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Abstract

We present the Twitter Health Surveillance (THS) application framework. THS is designed as an 

integrated platform to help health officials collect tweets, determine if they are related with a 

medical condition, extract metadata out of them, and create a big data warehouse that can be used 

to further analyze the data. THS is built atop open source tools and provides the following value 

added services: Data Acquisition, Tweet Classification, and Big Data Warehousing. In order to 

validate THS, we have created a collection of roughly twelve thousands labelled tweets. These 

tweets contain one or more target medical terms, and the labels indicate if the tweet is related or 

not to a medical condition. We used this collection to test various models based on LSTM and 

GRU recurrent neural networks. Our experiments show that we can classify tweets with 96% 

precision, 92% recall, and 91% F1 score. These results compare favorably with recent research on 

this area, and show the promise of our THS system.
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I. Introduction

Social media has become an important platform to gauge public opinion on topics related to 

our daily lives. Political activists, public health officials, first responders, fashion 

personalities, entertainers, sport fans, product marketers, and many others rely upon social 

networks to publish their ideas, products, and activities to millions of persons world wide. 

The allure of social media stems from the opportunity to instantly engage with users of 

various platforms, at low cost, without intermediaries, and with little (if any) censorship.

The focus of this paper is on the use of social media, specifically Twitter, to detect 

conversations (social interactions) that can throw clues to public health officials about 

diseases (mental or physical) that could be affecting a given population. This area of 

research is not new. In fact, there have been numerous works that have attempted to use 

Twitter to detect diseases from social interactions [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. 

However, many of these approaches use keyword searches to collect social messages, and 

assign them to a particular disease class, and then begin the analysis. For example, a 
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previously collected data set is processed in search for tweets that contain the word flu. 

Those messages can be further analyzed to predict the sentiment (“mood”) of the message. 

Unfortunately, keyword-based methods can produce inaccurate results since the mere 

occurrence of a keyword does not necessarily means that the message is indeed related with 

a medical condition. Thus, an analysis based of this approach can mislead public officials 

into thinking that some medical condition is affecting a community because the keyword is 

trending in the social network for a given region. Keyword search can be used to find 

candidate tweets, but there must be a another step to determine if the tweet is relevant or not.

Another limitation of previous approaches is their primary focus on classifier training and 

statistical analysis, without proper attention to scalable methods to acquire the data from the 

social media and process them. The datasets are assumed to be acquired through some 

procedure and curated for processing. Given the speed and amount of data that is produced 

daily on Twitter, there is a need to have a client-side system that can collect the tweets and 

process them in a scalable and timely fashion. Clearly, data streaming and big data tools are 

the key ingredients to build this solution. However, building such solution is complicated 

because it requires interconnecting a series of independent sub-systems: stream processing, 

data warehousing, big data torage, and machine learning (ML) tools. The experts required to 

assemble this solution is in high-demand by premier IT companies, making it difficult for 

health organizations to hire them.

In this paper we present THS: Twitter Health Surveillance - a prototype system we are 

building at the University of Puerto Rico, Mayaguez. THS is designed as an integrated 

platform to help health officials collect tweets, determine if they are related with a medical 

condition, extract metadata out of them, and create a warehouse that can be used to further 

analyze the data. THS is built atop open source tools and provides the following value added 

services:

• Data Acquisition - capture tweets from the live Twitter stream.

• Tweet Classification - use ML to train a classifier that can determine if a tweet t 
is related to one or more medical condition(s) m1, m2, …, mk.

• Big Data Warehousing - store each tweet, the class to which it was assigned by 

the classifier, and other metadata in a big data warehouse for long term access 

and analysis.

To the best of our knowledge, no other solution provides all three services in an integrated 

fashion.

In order to validate THS, we have created a collection of roughly twelve thousands labelled 

tweets. These tweets contain one or more target medical terms, and the labels indicate if the 

tweet is related or not to a medical condition. Specifically, each tweet is labelled into one of 

three classes: a) class 0 - does not talk about medical condition, b) class 1 - talks about a 

medical condition, and c) class 2 - ambiguous. In this paper we present preliminary results 

on the effectiveness of the classifiers that we have built for THS. The classifiers employed 

are based on recurrent neural networks (RNN), specifically Long short-term memory 

(LSTM), and Gated recurrent units (GRU). Since the data set of slabelled tweets is class 
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imbalanced, we do not use accuracy as the evaluation metric. Instead we use precision, 

recall, and F1 scores to evaluate each option. Our experiments show that we can classify 

tweets with 96% precision, 92% recall, and 91% F1 score. These results compare favorably 

with recent research on this area [10]. A complete study of the run time performance of 

other components in THS is outside the scope of this paper, and is part of the future work we 

shall conduct in the system.

