, 31, 32]

FIGURE 1: Summary of the studies identified and included in the review.

control group underwent 3 computer-based tasks with simi-
lar intensity and duration to the experimental program: (a)
listening to audiobooks, playing a visuospatial computer
game (Myst), and reading newspaper. One differential
approach of this study was that the program was performed
at the participants’ homes on study-provided computers. In
addition, participants were contacted weekly to solve prob-
lems related to computer-program and other issues. This
home approach, on the one hand, allows for better adher-
ence. On the other hand, although the computer-program
tasks were highly demanding on speed and accuracy of audi-
tory verbal processing, it did not address memory abilities
per se, therefore making it more difficult to recommend it
as a memory training program.

Another study of 21 patients with MCI adopted the
vision-based speed-of-processing (VSOP) training from
the INSIGHT computerized program (Posit Science, San
Francisco, CA) with five training tasks: (1) eye for detail,
(2) peripheral challenge, (3) visual sweeps, (4) double deci-
sion, and (5) target tracker [15]. These tasks focus on speed
of processing and attention processes. Patients had to iden-
tify what object they saw or where they saw it on the screen.
The study included an active control condition involving
mental leisure activities (MLA) to control for computer and

online experience, such as crossword, Sudoku, and solitaire
games. Participants could choose any combination of these
games. Both groups were instructed to practice 1 hour per
day 4 days per week for 6 weeks in their homes. Although this
training program does not focus on memory strategies, the
patients benefited from the training in computerized working
memory and everyday life activities tasks. Whereas it is a
promising approach to offer home-based cognitive training,
it requires more sophisticated monitoring procedures.
Recently, 23 MCI patients underwent a computerized
cognitive training and a separate group of 14 MCI patients
underwent a regime of intense social engagement as a control
condition [16]. The computerized cognitive training engaged
participants in exercises with multiple cognitive operations
including retrieval from memory, management of interfer-
ence, inhibition, working memory, semantic processing,
and logical and abstract reasoning. A total of 20 sessions were
completed within a 35-day timeframe (5 sessions a week on
weekdays). For the control condition, patients maintained a
daily regime of intense social interactions including volun-
teering work, tour guiding, attending a club, and gardening,
according to their personal interests. The control condition
had similar duration as the experimental one but was not car-
ried out within a hospital setting as the experimental
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condition. Although computerized cognitive programs have
a number of advantages in clinical research including effi-
cient performance measuring and monitoring of time, as well
as type and precision of responses, they are perhaps more
susceptible to lower adherence and weaker generalization to
everyday tasks.

3.1.2. MST-Based Approaches. Four studies used fMRI to
investigate the neurophysiologic changes associated with
MST. In the first, Belleville et al. [17] trained 15 MCI patients
and 15 healthy controls to use MST during 6 weekly sessions
of 120min each in small groups (4 to 5 participants per
group). The main content of the sessions included psychoe-
ducational information regarding memory and ageing,
interactive mental imagery, the method of loci, face-name
associations, hierarchical organization, and semantic organi-
zation techniques. Although this approach has the advantage
to offer a short training regimen (6 sessions) and to directly
address memory encoding and retrieval processes, it has
some limitations in terms of demonstrating which particular
strategy contributed to the positive cognitive outcome since a
number of different strategies and types of stimuli were used
during the 6 sessions.

Hampstead et al. [18] investigated the effects of MST
using a face-name association fMRI task in 6 MCI
patients. Each participant completed five sessions within
two weeks as well as a 1-month behavior-only follow-up
[19]. Encoding-related fMRI was acquired pre- and post-
training. MST was performed during the three intervening
training sessions and required the participants to learn 15
novel face-name associations each session by (1) identify-
ing a salient facial feature, (2) remembering a verbally
based “reason” that linked the feature with the name - typ-
ically using alliteration, and (3) creating a mental image of
the previous two steps. On subsequent trials, participants
were required to recall, in order, the feature, the reason,
and then the name. For each association, patients were
required to spontaneously recall the name on 3 consecutive
trials, with a maximum of 10 trials to reach this criterion.
An innovative aspect of this study was the implementation
of a focused intervention strategy training procedure (face-
name association). Within a research investigation context,
it has the advantage to reduce confounding factors found in
multiple-domain cognitive training with a number of differ-
ent strategies. Although the number of sessions was reduced
(three sessions) due to the study’s mechanistic focus, this
training protocol can potentially be used in a clinical context
together with other strategies to increase the benefits of cog-
nitive training interventions.

