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Abstract

Genome-wide association studies have identified many common genetic variants which are 

associated with certain diseases. The identified common variants, however, explain only a small 

portion of the heritability of a complex disease phenotype. The missing heritability motivated 

researchers to test the hypothesis that rare variants influence common diseases. Next-generation 

sequencing technologies have made the studies of rare variants practicable. Quite a few statistical 

tests have been developed for exploiting the cumulative effect of a set of rare variants on a 

phenotype. The best-known sequence kernel association tests (SKATs) were developed for rare 

variants analysis of homogeneous genomes. In this chapter, we illustrate applications of the 

SKATs and offer several caveats regarding them. In particular, we address how to modify the 

SKATs to integrate local allele ancestries and calibrate the cryptic relatedness and population 

structure of admixed genomes.
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1 Introduction

1.1 Background

Initially, genome-wide association studies (GWAS) aimed to localize common genetic risk 

factors for complex common diseases. It was believed that a large number of genotyped 

samples can provide sufficient power to detect common variants which have modest effects 
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on a phenotype. Hundreds of GWAS have been performed for mapping genetic variants of 

common diseases, such as hypertension, bipolar disease, coronary artery disease, diabetes, 

and cancer [1–3]. Such studies have successfully identified thousands of genes which are 

significantly associated with hundreds of traits [4] (https://www.ebi.ac.uk/gwas/). Genome-

wide association studies have greatly advanced our understanding of genetic mechanisms of 

many common diseases.

For a common disease phenotype, however, the significant common variants identified by 

GWAS account for only a small fraction of the heritability observed in family studies [5]. 

For example, height is known to be a heritable trait with estimated heritability around 0.8 

from family and twin studies, which implies about 80% of the trait variation is attributable to 

genetic factors. Multiple GWAS on height [3, 6–9] identified hundreds of significant 

common variants, which together explain only 27.4% of height variation. The missing 

heritability may be potentially accounted for by many rare variants [5, 10–13]. With the 

publication of the 1000 Genomes Project [14], we entered the era of next-generation 

sequencing studies. Deep sequencing technologies have been providing more comprehensive 

and accurate descriptions of rare variants. By directly testing rare variants in candidate 

genes, next-generation sequencing studies have identified many rare variant associations for 

a range of common diseases, e.g., type I diabetes, sterol absorption, plasma levels of LDL-C 

and blood pressure [15–18].

Quite a few sequence association tests have been developed for exploiting the cumulative 

effect of a set of rare variants on a phenotype. Prominent population-based sequence 

association tests include the weighted sum test [19], the C-alpha score test [20], the 

Estimated REgression Coefficient (EREC) test [21], the variable threshold (VT) test [22], 

the Sequence Kernel Association Test (SKAT) [23], the SKAT-O [24], and the Smoothed 

Functional Principal Component Analysis (SFPCA) method [25]. As a combination of 

SKAT and burden test, SKAT_O cannot always outperform the burden test or SKAT (see 
Note 1). Population-based tests can be invalid and suboptimal in the presence of familial 

relatedness. Rare variants may arise from recent mutations in pedigrees [26–28]. Several 

family-based sequence association tests were developed, e.g., the sibpair and odds ratio 

weighted sum tests [29, 30], the famSFPCA [31], and the famSKAT [32]. These family-

based association tests require clear relatedness information or adopt a conventional kinship 

estimate of cryptic relatedness, e.g., KING-Robust [33]. As detailed below, SKAT and 

famSKAT assume linear mixed-effect models to integrate variant sets and compute 

significance analytically.

1.2 The Sequence Kernel Association Test (SKAT)

SKAT [23] appears to be a most prevailing method for analyzing unrelated genomes. For 

individual i, let yi be the trait value, gij be the copy number of the minor allele at the jth SNP, 

and xik be the value of the kth covariate, gi = (gi1, …, giL)′ and xi = (xi1, …, xim)′. For a 

quantitative trait, SKAT assumes

1.SKAT_O [24] was developed to combine the SKAT and burden tests. However, it is not uniformly optimal and stable compared to 
either SKAT or the burden test. The computation of the P-value from the SKAT-O statistic depends on a small number of grids and 
thus is inefficient and inaccurate. In the presence of familial correlation, SKAT and SKAT-O cannot control type I error rates.
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yi = α0 + xi′α + gi′β + εi,

where, and εi ~ N(0; σ2) is random error. For a binary trait (i.e., yi = 1 for a case, and 0 for a 

control), SKAT assumes.

logitP yi = 1 = α0 + xi′α + gi′β .

