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Abstract

DNA fluorescence in situ hybridization (FISH) is the technique of choice to map the position of 

genomic loci in three-dimensional (3D) space at the single allele level in the cell nucleus. High-

throughput DNA FISH methods have recently been developed using complex libraries of 

fluorescently labeled synthetic oligonucleotides and automated fluorescence microscopy, enabling 

large-scale interrogation of genomic organization. Although the FISH signals generated by high-

throughput methods can, in principle, be analyzed by traditional spot-detection algorithms, these 

approaches require user intervention to optimize each interrogated genomic locus, making analysis 

of tens or hundreds of genomic loci in a single experiment prohibitive. We report here the design 

and testing of two separate machine learning–based workflows for FISH signal detection in a 

high-throughput format. The two methods rely on random forest (RF) classification or 

convolutional neural networks (CNNs), respectively. Both workflows detect DNA FISH signals 

with high accuracy in three separate fluorescence microscopy channels for tens of independent 

genomic loci, without the need for manual parameter value setting on a per locus basis. In 

particular, the CNN workflow, which we named SpotLearn, is highly efficient and accurate in the 

detection of DNA FISH signals with low signal-to-noise ratio (SNR). We suggest that SpotLearn 

will be useful to accurately and robustly detect diverse DNA FISH signals in a high-throughput 

fashion, enabling the visualization and positioning of hundreds of genomic loci in a single 

experiment.

The genome is nonrandomly organized in the cell nucleus (Bonev and Cavalli 2016). Spatial 

genome organization occurs in a hierarchical fashion: Genomic loci with similar 

transcriptional activity and epigenetic profiles preferentially fold into domains, known as 

topologically associated domains (TADs); these, in turn, form larger domains, which are 
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then further organized into chromosome territories. The three-dimensional (3D) organization 

of the genome allows the compaction of ~2 m of linear DNA in human cell nuclei with an 

~10 μm diameter, and it provides a regulatory layer for key cellular pathways such as 

transcription, replication, and DNA damage and repair (Cavalli and Misteli 2013). 

Alterations in genome folding and organization have been linked to cancer (Flavahan et al. 

2016) and developmental syndromes (Lupiáñez et al. 2015; Franke et al. 2016), highlighting 

the importance of 3D genome architecture in physiological and diseased states.

DNA fluorescence in situ hybridization (FISH) is one of the widely used tools of choice to 

study genome organization, because it directly visualizes the position of genomic loci in 3D 

space in the nucleus (Solovei et al. 2002). Traditional DNA FISH uses enzymatically labeled 

fluorescent probes, which hybridize in a sequence-specific manner to the genomic region of 

interest. In contrast to other biochemical techniques used to study genome organization, such 

as chromosome conformation capture (3C), DNA FISH allows visualization and 

measurement of actual physical distances between multiple genomic loci at the single-allele 

level. Despite this advantage, DNA FISH has mostly been used as a semiquantitative 

technique to validate a select few genomic interactions, mostly because of the need for 

laborious generation of fluorescent probes and the limited throughput of traditional 

fluorescence microscopy.

Two recent technical developments have helped overcome these limitations and enable large-

scale FISH detection. The first is the substitution of enzymatically labeled DNA FISH 

probes with large libraries of chemically synthesized DNA oligos, a technique named 

Oligopaint (Beliveau et al. 2012, 2015; Joyce et al. 2012). Oligopaint allows the precise and 

flexible selection of computationally designed primary oligonucleotides binding to 

nonrepetitive genomic regions, increases the resolution of DNA FISH to as little as 5 kb, 

and, because of the use of combinatorial labeling schemes involving secondary fluorescent 

oligo DNA barcodes (Beliveau et al. 2015; Chen et al. 2015), increases the potential number 

of genomic loci that can be visualized to a few hundred in a single experiment (Wang et al. 

2016). The second technical innovation is high-throughput imaging (HTI), which uses 

multiwell imaging plates, automated liquid handling, and high throughput 3D confocal 

fluorescence image acquisition to generate hundreds of thousands of images relative to 

thousands of cells for each of hundreds of experimental conditions (Pegoraro and Misteli 

2017).