A. Contributions

In this paper, we present THS and make the following contributions:

• Describe how the problem of searching and mining for diseases on social media 

can be formulated as classification problem.

• Present THS as a reference architecture for applications that need to process 

stream data with non-trivial methods.

• Present a series of deep learning models that can be used to determine if a tweet 

is related to medical condition or not.

• Describe an evaluation of these models on a real data set extracted from Twitter 

and identify best models for specific metrics.

• Provide an architecture for an integrated solution that seamlessly marries a set of 

heterogeneous big data and ML tools.

B. Paper Organization

The rest of this paper is organized as follows. Section II contains the motivation for THS and 

an overview of the problem we want to solve. In section III, we go into the details of how the 

system was implemented. The ML models used for this work are presented in section IV. 

Section V presents the results of an evaluation of our classification methods. Related works 

are presented in section VI. Finally, a summary of the paper is presented in section VII.

II. Overview

A. Motivation

The fundamental problem that we want to tackle is the ability to capture tweets from the live 

stream, search each tweet looking for target medical keyword(s), and then determine if the 

tweet is actually related with an actual medical condition. As we mentioned before, the mere 

occurrence of a keyword does not make the tweet related with an actual medical condition. 

The following tweets, contained in the labelled dataset captured with THS, show why this 

problem is not trivial.

Example 1. Tweet related to a health condition.

My weekend is ruined because of my flu:(

In this instance, the message is clearly related with the flu medical condition. This tweet 

conveys a feeling of sadness and disappointment because the effects of the disease will 

prevent this person from participating in planned activities for the weekend.
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In contrast, the following tweet is not related to a medical condition at all, but rather uses a 

disease to emphasize the rejection of a view.

Example 2. Tweet not related to a medical condition.

That reporter’s verbal diarrhea against the president shows she ain’t fair.

In this case the term diarrhea is being used to discredit a news report from a journalist, 

implying that the views expressed in her reporting are excessive, lengthy, and biased against 

the President (most likely President Trump). This type of tweets can be observed more 

frequently in the live Twitter streaming when some controversy surrounding the president 

erupts. Thus, it would be a mistake to conclude that some stomach virus, or other medical 

condition associated with diarrhea is on the rise.

Sometimes, the content of a tweet is ambiguous, and it is hard to classify it as been related to 

a medical condition.

Example 3. Tweet that is hard to classify.

Well, well the flu can help me skip the family reunion. sad.

This example conveys a contradictory message. On one hand, it can be interpreted as a sign 

of relief by the author, feeling good that she/he will not need to attend a family reunion 

because of the flu. On the other hand, the person is actually telling us the she/he has the flu, 

or is hoping to get it. Given the miserable symptoms of the flu, it is hard to image how can 

anyone celebrate getting sick in order to avoid a family reunion.

B. Problem Statement

Our goal is collect a stream of tweets T = {t1, t2, …, tn} and classify each tweet into one of 

three classes:

• 0 - does not pertains to a medical condition

• 1 - does pertains to a medical condition

• 2 - is ambiguous

This is a supervised classification problem with three target classes. To solve it, we must 

first select the target keywords that might be associated with the medical conditions of 

interest. Otherwise, we would need to test any tweet whatsoever, and that makes the 

classification problem very hard. Let M = {m1, m2, …, mk be a collection of k medical 

terms. These medical terms represent some medical topic or condition of interest. For 

example, we might use terms like flu, runny nose, or influenza, all of which can be 

associated with the topic of flu. We want to filter the stream T, discarding tweets that do not 

contain keywords in M. Let us call the output of this filtering process T′. We can now apply 

a classifier ŷ to each tweet t′∈ T′to classify each one into one of our three classes. The 

classifier ŷ must first be trained on a sample of T’, and then it can be used from that point 

on, as long the input tweets come from the same distribution. Thus, we must always pass 

tweets to ŷ that have been filtered with M. If we change M, we must retrain ŷ with a new 

training set that contains examples with the keywords now present in M.
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In practice, the distribution of classes for our problem is not uniform, with class 1 being the 

majority, then class 0, and class 2 a distant third. Hence, our classifier must deal with the 

class imbalance problem [11], [12]. We tackled this issue by using the penalty technique 

whereby, during training time, a large penalty is given to the classifier whenever it 

misclassifies one of a minority classes.