SKAT allows arbitrary sizes and directions of variant effects. For both equations, α0 is an 

intercept term, α=(α1,…αm)′ is the column vector of regression coefficients for the m 
covariates, and β =(β1,…,βL)′ is the column vector of regression coefficients for the L test 

variants. Let H0:β =0 be the null hypothesis of no association between the test variants and 

trait. SKAT assumes that each βi follows an arbitrary distribution with mean 0 and variance 

wjτ, where τ(≥0) is a variance component and wj(≤0) is a prespecified weight for variant j. 
H0: β =0 is equivalent to H0:τ=0. SKAT utilizes the variance-component score statistic

Q = y − μ ′K y − μ ,

where K =GWG′, G[g1,…,gN ]′, W =diag(w1,….,wL), μi = α0 + xi′α for a dichotomous trait, 

and μi = logit−1 α0 + xi′α  for a dichotomous trait, α0 and α are hypothesis by regressing y on 

the covariates only. The default weight is w j = Beta MAF j; 1, 25  where MAFj is the 

frequency of the minor allele at the jth SNP, which can be evaluated from the entire sample. 

The default weighting scheme is not always optimal (see Note 2). When analyzing admixed 

genomes, for example, ancestries of variants should be incorporated for better weighting 

schemes (see Note 3). For a binary trait, statistic Q collapses to the C-alpha test statistic T 
[20] when all the wj are set to be 1 and all covariates are excluded.

Under the null hypothesis, Q follows a mixture of chi-square distributions. To be specific,

Q ∼
j = 1
L

λ jχ1, j
2 ,

2.In SKAT and famSKAT, prior information on the rare variants can be integrated by using “weights” and “sqrtweights”, respectively. 
SKAT is equivalent to the C-alpha test when setting “weights = rep(1, L)”, where L is the number of SNPs in the test gene. This 
weighting scheme is not optimal for many scenarios. The default weighting scheme in many cases is not optimal either. In real data 
analysis, it is not always the case that the rarer a variant is, the more important it is.
3.High-order information, e.g., the dispersion effects of variants, could be used for computing SNP-wise weights. Such a weighting 
scheme would be particularly informative when many true causal variants are in LD and/or there are latent interaction effects, i.e., 
G×G and G×E interactions. A joint location-scale test was proved under certain scenarios to improve statistical power to detect 
associated SNPs, genes, and pathways [45]. An alternative way to integrate the variance heterogeneity is to utilize it in the weighting 
scheme of SKAT and its extensions. Such a weighting scheme should be particularly useful for admixed genomes due to the large 
range of admixture LD. In addition, the weight of local ancestry can also incorporate prior information of ancestral prevalence. For 
example, if the disease has a higher prevalence in Africans, then a larger weight would be given for lower frequency of local European 
ancestry. It deserves formal efforts to figure out novel, effective weighting schemes for rare variants analysis of admixed genomes.
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Where the χ1, j
2  are independent χ1

2 variables, and the λj are the eigenvalues of the matrix 

P0
1/2KP0

1/2, P0 = V − VX X′VX −1X′V and X=[1,(x1,…,xn)′] is an n×(m+1) covariate matrix. 

For quantitative phenotypes, V = σ0
2I, σ0

2 is the is the estimator of σ2 under the null 

hypothesis. For binary phenotypes, V = diag μ1 1 − μ1 , …, μn 1 − μn . Therefore, the P-value 

of Q can be closely approximated with the computationally efficient Davies’ method [34]. 

The SKAT package depends on R version 2.13.0 or above. In Subheading 2.1, we illustrate 

how to install and run this package to scan homogeneous genomes.

1.3 The Family-Based SKAT

When analyzing family data, SKAT has inflated type I error if the relatedness between 

family members is ignored. To calibrate familial correlation, Chen et al. [32] extended 

SKAT to the family-based SKAT (famSKAT) for rare variant association analysis with 

quantitative traits in family data. Compared to SKAT, famSKAT has a different form of test 

statistic and null distribution, but is equivalent to SKAT when there is no familial 

correlation. In famSKAT, the vector of a quantitative trait is assumed to follow a linear 

mixed effects model

y = Xα + Gβ + δ + ε,

where X is an n×(m+1) covariate matrix, α is a (m+1)×1 vector consisting of fixed effects 

parameters (an intercept and m coefficients for covariates), G is an n×L genotype matrix for 

L rare genetic variants of interest, β is an L×1 vector for the random effects of rare variants, 