Despite these experimental advances, challenges remain to the reliable and automated 

detection and quantification of DNA FISH signals, which appear as diffraction-limited 

fluorescent spots in the nucleus. Several image-processing algorithms, such as difference of 

Gaussians (Bright and Steel 1987), multiscale wavelet-based (Olivo 1996), and radial 

symmetry (Parthasarathy 2012), detect spot-like objects in 2D fluorescence microscopy 

images. However, for efficient spot detection performance, the investigator needs to 

empirically determine appropriate sets of values for the algorithm parameters. The optimal 

parameter values vary with the signal-to-noise ratio (SNR) of the fluorescent spot signal, 

which itself varies between different DNA FISH probe sets and fluorophores in a single 

experiment. Although manual value optimization of spot detection parameters is feasible for 

one or a few DNA FISH probe sets, it is extremely laborious and subject to bias when used 
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in the analysis of image data sets of hundreds of probes. These drawbacks, thus, negate the 

gains of using Oligopaint with HTI to visualize genomic organization on a large scale. In an 

effort to overcome this limitation, we have implemented two supervised machine learning–

based analysis workflows for the high-throughput segmentation and classification of large 

and diverse sets of FISH signals generated by Oligopaint DNA FISH and high-throughput 

confocal imaging. The first method uses a manually optimized spot detection algorithm 

coupled with a supervised random forest (RF) classifier (Breiman 2001), whereas the second 

method is based on a different class of supervised machine learning (ML) algorithms, deep 

convolutional neural networks (CNNs) (Szegedy et al. 2016; Krizhevsky et al. 2017; 

Shelhamer et al. 2017). Here we describe and report on the performance of the RF- and 

CNN-based algorithms in DNA FISH spot detection and classification tasks. Our results 

indicate that SpotLearn will be readily adaptable to high throughput FISH data sets, thus 

allowing fully automated, single-allele analysis of genome organization using HTI.

MATERIALS AND METHODS

Cell Culture

MDA-MB-231 cells (ATCC, Cat. HTB-26) were maintained in DMEM medium, 10% FBS, 

penicillin 100 U/mL, streptomycin 100 μg/mL in a humidified incubator at 37°C and 5% 

CO2. Cells were seeded in CellCarrier-Ultra 384-well plates (PerkinElmer, Cat. 6057500) at 

a seeding density of 5000 cells per well. Cells were cultured for 72 h before direct fixation in 

the medium with 4% paraformaldehyde (PFA) in PBS.

Oligopaint DNA FISH

After fixation, cells were washed in PBS three times for 5 min, permeabilized with 0.5% 

saponin, 0.5% Triton X-100 for 20 min, washed in PBS three times for 3 min, treated with 

0.1 N HCl for 15 min, washed in 2× SSC buffer once for 5 min, and then preincubated in 2× 

SSC/ 50% formamide for at least 30 min. The DNA oligo library including encoding probes 

were synthesized by Twist Bioscience and amplified according to a previously published 

protocol (Chen et al. 2015). The 5′-labeled (Alexa488, ATTO565, or Cy5) decoding probes 

were synthesized by Eurofin Genomics. Both the encoding oligo library and the fluorescent 

decoding oligos were added to cells in a 15 μL volume of hybridization buffer (50% 

formamide, 20% dextran sulfate, 1× Denhardt’s solution, 2× SSC) per well. The encoding 

oligo library was used at a final concentration of 330 nM in every well. Different three-way 

combinations of fluorescently labeled readout oligos were used in each well at a final 

concentration of 6.6 nM each. Cells and oligo DNA probes were denatured for 7 min at 

85°C on a heating block, and then immediately transferred for a 16 h incubation at 37°C. 

After oligo DNA FISH probe hybridization, cells were washed with 2× SSC three times for 

5 min at 42°C and three times for 5 min at 60°C. Finally, nuclei were stained with DAPI 

(4′6-diamidino-2phenylindole), washed in PBS three times for 3 mi, and stored in PBS at 

4°C until imaging.

Experimental Layout

Cells were grown and stained with Oligopaint DNA FISH probes in three colors in 28 wells 

on a single 384-well plate as described above (training plate, Train-P1). The images from 
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Train-P1 were used for training a supervised RF classifier (Ho 1998; Breiman 2001) for 

filtering mis-segmented and/or overlapping nuclei, optimizing parameters of the FISH spot 

detection algorithm, training a supervised RF classifier for filtering false-positive FISH spots 

from spot detection, and training and validation of supervised fully CNN-based spot 

segmentation algorithm. For testing, cells were grown and stained with Oligopaint DNA 

FISH in three colors in 48 wells (12 unique three-color probe sets, four wells as technical 

controls per probe set) on two separate 384-well plates on different days as described above 

(Testing Plates plate, Test-P1 and Test-P2). Test-P1 and Test-P2 were biological replicates. 