In a subsequent single blind randomized controlled
study, Hampstead et al. [10] used the same study design
and a 3-step MST approach to enhance learning and memory
of object location associations (OLAs). A total of 18 patients
with MCI and 16 cognitively intact (“healthy”) older adults
(HOA) were randomized to either MST or a matched
exposure active control group. Participants receiving MST
followed the same procedures as above (i.e., feature-reason-
image) and were given 9 trials with each of the 45 trained
stimuli — the goal of which was to reinforce the use of MST

techniques. The exposure control group received the exact
same number of training trials and was given corrective feed-
back after each trial; thus, the only difference between the
groups was the addition of mnemonic strategies. In a sepa-
rate report, the investigators defined the hippocampal region
of interest and performed small-volume correction to dem-
onstrate that MCI patients showed the expected pattern of
hippocampal hypoactivation at baseline relative to HOA in
this OLA paradigm [20].

Balardin et al. [21] investigated the effects of a single
session of MST using a word-list paradigm in 18 MCI
patients and 17 healthy controls (HC). The MST approach
taught participants to organize the words into semantically
based categories during encoding and afterwards to retrieve
them according to their category. All participants under-
went one-day session until they were able to apply the cat-
egorization strategy to at least three different word lists.
This training approach focused on only one type of strategy
which promotes a more effective understanding of the
behavior and brain mechanisms related to this training pro-
cedure. Since it involves one session, this training strategy
can be included in a more extended clinical cognitive train-
ing program.

3.2. Can Cognitive Training Effects in Patients with
MCI Be Generalized/Transferred to Objective Cognitive
Measurements? The majority of the research studies included
in this review showed evidence of improved cognitive perfor-
mance associated with intervention. The intervention effects
on neuropsychological tests and cognitive tasks are shown in
Table 2. An exception was the De Marco et al. [16] study, in
which there were no significant differences between the
experimental and control conditions (p = 0.136). The authors
argued that this lack of significant difference was due to pos-
sible insufficient power and reduced exposure to the training
regimen (20 sessions in the period of 20 to 35 days, 5 sessions
a week, from Monday to Friday); however, this stands in con-
trast with the above note MST studies that found effects with
substantially fewer sessions. Another important factor is the
type of outcome measure used in clinical trials of cognitive
training (see [9] for a more thorough discussion of this
topic). The standardized neuropsychological instruments
may not be sufficiently sensitive to capture test-retest
changes. Previous studies have shown the importance of
including outcome measures with increased ecological valid-
ity and consistent with the target of the training, e.g., tasks of
face-name association, object location, or semantic organiza-
tion and processing [17, 18, 20, 21].