δ is an n×1 vector for the random effects of familial correlation, and ε is an n×1 vector for 

the error. The vector of errors ε and the random effects β and δ are assumed to be normally 

distributed and uncorrelated with each other. To be specific, we assume

β ∼ 𝒩 0, τW , δ ∼ 𝒩 0, σG
2 Φ , ε ∼ 𝒩 0, σE

2 I ,

where W is the prespecified diagonal weight matrix for the rare variants, Φ is twice.

the kinship matrix of size n×n obtained from family information only, I is the identity.

matrix of size n × n, and τ, σG
2 , σE

2  are corresponding variance component parameters. Under 

these assumptions, testing H0:τ=0 versus H1:τ>0 is equivalent to testing H0:β=0 versus H1:β 
≠ 0. The famSKAT statistic is

Q = y − Xβ ′Σ−1GWG′Σ−1 y − Xβ ,

Where Σ = σG
2 Φ + σE

2 I,β = X′Σ−1X
−1

X′Σ−1y, and σG
2 , σE

2  are maximum likelihood 

estimators of σG
2 , σE

2  the null linear mixed effects model y = Xα + δ + ε. Under the null 

hypothesis,
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Q ∼
j = 1
L

λ jz j
2,

where the z j
2 are independent χ1

2 variables, and the λj are the eigenvalues of the matrix 

W1/2G′Σ−1 Σ − X X′Σ−1X
−1

X′ Σ−1GW1/2. Therefore, the P-value of Q can be closely 

approximated with the computationally efficient Davies’ method [34]. In Subheading 2.2, 

we illustrate how to install and run this package to scan homogeneous genomes.

1.4 Rare Variants Analysis of Admixed Genomes

Sequence association tests were originally designed for gene-based association analysis of 

homogeneous genomes. These methods do not explicitly model the particular information 

resources or confounders of admixed genomes. Current admixed genomes are formed as 

various mosaics of two or more ancestral genomes. For example, genomes of African 

Americans often have ancestral genomic segments from Europeans and West Africans. On 

average, admixture regions extend over several megabases in current admixed genomes [35]. 

Most genetic variants have different frequencies in different ancestral populations and, thus, 

variants in an identical admixture region are associated with their ancestral origins—local 

ancestries [36]. Genetic data on admixed individuals offer distinctive advantages for 

localizing admixture blocks that harbor causal variants which exhibit different frequencies 

between ancestral populations [37]. Population structure [38] and related-ness [39] are two 

essential confounders in genetic association analysis of admixed genomes. Population 

structure is due to differences in genetic ancestry among samples; and cryptic relatedness is 

due to distant relatedness among samples with no known family relationships. Rare variants 

can show a stratification that is systematically different from, and typically stronger than, 

common variants [40]. Accounting for population structure is more challenging when family 

structure or cryptic relatedness is also present [41].

Local ancestry captures the cumulative effect on the phenotype of causal variants in the 

entire ancestral block. The local ancestry weighted dosage test [42] was specifically 

designed for identifying rare variant associations in admixed populations. However, this test 

only allows for unrelated subjects and a binary disease. It can be invalid and suboptimal in 

the presence of cryptic relatedness. Rare variant association methods have not been 

explicitly optimized for admixed genomes. Therefore, in Subheading 2.3, we illustrate how 

to modify famSKAT to perform gene-based association analysis of admixed genomes.

2 Methods

2.1 The SKAT R Package

This package aggregates individual score statistics of SNPs in a set and efficiently computes 

the set-level P-value. It requires R version 2.13.0 or above. For installation, just run 

install.packages(“SKAT”) and then require(SKAT). In this section, we illustrate how to run 

this package to scan homogeneous genomes. For such a purpose, we perform gene-wise 

association analysis on the data of genotypes of chromosome 22 and primary phenotypes 
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from the Genetics of Alcoholism (COGA) study. After routine quality control, the trimmed 

dataset comprises drinking symptoms and genotypes of 14,720 SNPs on 991 unrelated 

whites.

Step 1. Formatting the data.—Four plain input files are needed as detailed below. The 

first file is Geno_chr22.txt, containing a 991×14,720 white-spaced matrix of genotypic 

scores. The PLINK commands --recode and --recodeA can generate Gen- oChr22.txt from 

PLINK format COGA data:

./plink --file COGA --chr 22 --recode --out COGAChr22 --noweb

./plink --file COGAChr22 --recodeA --out GenoChr22.txt --noweb

Geno_chr22.txt is derived by removing the first six columns of GenoChr22.txt (FID, IID, 

PAT, MAT, SEX, PHENOTYPE). At each SNP, the default reference allele is the minor 

allele; missing genotypes are recorded as NA. This step recodes genotypic scores as shown 

below:

0 0 0 1 0 …

2 1 2 2 2 …

0 NA 2 1 2 …

… … … … … …

The second file, Gene_chr22.txt, comprises basic information on chromosome-wide genes. 