Three-color Oligopaint DNA FISH sets were designated with an “i-j-k” scheme, where “i” is 

an identifier for the gene locus labeled with Alexa488, “j” is an identifier for the gene locus 

labeled with ATTO565, and “k” is an identifier for the gene locus labeled with Cy5. The 

Oligopaint DNA FISH probe sets used for Test-P1 and Test-P2 were different from those 

used for Train-P1.

High-Throughput Image Acquisition

Images were acquired using an automated high-throughput spinning disk microscope 

(Yokogawa Cell Voyager 7000) to acquire four spectral channels: DAPI, Alexa-488, 

ATTO565, and Cy5. We used a 40× dry objective (0.95 NA), four excitation lasers (405, 

488, 561, and 640 nm), a quad-band dichroic mirror for excitation, a fixed 568-nm dichroic 

mirror for detection, two 16-bit Andor Neo 5.5 sCMOS cameras (5.5 Mp; pixel binning, 2; 

field-of-view covering 1276 × 1076 pixels), and switchable matched bandpass filters for 

each channel in front of the cameras (DAPI, BP445/45; Alexa488, BP525/50; ATTO565, 

BP600/37; and Cy5, BP676/29). In addition, Z stacks of four images at every1.0μm were 

acquired for each channel in each field. In these imaging conditions, the pixel size was 323 

nm. These channels were imaged in a sequential mode to minimize spectral potential bleed-

through. We imaged six locations (fields of view) for each well. Identical acquisition settings 

were used for every well on the same plate—namely, laser intensity and exposure time on 

the CMOS cameras.

Nucleus Segmentation and Filtering

The nuclei from the maximum intensity projected DAPI channel were segmented using a 

seeded watershed algorithm (Vincent and Soille 1991). The preliminary segmentation 

boundaries from the seeded watershed were further refined using ultrametric contour maps 

(UCMs) to minimize oversegmentation (Arbelaez 2006). Briefly, UCMs achieve this by 

combining several types of low-level image information (e.g., gradients and intensity) to 

construct hierarchical representation of the image boundaries. Under this representation, 

boundary pixels along the nucleus periphery typically receive a higher score than other 

pixels associated with internal structures of the nucleus. Global thresholding (Otsu 1979; 

Sezgin 2004) of UCMs eliminates weaker, internal boundaries, and it minimizes 

oversegmentation.UCMs, however, cannot resolve boundaries between overlapping nuclei. 

To filter out overlapping nuclei from subsequent analysis, as well as any remaining 

oversegmented nuclei, we used a binary RF classifier (Good and Bad). To generate the 

training data for the RF classifier, we used an interactive KNIME (Berthold et al. 2008) 

workflow to annotate 441 segmented objects (class-Good, 304; class-Bad, 137) selected 

randomly from different wells of the training plate, Train-P1. Next, we extracted 14 
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morphometric features (e.g., circularity, solidity, area, perimeter, and major elongation) for 

each of the labeled object using the 2D geometric feature set from the KNIME Image 

Processing (KNIP) Feature Calculator Node (Dietz and Berthold 2016). The extracted 

features along with the class labels were used to train a RF classifier using KNIME’s Tree 

Ensemble Learner node. The goal of this supervised classifier was to filter out overlapping 

and mis-segmented objects from the nucleus segmentation.

Spot Detection and Filtering

DNA FISH signals in each spectral channel were segmented using the undecimated 

multiscale wavelet transform algorithm (UMSWT) (Olivo 1996; Olivo-Marin 2002). We 

used two wavelet scales for segmenting DNA FISH signals. The per-scale threshold 

parameters of the spot detection algorithm were manually adjusted so that DNA FISH 

signals in all three channels (Alexa488, ATTO565, and Cy5), which could be reliably 

detected with the same set of parameters. We found that the values of 2.0 and 1.0 for scale 0 

and 1, respectively, gave the best results across all three FISH channels. These per-scale 

threshold parameters were intentionally set to lower values for detecting FISH signals with 

low SNR. Therefore, the spot detection algorithm also segmented background regions as 

potential FISH signals (false positives). To filter out these background regions we used a 

binary supervised RF classifier. To filter out false-positive FISH signals, we incorporated 

normalized spot intensity features in addition to the spot morphometric features. For 

generating the training data for random classifier per FISH channel, objects detected by the 

UMSWT spot detection algorithm were manually annotated as either correctly (class-

GoodFISH) or incorrectly (class-BadFISH) segmented FISH spots. FISH images from 

training plate Train-P1 were used for generating this training data.