C. Data Processing Pipeline

Conceptually, the tweets are processed using a pipeline as shown in Figure 1. As tweets are 

generated, they are captured and then filtered based on keywords so they can be assigned to 

a given topic. This capturing process can occur in two ways. One option is to subscribe to a 

sample of live tweets from the Twitter API. In this case, keyword search must be done after 

acquisition. The other option is to subscribe to a filtered stream, where a set of keywords, 

users, and locations can be specified to narrow down the tweets of interest. Further filtering 

can be applied after data acquisition.

Next, tweets are routed for processing at additional stages. One stage performs classification 

as described in the preceding section. More stages can be added to perform custom-

processing such as additional keyword filtering, emoji analysis, sentiment analysis, or 

computing target keyword frequency. The output from all these stages can be configured to 

go into dashboards, databases, HDFS, etc. In our case, raw tweets are always stored into 

HDFS to enable further analysis in the future. Notice that it is possible to re-ingest some of 

the output back into the classification or custom processing stages, perhaps to fine tune the 

results as models get re-calibrated.

III. System Architecture

THS is a collection of daemons and web services that work together to collect, index, 

analyze, support queries on the tweets, and help make predictions. THS is built atop: a) the 

Hadoop ecosystem of big data tools, and b) Keras, Google’s Tensorflow, and scikit-learn as 

ML tools. In this section we describe the various components in the system and their 

interactions.

A. Data Acquisition

Figure 2 illustrates the data acquisition sub-system. At the top of the figure we have the 

Twitter API, which provides the stream of tweets to the system. Data collection occurs with 

the help of the Apache Kafka streaming platform. The collection of tweets is captured by the 

Producer, which is a daemon written in Python whose job is to receive tweets (“statuses”) 

from the Twitter API and push these to a Kafka queue. Each tweet is received as a JSON 

string. At the other end of this process we a have the Consumer, which is also a Python 

daemon. The consumer extracts the tweets from Kafka, and passes them to the stream 

processor.

In THS, we implemented the stream processor using Spark Streaming and Spark SQL. The 

stream processor creates a data frame out of the collections of tweets that arrive at each time 

step. It then uses Spark SQL to run custom processing code that filters the tweet for target 
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keywords. In addition, each tweet is mapped into a new set of records formed by extracting 

metadata from the tweet, as well as adding new fields.

In particular, each tweet is mapped to records that are stored into several tables of a database 

kept in the Hive data warehouse. Figure 3 shows the schema of this database. The tables are 

as follows:

• Tweet - we create a new record in the tweet table that contains the following 

attributes: a) tweet id assigned by Twitter, b) tweet raw id which is a foreign key 

into the table with raw tweets, c) id assigned by Twitter to the author of the 

status, d) full text of the tweet (up to 280 characters) written by the author, e) 

date when the tweet was published, f) date when the tweet was collected, and g) 

the location, as latitude and longitude, for the status (if provided). Most users do 

not publish the location from which they tweet, so any search by location will 

first try to use this field, or by default use to the location of the author.

• Raw tweet - this is record that contains the original tweet in JSON format.

• Author - if the author of a tweet is not already stored in the system, then we add 

a new author record. This record contains: a) the id of the author given by 

Twitter, b) the full name of the author, c) the author’s Twitter username, d) the 

author’s language of preference, and e) the location (if provided) by the author 

(e.g., City, State, country)

• Keyword - a record for a Keyword entity is created, linking the tweet with each 

of the target keywords that is contains.

• Hashtag - a record for a Hashtag entity is created, linking the tweet with each of 

the hashtags that is contains.