Except for the header name line, each row is for one gene, including gene name, start 

position, end position and chromosome index:

Gene Start End Chr

ACO2 40195074 40254938 22

ACR 49523517 49530592 22

ADM2 49266877 49271731 22

……

The third file, SNP_chr22.txt, comprises basic information of the SNPs on chromosome 22:

Chr rs_ID Pos

22 rs2334386 14430353

22 rs2334336 14519442

22 rs12163493 14809328

……
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The last file, Pheno_Cov.txt, comprises individual trait values. The trait values are the 

residuals of drinking symptoms after adjusting for sex, age, and the first ten principal 

components (PCs). In this file, the trait values are organized one person per row:

−1.31541709

−0.095934426

−0.717596737

……

The four 4 plain files are loaded into the R platform and saved into COGA_Chr22.RDATA 

by running the following R command line:

save.image(“COGA_Chr22.RData”);

Step 2. Running the SKAT package.—The COGA_Chr22.RDATA needs to be loaded 

into R for gene-wise association analyses. The SKAT outputs the corresponding statistics, 

estimated parameters and gene-wise P-values (which are usually of particular interest). 

Running the following R command lines saves gene-wise P-values of the genes on 

chromosome 22 to array SKAT_p:

load(“COGA_Chr22.RData”);

SKAT_p<-array()

for (i in 1:dim(Gene_chr22)[1]) {

ID<-which((Geno_chr22$Pos<=Gene_chr22$End[i])&(Geno_chr22

$Pos>=Gene_chr22$Start[i]))

Z<-as.matrix(Geno_chr22[,ID])

pheno<-Pheno_Cov

obj<-SKAT_Null_Model(pheno~1, out_type=“C”);

SKAT_p[i]<-SKAT(Z, obj)$p.value

}

2.2 The famSKAT R Package

The famSKAT R code can be downloaded from https://cdn1.sphharvard.edu/wp-content/

uploads/sites/1589/2014/07/famSKAT_v1.8_04052013.txt. In addition to the inputs of 

SKAT, the kinship matrix needs to be calculated in order to run famSKAT. This matrix can 

be generated by using the makekinship(.) function in the R package kinship. The input of 

this makekinship(.) function is a plain file, i.e., Fam.txt. This file comprises the family ID, 

individual ID, paternal ID and maternal ID of each subject, which can be extracted from the 

first four columns of the ped file in PLINK format, e.g., COGA.ped. Gene-wise P-values for 

chromosome 22 can be derived by running the following R code.

install.packages(“kinship”);

require(kinship);

kin_matrix<-makekinship(Fam[,1], Fam[,2], Fam[,3], Fam[,4])
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famSKAT_p<-array()

for (i in 1:dim(Gene_chr22)[1]){

ID<-

which((Geno_chr22$Pos<=Gene_chr22$End[i])&(Geno_chr22 $Pos>=Gene_chr22$Start[

i]))

Z<-as.matrix(Geno_chr22[,ID])

pheno<-Pheno_Cov

famSKAT_p[i]<-famSKAT(phenotype=pheno,genotypes=Z,id=Fam[,2], 

fullkins¼kin_matrix)$pvalue

}

2.3 Admixed Sequence Association Analysis

As in Chapter 21, we use the data on African Americans in the Maywood cohort study for 

the purpose of illustration.

2.3.1 Ancestry Deconvolution—As detailed in Chapter 21, SNP-wise ancestries of 

African American are inferred from the genotype data by the ELAI software [43]. For 

example, the local ancestry scores for Chromosome 22 are saved in the output file 

AdmWood701_Chr22.ps21.txt. Each row is for one individual. Every two columns are for 

one SNP. The odd columns comprise CEU local ancestry scores. For each individual, we 

define the global ancestry (Global_A) as the average of genome-wide SNP-wise European 

ancestry scores. We adopt global ancestry rather than PCs to represent population structure 

(see Note 4). To integrate gene-wide ancestries, we extract SNP-wise European ancestry 

scores and save them in file Chr22_Local.txt. Then, we load the Chr22_Local.txt file into R 

and round individual scores to 0/1/2 format:

Local<-read.table(“Chr22_Local.txt”)

Local_Chr22<-round(Local)