Fully CNN Model for FISH Spot Detection

The fully CNN model is based on the U-Net autoencoder architecture (Ronneberger et al. 

2015). All convolutional layers in our CNN model used a 3×3 kernel size and ReLU 
(Rectified Linear Unit) activation, except for the last layer, which used a sigmoid activation 

function to generate an output image containing pixel-level probability values. 

Convolutional layers were followed by a max-pooling (2×2 window size) layer for 

downsampling the input. The max-pooling layers were used to generate discriminating 

features at multiple scales/resolutions. We also introduced a dropout layer (dropout rate = 

0.2) in between convolution layers within each CNN block to minimize overfitting 

(Srivastava et al. 2014). These minor modifications resulted in a model with a total of 

402,625 training parameters. We used the modified Dice coefficient as the loss function (see 

Eq. 1) for optimizing the model.

For training (and validation) of the CNN we used 222 DNA FISH images and their 

corresponding binary masks of the DNA FISH signals collected from all three DNA FISH 

channels. These images were a subset of annotated spots data used for training the RF 

classifiers for spot filtering: Only those nuclei where all DNA FISH signals were annotated 

as GoodFISH were retained for CNN training. The CNN model was optimized using the 

Adam optimizer (KingmaandBa2014) with a learning rate of 10−5, a batch size of two 

images, and 5000 epochs with early stopping criteria (validation loss change of <10−7 across 
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500 epochs). The collection of 222 images and their corresponding binary masks were 

randomly split (90%–10%) to generate training (198) and validation (23) data sets. Note that 

the FISH images and the ground truth binary masks from the validation set are never used by 

the CNN model for optimizing the training parameters. The U-Net2L model was 

implemented as a stand-alone Python script (https://github.com/jocicmarko/ultrasound-

nervesegmentation) and run on a HPC compute node with Nvidia Tesla K80 GPU.

Quantitative Assessment Methodology

We used the out-of-bag training accuracy calculations to assess the performance of the RF 

classifiers. For these classifiers, out-of-bag accuracy on the training sets is a good 

approximation of testing accuracy for similar sets of the same size. The training set was 

generated using the data (nuclei and spots) from training plate, Train-P1. We used the 

modified Dice coefficient (Dice 1945; Sørensen 1948; Zijdenbos et al. 1994) as the loss 

function for the CNN model:

Modified Dice coefficient

= − loss(CNN)

= 2 * (G ∩ P) + 1
(G ∪ P) + 1 ∈ [0, 1],

(1)

where G is the ground truth binary image of DNA FISH signals in the input grayscale 

image, and P is the predicted probability image of each pixel belonging to a DNA FISH 

signal. The symbols ∩ and ∪ denote intersection and union operations, respectively. The 

smoothing factor 1 in both the numerator and denominator helps the CNN model to handle 

the special case of input grayscale DNA FISH image not having any segmented objects.

To quantitatively compare the two FISH spot detection methods (RFandCNN), we generated 

ground truth images (binary masks) corresponding to FISH signals from a randomly 

sampled FISH images in Test-P2. The ground truth images were generated for all three FISH 

channels (Alexa488, ATTO565, andCy5) and are used to enumerate the total number of true 

positives (TP, FISH signal correctly detected as a spot), false positives (FP, background 

signal detected as FISH spot), and false negatives/missing spot(s) (FN, FISH signal not 

detected as spot) for both ML-based spot detection methods. We then calculated the 

following performance metrics for both methods:

Accuracy = TP
TP+FP + FN,

Precision = TP
TP+FP,

Recall = TP
TP+FN,

F‐score = 2 × Precision × Recall
Precision+Recall .
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We validated the robustness of both spot detection approaches by comparing the number of 

FISH signals identified in each cell (copy number) per probe set in separate technical and 

biological replicates.