Once the tweets are in the Hive warehouse, they can be queried and used for classification 

purposes. Also, summarized data, for example number of tweets per topic, week, users, can 

be queried to see trending over time.

B. Classification Subsystem

Classification of tweets occurs on the data ingested into Hive. As tweets are stored, a list of 

tweet ids for labelling is generated and passed to a TweetConsumer daemon, which is 

written in Python. This scheme is shown in Figure 4. Batches of tweets are extracted by 

querying the Hive warehouse to get the tweet id, and tweet text. Then, a csv file containing 

the text in the tweets is produced. This files is then processed to transform the text into the 

tensor form expected by the Keras/Tensorflow tandem. The tweets are then classified and 

cross-referenced with their tweet id, based on ordinal position in the file. The result can be 

presented in a dashboard, app, exported as a csv file, or stored back to some table in Hive.

IV. Training and Classification of Tweets

In this section, we provide further details on how we train classifiers to determine if a tweet 

is related to a medical condition.
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A. Preprocessing tweets

We pre-process our data set by eliminating all emojis, web links, hashtags, and twitter 

mentions that were embedded in each tweet. While developing our models and making 

initial training runs, we did not notice much difference between using word stemming or not. 

The same applies to removing stop words or not. Hence, we used neither stemming nor stop 

word elimination in the experiments shown in section V.

B. Mapping words to word embeddings

Once the tweets have been pre-processed, we need to convert from text to a tensor 

representation. One option is to create a dictionary of words, with each word wi having a 

position i in the dictionary. Then, a tweet can be represented with a one-hot encoding vector 

representation. In this scheme, a vector v representing a tweet t will have position v[i] = 1, if 

word i is present in the tweet, or 0 otherwise. However, this approach has two main 

drawbacks. First, since the dictionary can have thousands of words, the vector v can be very 

long and mostly contain 0s. Secondly, with one-hot representation the order of words within 

the tweet is lost and can yield inaccurate results.

In THS, we use the well-known word embedding methodology [13], in which there is an 

embedding function that maps each word wi in a tweet t into a vector vi in an n-dimensional 

vector space Rn. A Tweet t then becomes represented as a m × n matrix ℳ, where m is the 

longest tweet length and n is the dimension of the vector space. Conceptually, each row i in 

ℳ is a vector vi representing word wi. Since not all tweets have the same length, padding 

with one or more instances of a zero vector is need to make all tweets in a batch have the 

same length.

In practice, the tweet t must first be mapped into a list of word indices L. Entry L[i] contains 

the position of word i in the dictionary used by the embedding. The embedding takes this 

index L[i] and maps it to a vector vi

Word embeddings provide a better representation of the data, and it has been shown that 

related words in the target language tend to be mapped to close vectors in the vector space 

[13]. Moreover, word embedding are amicable for processing by deep learning models based 

on recurrent neural networks (RNN) and convolutions neural networks (CNN).

C. Processing with Recurrent Layers

THS uses recurrent neural networks (RNN) as the main ML building block for classification 

operations. RNN are designed for problems related with sequential data such as natural 

language processing. We use Long short-term memory (LSTM), and Gated recurrent units 

(GRU) as these are the best performing networks to date.

Figure 5 show the general architecture of the RNN that we used. This network is a classic 

encoder-decoder network. On the left, we have the batches of tweets to be fed into the 

network. The first stage of the network is the embedding layer, which takes care of mapping 

each tweet t into a embedding ℳ. The embedding is then feed into the first recurrent layer, 

which can be configured to use LSTM or GRU. This layer works as an encoder unit. Unless 
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otherwise specified, the LSTM and GRU layers used 72 units. This number comes from the 

maximum tweet length that our testing data sets had. The next layer is a dropout layer used 

to prevent overfitting on the first recurrent layer. An optional attention layer [14] is added 

next. This layer is used to help focus the RNN into sections of the tweets that might be more 

important than others. If the attention layer is used, then the RNN must output all 

intermediate sequence outputs.

The next layer in the network is another recurrent layer that acts as the decoder component. 

Its output is passed to another dropout layer, and then to a dense layer containing 64 hidden 

units. The output of this layer is passed to a final softmax layer with 3 hidden unit which 

outputs a vector with the probabilities for each of the three classes.