SNPs within an admixture block share identical local ancestry. We assume no ancestry-

switch point within a gene. Hence, the following R code can be applied to extract local 

ancestry information for a test gene:

A<-as.matrix(Local_Chr22[, ID1])

C<-duplicated(t(A))

New<-A[, !C]

if (dim(as.matrix(New))[2]==1){

Local_A<-New

}

if (dim(as.matrix(New))[2]!=1){

Count<-array(0,dim=c(dim(as.matrix(New))[2],dim(A)[2]))

4.For unrelated individuals, PCs and global ancestry proportions are highly correlated surrogates for population structure. However, 
the PC analysis does not distinguish population structure from familial correlation. ELAI [43] can accurately infer SNP-wise local 
ancestries of an admixed individual, using available ancestry haplotypes from 1000 genomes as references. This algorithm is robust to 
familial correlation. For each individual, we define the global ancestry as half the average of the genome-wide local ancestries.
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for (j in 1:dim(A)[2]){

for (k in 1: dim(as.matrix(New))[2]){

Count[k,j]<-ifelse(sum(A[,j]==New[,k])==701,1,0)

}

}

ID<-which(rowSums(Count)==max(rowSums(Count)))

Local_A<-New[,ID]

}

Here, “ID1” comprises the IDs of SNPs in the test gene. The number “701” in the ifelse() 

function is the sample size of the dataset. Due to possible inference errors, different local 

ancestry scores may occur within a test gene. When this is the case, we choose the local 

ancestry shared by most SNPs within the gene to represent the local ancestry of the gene.

2.3.2 Inference of Cryptic Relatedness—For admixed genomes, we adopt the REAP 

algorithm [44] to infer cryptic relatedness. This algorithm accounts for population structure 

and ancestry-related assortative mating. Thus it provides more accurate relatedness inference 

for admixed genomes (see Note 5). The REAP package can be freely downloaded from 

http://faculty.washington.edu/tathornt/software/REAP/download.html.

Four input files are needed to run the REAP package. The first two files are 

Data_701_qc.tped and Data_701_qc.tfam format files that can be generated by running the 

PLINK command:

./plink --file Data_701_qc --recode12 --output-missing-genotype 0

--transpose --out Data_701_qc

The third file, Wood_Ancestry.txt, is the individual ancestry file that comprises four 

columns. The first two columns are family ID and individual ID. The third column gives the 

global European ancestry proportions. The fourth column gives the global African ancestry 

proportions.

The fourth file, Wood_freq.txt, has two columns. To generate this file, a reference allele 

needs to be assigned for each SNP. It can be the minor allele in CEU, for example. The first 

column of Wood_freq.txt contains the frequencies of the reference alleles in European 

ancestry; and the second column contains the frequencies of the reference alleles in African 

ancestry.

Kinship can be inferred by running the following command line:

./REAP-gData_701_qc.tped-pData_701_qc.tfam-aWood_Ancestry.txt-

f Wood_freq.txt -k 2 -t 0.025 -r 2

5.The original famSKAT requires known pedigree information to properly control the type I error rate and thus it cannot be directly 
applied to account for cryptic relatedness between admixed genomes. Conventional methods such as KING-Robust [33] provide 
accurate relatedness inference for the data of homogeneous genomes. Such methods, however, cannot appropriately accounts for 
population structure in admixed genomes. The REAP algorithm [44] appropriately accounts for population structure and ancestry-
related assortative mating and thus provides more accurate relatedness inference for admixed genomes.
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One of the output files, REAP_Kincoef_matrix.txt, contains the kinship matrix information.

2.3.3 Running famSKAT—After deriving individual global ancestries, local ancestries, 

and the kinship matrix, running the following R code yields the P-values for genes on 

chromosome 22:

kin_matrix<- read.table(“REAP_Kincoef_matrix.txt”)

famSKAT_p<-array()

for (i in 1:dim(Gene_chr22)[1]){

ID<-which((Geno_chr22$Pos<=Gene_chr22$End[i])&(Geno_chr22

$Pos>=Gene_chr22$Start[i]))

Z<- as.matrix(cbind(Geno_chr22[,ID], Local_A))

pheno<-Pheno_Cov

famSKAT_p[i]<-famSKAT(phenotype=pheno,genotypes=Z,id=Fam

[,2],fullkins=kin_matrix, covariates=Global_A)$pvalue

}

In such an analysis, gene-wide local ancestry is taken as a surrogate for the cumulative effect 

of the gene-wide variants; the global ancestry is adjusted as a fixed effect, and the 

relatedness is adjusted as a random effect.
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