Implementation

We implemented all image analysis and ML classification workflows in the Konstanz 

Information Miner, KNIME (Berthold et al. 2008), Analytics Platform (version 3.2.1, 64-bit) 

using compatible KNIME Image Processing Nodes (KNIP, version 1.5.2.201610061254) 

(Berthold et al. 2008; Dietz and Berthold 2016). All the KNIME image analysis workflows 

were run on dedicated computing nodes from a high-performance batch cluster (Biowulf, 

National Institutes of Health) either interactively or in a batch mode. The computing nodes 

had the following specifications: 64-Bit RedHat Enterprise Linux 6.9 (Santiago), 28 cores 

(56 threads) Intel X2680 processor, 256 GB RAM, 4 Nvidia Tesla K80 GPUs (12 GB 

VRAM), and 800 GB of Solid State Storage. The CNN-based spot segmentation algorithm 

(U-Net-2L) was implemented as a Python script (Python version, 2.7.13, 64-bit) using Keras 

(version 2.0.5) with the Tensorflow backend (GPU-enabled, version 1.1.0, 64-bit). The 

trained CNN model was used in the KNIME workflow for spot segmentation using the 

Python Scripting KNIME node.

Code Availability

All the KNIME workflows, the training and validating data, and the models are available via 

GitHub repository at https://github.com/CBIIT/Misteli-Lab-CCR-NCI/tree/master/

Gudla_CSH_2017.

RESULTS

Complex Oligopaint Libraries of Probes Generate Diverse FISH Signals

Our laboratory has extensively used enzymatically labeled fluorescent DNA FISH probes 

and traditional spot detection algorithms for HTI applications (Burman et al. 2015; 

Shacharet al. 2015; Finn et al. 2017). In these cases, although the number of experimental 

conditions reached up to approximately 700 wells per experiment (Shachar et al. 2015), the 

number of different genomic loci labeled in any single experiment never exceeded 21 (Finn 

et al. 2017), making it feasible to empirically determine the most appropriate sets of spot 

detection parameters on a per genomic locus basis. Oligopaint DNA FISH (Beliveau et al. 

2012, 2015; Joyce et al. 2012), on the other hand, allows one to label and detect hundreds of 

different genomic loci in a single experiment on one or more 384-well plates by using 

combinatorial hybridization of pools of chemically synthesized oligo probes to genomic 

targets, together with fluorescently labeled decoding oligo probes (Fig. 1A,B; Chen et al. 

2015; Moffitt et al. 2016; Wang et al. 2016). While developing HTI assays for the detection 

of tens of genomic loci in the same experiment, we observed that FISH signals generated by 

Oligopaint probe sets targeting different genomic regions can have considerably different 

SNRs, ranging from ~2 to 9 (Fig. 1C). Consequently, manual parameter setting of traditional 

spot detection algorithms for potentially hundreds of different genomic targets did not seem 

to be either a practical or a robust solution to this computational problem. To tackle this 

issue, we tested and compared the performance of two independent supervised ML 
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approaches for the rapid and robust detection of DNA FISH spots from high-throughput 

fluorescence microscopy images (Fig. 2A,B).

Random Forest Filtering for Nuclear Segmentation

As a first step in the image analysis workflow, both spot detection methods rely on 

supervised RF (for details, see Materials and Methods) for nuclear segmentation using the 

DAPI channel images as input (Fig. 2A). We trained the RF binary classifier to distinguish 

bona fide segmented nuclei from debris and segmentation errors by using 441 user-

annotated images of segmented nuclei from the training plate Train-P1 and achieved an out-

of-bag classification accuracy of 97.3% (Fig. 3A,B; see Materials and Methods for details). 

The trained RF classifier was then tested on a larger data set of images originating from two 

biological replicate plates, Test-P1 and Test-P2, containing 48 wells each stained with DAPI 

and Oligopaint DNA FISH probe sets in three colors targeting 12 genomic loci. The 

workflow detected 23,235 and 21,208 nuclei from Test-P1 and Test-P2, respectively. The run 

time of the complete workflow for each plate, including reading the multichannel 3D stacks 

of images, was ~2400 sec (60 sec per well) on a 56-core compute node (see Materials and 

Methods for details). The workflow detected 493 ± 52 (mean ± SD) and 442 ± 39 (mean ± 

SD) nuclei per well in testing plates Test-P1 and Test-P2, respectively (Supplemental Fig. 