In our current implementation, we provide the following concrete models based on this RRN 

architecture:

• 2 LSTM Tanh Attention - 2 LSTM with Tanh activation, and attention

• 2 LSTM elu Attention - 2 LSTM with lu activation, and attention

• GRU GRU No Attention - 2 GRU units without attention

• GRU GRU Attention - 2 GRU units with attention

• LSTM GRU No Attention - LSTM followed by GRU without attention

• GRU LSTM No Attention - GRU followed by LSTM without attention

• LSTM GRU Attention - LSTM followed by GRU with attention

• GRU LSTM Attention - GRU followed by LSTM with attention

• 2 LSTM Tanh Attention 100 Units - 2 LSTM with 100 hidden units, Tanh 

activation, and attention

• 2 LSTM elu Attention 100 Units - 2 LSTM with 100 hidden units, ell activation, 

and attention

In the future, we shall expand THS to incorporate convolutional neural networks (CNN) as 

part of the set of models than can be used for classification purposes.

V. Evaluation

A. Data Sets

We collected a total of 56,013 tweets from the Twitter API between March 7th and 28th, 

2018. The tweets contain at least one of the following medical keywords:

• Zika

• Flu

• Ebola

• Measles

• Diarrhea
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We then extracted a random sample of 12,500 tweets for labelling purposes. The labeling 

process was done in twenty nine days (29) by four members of our team. As mentioned 

before, we used three class labels: a) 0 - tweet is not about diseases, b) 1 - tweet is related 

with diseases, and c) 2 - tweet is ambiguous. Table I shows a distribution of the label classes 

in our labelled data set. As we can see, the data is unbalanced. In section V-C we describe 

how we handled this situation.

B. Experimental Setup

We implemented THS using open source software: Spark, Hive, HDFS, Kafka, TensorFlow, 

and Keras. Table II depicts the specific version of the components.

We ran our training procedures on nodes of the NSF-funded Chameleon Testbed. The nodes 

used are Dell PowerEdge R730, with 2x Intel(R) Xeon(R) CPU E5–2670 v3 @ 2.30GHz, 

128 GB of RAM, 1 NVIDIA Tesla P100 GPU, 232 GB Seagate SATA HD. The machines 

ran the Ubuntu 16.04 LTS OS on bare metal. We trained several models independently of 

different nodes with the same configuration. The other THS components ran on a cluster at 

the University of Puerto Rico, Mayaguez, consisting of 12 (twelve) Dell Power Edge R420 

with Intel Xeon Quad Core CPU, 8 GB RAM, 1TB disk, and 1Gbps NiC. These nodes ran 

Ubuntu 14.05 LTS on bare metal.

C. Experimental Methods

To train our ML models, our training program read the entire data set into memory, 

randomly shuffled all tweets, and then randomly assigned each tweet into one of three sub-

sets:

• Training set (60% of the data) - this data set was used to train each ML model.

• Development set (20% of the data) - this second data set was used to fit the 

hyper parameters in the model, and determine which where the best performing 

candidates.

• Test set (20% of the data) - this third data set was used to give an unbiased 

evaluation of the candidate models and pick the best performing one for the 

metric at hand.

We used the shuffle functionality in Keras to shuffle training and development data. We also 

used the scikit-learn built-in support for K-fold cross-validation, but found very little 

difference between the two approaches.

Since most ML models assume a uniform distribution of examples among the classes 

present in the data, we had to find a way to adjust our models for the fact that we were 

working with imbalanced classes. We decided on two approaches to handle this situation. 

First, we ditched accuracy as our performance metric and instead use precision, recall, and 

F1 score. Notice that with an imbalanced class, a classifier might simply always predict in 

favor of the majority class. Hence, accuracy might not be the most adequate metric. For the 

validation and test phases, we compute a confusion matrix to collect the performance 

metrics on each model.
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The second decision was to used a penalized model approach. Under this scheme, an 

additional penalty is added to the cost function whenever a model misclassifies, during 

training, an example that belongs to one of the minority classes. We used the built-in 

functionality in scikit-learn to estimate class weights penalties for imbalanced datasets. 