Other cognitive outcomes demonstrated the effects of
cognitive training involving multiple domains (e.g., speed-
processing and attention) on episodic memory tasks includ-
ing the RBANS (Repeatable Battery for the Assessment of
Neuropsychological Status; [14]) and working memory/exec-
utive function tasks such as the EXAMINER (Executive
Abilities: Measures and Instruments for Neurobehavioral
Evaluation and Research; [15]), a computerized test that
measures executive function domains including cognitive
control (set shifting and flanker tasks), verbal fluency (pho-
nemic and categorical fluency), and working memory (dot
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TaBLE 2: COT effects on neuropsychological tests.
Study Design Intervention conditions Sample Cognitive measures Cognitive ta.sk. results
after training
Auditory processing RBANS scores NS
Rosen et al. RCT training COT MCI CCI MCI . . ~0.027: Coher’
[14] double-blind Computer-based RBANS immediate memory ~ p=0. P 32 ens
activities COT MCI > CCI MCI =1
Word list recall MCI = HC p<0.05 7 =0.21
MCI<HC p<0.057*=0.16
Belleville CGT Mnemonic strategy COT HC COT MCI Word list Immediate recall L,
etal. [17] single-blind training MCI=HC p<0.001;7°=0.73
Performance on FMRI scan 2
I p<0.01,72=023
Post fMRI sS[‘aSn _I‘%Sognition task »=0.001
Hampstead Face name Association -
et al. [18] Case control strategy COT MCI'TS US TS >US p=0.002
Reaction time TS p=0.04
Object location Oijgdclé’)?ion Rec%ggliﬁm task, _ 0.026, pi2 = 0.155
Hampstead ~ RCT single Association COT HC COT MCI ) group > group
et al. [20] blind training Stimuli CCI HC CCI MCI TS-HC > MCI P <0.001, pr* =0.343
Exposition US-HC > MCI P <0.001, pr* =0.314
Word list free Recall HC > MCI p=0.001
MCI=HC p<0.001
i i SR>UR <0.001
Balardin CGT single Semantic encoding p
tal. [21] blind strategy COT HC CCI MCI p=0272
e training Semantic cluster HC = MCI
p<0.001
Mean number of clusters
=0.047
MCI < HC P
UFV-reaction time COT _ 2
MCI > CCI MCI =002 =0.26
Visual speed of ;
procels:)sin Working memory COT =001, 72 =028
] RCT single ¢ g MCI > CCI MCI
Lin et al. [15] . and attention training COT MCI CCI MCI ..
blind Computer-based Cognitive control COT —0.03 72 =021
puter-base MCI > CCI MCI p=00%m1 =0
activities
Verbal fluency NS
IADL completion time NS
De Marco RCT.smgle Cognitive training Social COT MCI CCI MCI CCRI NS
et al. [16] blind engagement

RCT: randomized controlled trial; CGT: controlled group trial; COT: cognitive oriented treatment; CCI: control condition intervention; MCI: mild
cognitive impairment; HC: healthy controls; TS: trained stimulus; US: untrained stimulus; SR: semantic related; UR: unrelated; UVEF: used field of view;

IADLs: instrumental activities of daily living; CCRI: cognitive change ratio index; p: p values; 7™

significant results.

counting and 1-back). Such far transfer findings are not well
understood, and it has been proposed that they represent
possible compensatory effects of the training [14, 15].
Overall, although the majority of the studies in this
review found evidence of improvement in objective cognitive
measures, there is still a lack of studies showing generaliza-
tion effects to everyday life activities. Hampstead et al. [18,
20] showed evidence of cognitive improvement after training
in tasks similar to everyday life (face-name association and
object location) which were related to the training procedure.
Lin et al. [15] found improvement after cognitive training on

% eta-squared; #*: partial eta-squared; NS: not

the Instrumental Activities of Daily Living task (IADL), an
objective measure of speed and accuracy on multiple instru-
mental activities of daily living. Future studies should include
more ecologically valid outcome measures to identify the
benefits of cognitive training in everyday function in persons
with MCL

3.3. Do the Observed Changes Represent Evidence of
Compensation (i.e., Engaging Alternative Brain Regions or
Networks Not “Typically” Engaged) and/or Restoration (i.e.,
Reengaging the “T'ypical” Brain Regions or Networks)? Up to
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the present time and to the best of our knowledge, only seven
randomized or controlled group fMRI studies have investi-
gated the brain regions or networks systems underlying the
effects of COTs in persons with MCI. In the last decade, there
has been a marked advance in the neuroimaging methods of
analyses from comparing the patterns of brain activation
through fMRI before and after cognitive intervention to
functional brain connectivity. The majority of the studies
included in this review showed significant changes in brain
activation associated with cognitive training, in typical and
atypical brain areas and networks related to memory, sugges-
tive of compensation. Some studies reported functional nor-
malization and possible restoration processes. Changes on
brain activation and connectivity related to cognitive inter-
vention reported by these studies are displayed in Table 3.