S1). We conclude that the RF classifier for nuclear segmentation can classify nuclei with 

high accuracy.

Training Strategy and Initial Testing for the Performance of Two Different ML-Aided Spot 
Detection Algorithms

We then used the nuclear masks generated in the previous step as the search region for a 

traditional wavelet-based spot detection algorithm (UMSWT; see Materials and Methods for 

details) in images for all three DNA FISH channels (Fig. 4A). The parameters for spot 

detection were set for low object detection stringency to provide both positive (real FISH 

signals) and negative (background) examples for subsequent classifier training (Fig. 4B). In 

these conditions, the spot detection algorithm generated 619, 110, and 459 spot 

segmentation masks for the Alexa488, ATTO565, Cy5 channels, respectively. These sets 

were then user-annotated in two classes depending on whether they contained a real FISH 

signal (GoodFISH) or not (BadFISH), to generate a ground truth set for the ML algorithms 

(Fig. 4C).

In the first of the two spot detection workflows (Fig. 2A), three separate supervised RF 

binary classifiers were trained using the spot masks images from the Alexa488, ATTO565, 

and Cy5 channels to filter out false positives (i.e., background regions detected as FISH 

signals). These RF classifiers used a predetermined set of spot morphology and intensity 

features, which were user-specified and extracted by a traditional image processing 

algorithm that was a part of the upstream image analysis workflow. The extracted features 

for the annotated objects were used to learn a binary classification scheme for FISH signals 

based on the GoodFISH or BadFISH labels provided by userannotation.Theout-of-bag 

accuracy for the spot detection using the RF classifiers in the Alexa488, ATTO565, and Cy5 

was 87.3%, 94.3%, and 87.5%, respectively (Fig. 5A–C). Training a single RF classifier 

using an ensemble of spots from the three different DNA FISH fluorescent channels did not 
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improve the overall out-of-bag accuracy (86.2%; Fig. 5D). We then tested the trained RF 

classifiers for spot classification using the two test plates (Test-P1 and Test-P2), which 

constitute two independent biological replicates and were previously unseen by the RF 

models. As a result, the three RF spot classifiers detected a total of 38,796 (59,854), 61,1121 

(57,341), and 56,488 (51,750) DNA FISH spots in the Alexa488, ATTO565, and Cy5 

channels from the Test-P1 (Test-P2) plates, respectively, which contain four replicate wells 

and 12 separate three-color probe sets each. The total run times were 2.0 and 2.5 h for each 

plate on a 56-core compute node (approximately 10 nuclei per second) and included FISH 

spot detection, spot feature extraction, and RF filtering. The spot detection, feature 

calculation, and filtering out false positives steps using the RF classifiers took ~18–22 min 

per 10,000 nuclei (i.e., 8–10 nuclei per second).

The second approach for FISH spot detection was based on the CNN architecture originally 

named U-Net (Ronne-berger et al. 2015), with the important distinction that it used only two 

downsampling and upsampling blocks, resulting in a shallow convolution network (U-

Net-2L) (Fig. 2B). This allowed the use of smaller training data sets and to optimize only 

402,625 parameters when compared with state-of-the-art deep learning architectures for 

semantic segmentation of objects from digital images (Jegou et al. 2017). The main 

difference for this CNN model, as opposed to the RF classifiers for spot filtering described 

above, is that it assigns each pixel in DNA FISH images a probability value between 0 and 1 

of belonging to a FISH signal. The CNN achieves this result by autonomously extracting an 

optimized set of image features directly from the FISH images of the training set for pixel-

level classification. We trained the CNN for approximately 3000 epochs using an ensemble 

data set of DNA FISH images in three channels and their corresponding candidate spot 

masks previously generated by the wavelet-based spot detection algorithm. These were the 

same spot candidate regions previously used to train the RF classifiers (Plate Train-P1). We 

assessed the accuracy of the CNN in segmenting DNA FISH spots by calculating the Dice 

coefficient (a measure of pixel classification accuracy; see Materials and Methods for 

details). The calculated Dice coefficient values for the trained CNN model were 0.993 for 

the training data (198 FISH images) and 0.913 for the validation data (23 FISH images), 

indicating that it can classify pixels as spots with high classification accuracy (Supplemental 