Table III shows the class weights used for our experiments. As we can see form the figure, 

the penalty for misclassifying an example in the minority class is substantially larger than 

that for the majority class. We considered using other approaches for class imbalance, such 

as oversampling the minority classes, or creating synthetic examples. However, we felt that 

weight penalization provided the most natural and straightforward method. In the future, we 

will experiment with those other approaches for imbalances data sets.

The hyper parameters for our models were selected using a custom-built grid search python 

code. The hyper parameters that we searched where: learning rate, number of epochs, batch 

size, percentage of dropout regularization, number of units for the dense layers, and 

optimization algorithm. In all the cases, RMSProp was the best algorithm for training out 

models. Thus, in the results that we show below all the models were trained using RMSProp.

In our experiments, we used the Glove embedding [15] with 50-dimensions for the 

embedding layer. Also, the longest tweet had 72 words, hence all tweets are padded to this 

length.

In the next section, we show the performance of the classifiers on the test sets.

D. Results

1) Precision: The precision metric measures the exactness of a classifier, in terms of how 

many examples of a class i it correctly classifies. Given a class i, the precision on class i, Pi 

is defined as:

Pi =
TPi

TPi + FPi

Here T Pi is the number of correctly classified examples (true positive examples), while F Pi 

is the number of examples incorrectly labeled as belonging to class i (false positives). Thus, 

the precision on class i is a ratio between the number of correctly classified examples T Pi, 

and the sum of T Pi and F Pi. The closer Pi is to 1, the more exact the classifier is on class i.

Table IV shows the results for the precision metrics for class 1. For the sake of clarity, we 

only present this class. In addition, it is the most relevant class for the purpose of using 

Twitter to detect conversations about diseases. We shall present the complete results in a 

forthcoming paper devoted exclusively to the ML components in THS. Notice that the best 

performing model has a precision of 96%. This model contains a GRU layer followed by an 

LSTM layer with attention. This model took 10 epochs to train, and a 32 units dense layer 

after the LSTM and before the softmax output. Also, notice that the best performing models 

contain either an attention layer or an LSTM layer
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2) Recall: The recall metric provides a measure of how complete is the classifier in 

correctly labeling the examples of a class i. Given a class i, the recall on class i, Ri is defined 

as:

Ri =
TPi

TPi + FNi

As before, T Pi is the number of true positive examples for class i, whereas F Ni is the 

number of examples from class i that were missed by the classifier (false negatives). Recall 

is a ratio between T Pi, and the sum of T Pi and F Ni. In other words, recall tells what 

percentage of the examples of class i the classifier correctly detects and labels.

Table V shows the results for the recall metric for class 1. Notice that in this case only one 

model breaks over 90% in recall. This model has two GRU layers without attention, and has 

92% recall. If we look this model into the table for precision (table IV) we can see that the 

model with the best precision (GRU LSTM Attention) has a “middle-of-the-road” 

performance in terms of recall. Thus, user of THS will need to decide which metric to 

prioritize and choose the right model accordingly. We also think that there is a certain 

amount of overfitting in these models, and we plan to address this issue by labeling more 

tweets to reach a data set size of at least 25,000 labelled tweets.

3) F1 Score: Whether precision or recall is the right metric is a matter of debate (often a 

bitter debate). For some applications, recall is more important. For example, consider a 

medical application where a classifier is used to aid in the diagnosis of cancer. In this 

scenario, recall is the best metric since the priority is not to misdiagnose (i.e., miss the 

cancer) a patient by telling that he/she is cancer free when in fact the person has cancer 

(false negative). A false positive, although worrisome, is acceptable since it is better to err on 

the side of caution. On the other hand, in a surveillance application, having too many false 

positives can result in the unnecessary activation of alarms and security personnel (i.e., many 

false alarms), hence precision might be a better metric.

The F1 score is a metric that seeks to balance precision and recall, proving a method to 

determine how balanced a classifier is. The F1 score for class i is defined as follow:

F1i =2
PiRi

Pi + Ri

Notice that a classifier that is balanced will have an F1 score close to 1 since both the 

numerator and denominator will trend to 1. In contrast, a classifier biased toward either 

precision or recall will have a numerator that trends towards 0.