Rosen et al. [14] and Hampstead et al. [20] reported
restoration processes associated with hippocampal activity
after cognitive training. The primary cognitive outcome of
the latter study revealed that MST improved memory for
the trained stimuli significantly more than the matched-
exposure condition, regardless of diagnostic status, with
benefits persisting at 1 month. Region-of-interest analysis
revealed that MCI patients showed the expected pattern of
hippocampal hypoactivation at baseline relative to HOA
[20] whereas subsequent interaction analyses (i.e., post-
training vs. pre-training) revealed that MST partially restored
activation in the left hippocampus of MCI patients whereas
no changes were evident in the exposure-matched MCI
group. Thus, across their two studies, Hampstead and col-
leagues [18, 20] demonstrated that MST enhanced memory
by (re)engaging the lateral frontoparietal cognitive control
network as well as the hippocampus.

In Belleville et al. [17], 15 MCI patients and 15 HC
underwent learning and training of memory encoding and
retrieval strategies. During fMRI scan, participants were
instructed to memorize word lists (encoding) and recognize
previously studied words amongst a list of new words
(retrieval). The authors found increased brain activation
after training in typical and atypical memory-related areas,
in the frontal, temporal, and parietal areas, particularly in
the right inferior parietal lobule, after training, suggesting that
their compensatory recruitment was necessary to improve
memory performance.

Balardin et al. [21] examined differences in fMRI acti-
vation and deactivation patterns during episodic verbal
memory encoding in 18 patients with MCI and 17 HC.
Participants were scanned before and after one session of
cognitive training to apply MST (semantic clustering) dur-
ing encoding of word lists. After training, greater recruit-
ment of frontoparietal regions, especially in the left
hemisphere, was observed in both MCI and HC associated
with improvement in memory performance. Moreover,
controls showed negative-going BOLD (i.e., reduced activa-
tion) of the medial prefrontal cortex and right superior
frontal gyrus during encoding after training. MCI patients
demonstrated a pattern of less deactivation in these regions
which are related to the DMN. These findings provide evi-
dence of differences in brain activation and deactivation pat-
terns and brain compensation mechanisms after cognitive

training in MCI and HC persons probably related to the
encoding deficits commonly found in MCL

Lin et al. [15] investigated changes in brain functional
connectivity after cognitive training in 21 MCI patients.
The experimental group underwent Vision-Based Speed-of-
Processing Training (n = 10; INSIGHT online program from
Posit Science, San Francisco, CA), and the control group
Mental Leisure Activities Control (n = 11; online crossword,
Sudoku, and solitaire games). The experimental group
showed reduced central executive network connectivity pos-
sibly related to reduced frontal lobe-oriented dependence
and better efficiency of information processing. They also
reported maintenance of DMN connectivity, which was
viewed as a positive outcome since progressive decrease was
expected in MCIL.

De Marco et al. [16] included 23 MCI patients allocated
to the experimental condition of one-month computerized
exercises (memory retrieval, inhibition, working memory,
and logical reasoning) and 14 MCI patients to the control
condition (intense social engagement). They found increased
upregulation of connectivity of the DMN in left parietal
regions after cognitive training that was interpreted as com-
pensatory in nature and occurred despite a lack of improve-
ment in cognitive functioning.

4. Discussion

Overall, the results of studies evaluating the efficacy of COTs
indicate that persons with MCI benefit from COTs, with evi-
dence of direct training gains and some transfer effects. In
addition, MCI individuals are able to systematically practice
cognitive tasks and learn several strategies to optimize cogni-
tive functioning. The neuroimaging findings showed that
COTs frequently led to an increase in brain activation (par-
ticularly in frontoparietal regions) and either an increase or
maintenance in connectivity. The available evidence suggests
that the brain remains highly plastic in those with MCI and
that neuroimaging is sensitive to change after COTs, thereby
suggesting that neuroimaging can reasonably serve as an out-
come measure for interventional studies.