Fig. S2). Furthermore, and similar to previous observations on RF classifiers, we tested the 

CNN method to detect FISH signals from 48 wells in the Test-P1 and Test-P2 plates. For 

this task, we implemented an image analysis workflow that, when compared with the RF 

filtering approach, used the CNN method to replace (i) the wavelet-based spot detection, (ii) 

the feature calculation of detected spots, and (iii) the RF predictor for filtering out false-

positive spots. Using this workflow, we identified a total of 63,100 (53,698), 69,244 

(64,025), and 72,549 (66,260) Alexa488, ATTO565, and Cy5-labeled FISH spots from Test-

P1 (Test-P2) images, respectively. The total runtime for CNN FISH detection was ~15min 

for each plate on a 56-core, HPC compute node with 4 Tesla K80 GPUs (approximately 80 

nuclei per second) of which the CNN spot detection was only ~42 sec for 10,000nuclei (i.e., 

230 nuclei per second). These results indicate that the CNN classifier is 25–30-fold faster 

than the RF at detecting spots when compared with the RF models.
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Comparison between RF and CNN for FISH Spot Detection Accuracy

Having determined the feasibility and computational speed of applying either the RF or the 

CNN methods for detection of FISH signals in three spectral channels on two independent 

test plates, we conducted a side-by-side comparison of their accuracy in the identification 

and classification of FISH spots not present in the training data set (Train-P1). To this end, 

we first randomly selected 184, 186, and 153 cropped nuclear Alexa488, ATTO565, and Cy5 

images, respectively, from Test-P2 plate (Fig. 6A–C, top rows), and spot regions generated 

by the wavelet-based spot detection algorithm were manually annotated as belonging to the 

GoodFISH or BadFISH classes as previously described (Fig. 6A–6C, second row). Finally, 

spots were detected using either the RF filter method (Fig. 6A–C, third row) or the CNN 

method (Fig. 6A–C, fourth row).

A quantitative assessment of the results of this comparison showed that for the Alexa488 

images, in which the FISH signals were dimmer (SNR ∼ 2), the RF method detected 579 

FISH spots. Of these, 518 were true positives, whereas the RF method failed to detect nine 

bona fide DNA FISH spots. Altogether, testing the RF model on this subset of annotated 

spots from the Test-P2 plate resulted in an accuracy of 88.1%, precision of 89.5%, recall of 

98.3%, and F-score of 93.7% (Fig. 7A; see Materials and Methods for details). On the same 

set of images, the CNN method detected a total of 530 spots, of which 524 (out of 527) were 

true positives and failed to detect only three DNA FISH signals, thus resulting in an 

accuracy of 98.3%, precision of 98.9%, recall of 99.4%, and F-score of 99.1% (Fig. 7A). For 

the random set of ATTO565 images, in which the DNA FISH signals had a higher SNR (~5) 

than did the Alexa488 signals, the RF classifier detected 501 spots out of 523 (ground truth) 

without any false positives, but failed to detect 22 bona fide DNA FISH spots (false 

negatives) (Fig. 7B). The CNN classifier detected all the 523 spots (true positives) from the 

ground truth along with 12 false positives. Thus, the performance metrics for the RF versus 

the CNN spot detection methods on the ATTO565 images were, respectively: accuracy 

95.80% versus 97.76%, precision 100% versus 97.78%, recall 95.79% versus 100%, and F-

score 97.85% versus 98.87% (Fig. 7B). The performance of the two methods on Cy5-labeled 

DNA FISH signals images followed a similar trend as for ATTO565. In fact, out of 153 Cy5 

images (SNR ~ 9) containing 440 FISH spots, the RF method detected 393 FISH spots of 

which only three were false positives and failed to detect 50 true FISH spots (false 

negatives). Most of the false negatives were due to corresponding RF classifier filtering out 

detected spots by the wavelet-based spot detection algorithm (data not show). This resulted 

in accuracy of 88.03%, precision of 99.24%, recall of 88.64%, and F-score of 93.64% (Fig. 

7C). In contrast, the CNN method (Fig. 7C) detected all the 440 true positives, but also 

detected 27 false positives, thus, leading to performance metrics of 94.22% accuracy, 

94.21% precision, 100% recall, and 97.02% F-score.