Table VI shows the results for the F1 score on class 1. The best performing model has an 

LSTM layer followed by a GRU layer without attention. This model is not the best in terms 

of either recall or precision, but it its the most balanced one. Interestingly, the model with 

two GRU units and no attention has a score of 90.50 %, making it a good overall choice 
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since it has the best recall (92.32%) and decent precision (88.74%). We claim this because in 

our view, getting a good recall (i.e., not missing tweets) is more important than precision for 

the problem of detecting conversations about diseases in Twitter.

VI. Related Works

Sentiment analysis and opinion mining [16], [17], [18], [19], [20], [21] is a popular 

technique to analyze social media, blogs, and news articles in search for keywords that 

denote positive or negative views against a particular product, person, or situation. Clues 

about health conditions affecting citizens of a region can be obtained from the public 

messages that these citizens post in social media apps such as Twitter. In fact, recent 

research work has focused on using Twitter as a tool to help uncover health trends [1], [2], 

[3], [4], [5], [6], [7], [8], [9], [10] by looking at keywords in the messages that mention 

specific health conditions. THS leverages on many of these techniques, while proving a turn-

key solution to build applications without much boiler plate code, and accessing the live 

Twitter stream instead of using a curated collection. To the best of our knowledge no other 

system offers the capabilities that THS has.

VII. Conclusion

In this paper, we have presented the Twitter Health Surveillance (THS) application 

framework. THS is designed as an integrated platform to help health officials collect tweets, 

determine if they are related with a medical condition, extract metadata out of them, and 

create a warehouse that can be used to further analyze the data. THS is built atop open 

source tools and provides the following value added services: Data Acquisition, Tweet 

Classification, and Big Data Warehousing. In order to validate THS, we have created a 

collection of roughly twelve thousands labelled tweets. These tweets contain one or more 

target medical terms, and the labels indicate if the tweet is related or not to a medical 

condition. We used this collection to test various models based on LSTM and GRU recurrent 

neural networks. Our experiments show that we can classify tweets with 96% precision, 92% 

recall, and 91% F1 score. These results compare favorably with recent research on this area, 

and show the promise of our THS system.
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Figure 1: 
Tweet Processing Pipeline
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Figure 2: 
Tweet Collection Pipeline
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Figure 3: 
THS database schema
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Figure 4: 
Tweet Prediction Pipeline
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Figure 5: 
General RNN Architecture
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Table I:

Distribution of tweets per class label.

Class Label Tweet Count

0 3,850

1 7,917

2 733
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Table II:

Version for software packages used in THS.

Software Package Version

Spark 2.1

Hive 2.2

HDFS 2.7

Kafka 0.10.1

TensorFlow 1.10

Keras 2.1.6

scikit-learn 0.19.2
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Table III:

Class weight penalties.

Class Penalty Weight

0 1.08225108

1 0.52629363

2 5.684402
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Table IV:

Precision results per ML model

Model Presicion

2 LSTM Tanh Attention 0.910204082

2 LSTM elu Attention 0.923603193

GRU GRU No Attention 0.887412041

GRU GRU Attention 0.94934877

LSTM GRU No Attention 0.939040208

GRU LSTM No Attention 0.89198036

LSTM GRU Attention 0.883814103

GRU LSTM Attention 0.962479608

2 LSTM Tanh Attention 100 Units 0.95021645

2 LSTM elu Attention 100 Units 0.930857875
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Table V:

Recall results per ML model

Model Recall

2 LSTM Tanh Attention 0.809314034

2 LSTM elu Attention 0.852737571

GRU GRU No Attention 0.923222152

GRU GRU Attention 0.835116425

LSTM GRU No Attention 0.891755821

GRU LSTM No Attention 0.784140969

LSTM GRU Attention 0.861548143

GRU LSTM Attention 0.823788546

2 LSTM Tanh Attention 100 Units 0.877910636

2 LSTM elu Attention 100 Units 0.850220264
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Table VI:

F1 results per ML model

Model Fl

2 LSTM Tanh Attention 0.856799275

2 LSTM elu Attention 0.88675682

GRU GRU No Attention 0.904962976

GRU GRU Attention 0.888576312

LSTM GRU No Attention 0.914787402

GRU LSTM No Attention 0.834591544

LSTM GRU Attention 0.872539097

GRU LSTM Attention 0.887749888

2 LSTM Tanh Attention 100 Units 0.912633628

2 LSTM elu Attention 100 Units 0.888713651
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