Based on our previous methodological review [9], we cat-
egorized the COTs analyzed here in rehearsal- and MST-
based approaches. The rehearsal-based approach relies on
the repetition of information over time, the MST-based
approach on learning new skills or strategies to compensate
and/or optimize cognitive functioning. In our review, both
approaches led to significant cognitive improvements at
post-training, although the rehearsal-based approach showed
more conflicting evidence, since there were negative findings
[16] and limitations regarding transfer effects [14]. However,
there was some indication of transfer effects in at least one
study [15] and most reported significant neuroimaging
changes after training. Contrary to our expectations, we
did not find a repetition suppression effect (i.e., decrease of
activation), since one study reported increased hippocampal
activity after auditory-verbal computerized training and
others reported increase or maintenance of connectivity
after multicognitive computerized training [15, 16]. It is
worth mentioning that these studies applied an intense
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regimen of training, such as 20-24 sessions, 4-5 times per
week. Given the lack of information about dose-response
relationships (see [9]), it is possible that such extended
training paradigms may have different effects than those in
which the exact same stimuli are repeated (i.e., stimulus spe-
cific effects). Future studies should investigate such possibil-
ities more systematically, especially as they relate to task-
and resting-state-related changes, since the nature of con-
trast- and connectivity-based fMRI is inherently different.

All the studies related to the MST-based approach
reported significant cognitive improvement and increased
activation in lateral frontoparietal regions. This finding is in
line with the fact that MST requires the user to actively hold
and manipulate to-be-learned information, a process that
engages cognitive control mechanisms such as working
memory. Moreover, critical areas relevant to memory pro-
cessing (e.g., hippocampus) also showed increased activation
after training [20]. Together, these findings suggest that MST
enhances functioning in memory-related networks.

The current literature suggests that changes after COT's
can represent both restoration and compensation. This con-
clusion is consistent with the Interactive model proposed by
Belleville and colleagues [22] that suggests training-induced
activation changes depend on a number of interacting fac-
tors, including the format and characteristics of the training.
Theoretically, any intervention that clearly engages a partic-
ular cognitive process (e.g., cognitive control) should induce
change in brain region(s)/network(s) that mediate that pro-
cess (e.g., lateral frontoparietal cortex). The nature of this
change may well depend on the baseline pattern of activity/
connectivity. Restoration of functioning would be suggested
by hypoactivity/connectivity at baseline with increased activ-
ity/connectivity after intervention. Our findings of hippo-
campal change [20] are a good example of this since
patients showed less activation than cognitively intact con-
trols at baseline AND then an increase in activation after
MST. In contrast, compensation would be supported by
patients showing intervention-induced change in areas not
engaged by cognitively intact older adults after comparable
intervention. Belleville and colleagues’ [17] findings of
increased right parietal activation after MST provide a good
example of this since patients did not show regional hypoac-
tivation of this area at baseline and cognitively intact partic-
ipants did not engage this area after MST. Intervention-
related reduction in activation/connectivity would presum-
ably occur if the trained task/stimuli were exactly the same
as that used in the scanner (e.g., classic repetition suppression
effects) or truly enhanced efficiency (e.g., cognitive improve-
ment within the context of reduced activation/connectivity).

Limitations of this review include the following. First, all
of the studies classified the MCI individuals based on clini-
cal/cognitive criteria but none included biomarker data
(e.g., beta amyloid or tau levels). While beneficial for general
clinical practice, it is difficult to know whether these groups
represent a uniform etiology (e.g., Alzheimer’s disease). This
aspect is particularly relevant given the longitudinal nature
of intervention trials and neuroimaging-related changes
that are attributable to the development and worsening of
Alzheimer’s disease versus other processes (e.g., vascular
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disease). Second, although the majority of the studies in this
review found evidence of improvement in objective cognitive
measures, there is still a lack of measures specifically designed
to evaluate the cognitive process trained, and, critically,
transfer effects to everyday life activities. Future research
should develop and validate new tools that better emulate
real-world problems that patients experience. We believe that
technologies such as virtual reality hold promise in this
regard. Third, most of the studies included are based on small
sample sizes, since the range of MCI participants in the
experimental group was 6 to 17 individuals. Although the
current evidence is encouraging, the fact that there are only
7 studies limits definitive conclusions.

In conclusion, this review provides some initial under-
standing of the impact of COTs on cognition and brain
mechanisms in individuals with MCI. The efficacy of the
COTs will be enhanced if future studies replicate the current
methodologies in larger samples and/or apply the same pro-
grams in different samples and sites.
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