Altogether, these results suggest that both the RF and the CNN methods can detect FISH 

signals originating from diverse genomic loci and in three different spectral channels with 

high accuracy and precision, especially when the SNR of the FISH signals is high (≥5). The 

CNN method, however, outperformed the RF-based spot classifier based on quantitative 

metrics on images with weaker FISH signal (SNR ~ 2).
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Distribution of the Oligopaint DNA FISH Signals Sets as Detected by RF and CNN Models

To further compare the performance of the RFand CNN spot detection algorithms on 

different sets of Oligopaint DNA FISH probes, we measured the number of DNA FISH 

signals per nucleus in Alexa488, ATTO565, and Cy5 FISH images obtained from the two 

biological replicate plates Test-P1 and Test-P2 (Fig. 8). The cells used in this study, MDA-

MB-231, are hypotriploid and contain a total of 59 to 66 highly rearranged chromosomes, 

with an autosomal chromosome copy number ranging from 2 to 4, depending on the 

chromosome (American Tissue Culture Collection 2012). The copy number profile 

generated by the RF and CNN spot detection algorithms for each OligoPaint DNA FISH 

probe set directed against a particular genomic target was concordant for all probes in all 

channels (Fig. 8). As expected from MDA-MB-231 karyotype analysis, most genomic loci 

probed here with Oligopaint and detected either with RF or with CNN in the ATTO565 or 

Cy5 channels, and to a lesser extent in the Alexa488 channel, showed a sharp peak, in at 

least 50% of the nuclei, at either 2(e.g., locus 49 in the Alexa488 channel, locus 31 in the 

ATTO565 channel, and locus 1 in the Cy5 channel; Fig. 8) or 3 FISH spots per nucleus (e.g., 

locus 49 in the Alexa488 channel, locus 39 in the ATTO565 channel, or locus 19 in the Cy5 

channel; Fig. 8). Importantly, the standard deviation among technical replicates was low(Fig. 

8), and the measurements on the two biological replicates (Test-P1 and Test-P2) were highly 

concordant (Fig. 8). We conclude that both RF and CNN are robust spot detection 

algorithms that can be trained once on an ensemble of different Oligopaint DNA FISH probe 

sets and then reused in multiple independent biological replicates to visualize multiple 

genomic loci with high accuracy without the need for a manual search of the best detection 

parameters.

DISCUSSION

We present here two ML-based image analysis work-flows that can be used to detect 

multiple FISH signals from three fluorescence microscopy channels at high throughput with 

diverse SNR. More importantly, the workflows do not require manual parameter tweaking 

for each individual genomic loci tested (Figs. 4–7). Because the RF and CNN spot classifiers 

presented here are supervised ML methods, the main effort for the user is in the manual 

annotation of sets of DNA FISH channels images to create a ground truth data set of spots 

regions of interest to train the spot ML classifiers. Given that spot-like features generally are 

limited to small image regions (e.g., 10×10 pixels) we reduced this burden by selecting an 

RF model for spot classification task and a shallow CNN autoencoder model (U-Net-2L) for 

spot segmentation. This resulted in a smaller number of model parameters to train and in 

smaller training data sets for efficient performance. In addition, we greatly facilitated 

manual annotation of the FISH images by using a wavelet-based spot detection algorithm 

with nonstringent detection parameters, to automatically generate a diverse set of spot 

segmentation masks that can be directly used by the user for training ML methods. Overall 

this resulted in a manual annotation time of the order of 30–60 min. This initial investment 

dramatically reduces the time needed for downstream image analysis setup when compared 

with manual tweaking of traditional spot detection parameters, and we expect that ML 

methods for spot detection will greatly reduce this bottleneck in the analysis of image data 

sets including tens or hundreds of different genomic loci tagged with fluorescently labeled 
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Oligopaint DNA FISH probes. Furthermore, it is likely that these ML spot detection 

methods explore a much larger parameter optimization space when compared with manual 

parameter tweaking of traditional spot detection methods and will likely result in higher spot 

detection accuracy. Finally, given the robustness of these ML approaches to reproducibly 

detect spots from images generated in different technical and biological replicates (Fig. 8), 

we expect that, provided that the experimental conditions remain the same, it will be 

possible to apply these models to different experiments performed on different days without 

the need for retraining, thus making it a “train once and reuse multiple times” approach for 

DNA FISH spot detection.

Although both the more traditional RF classifier and the CNN model show comparable high 

performance in terms of spot segmentation accuracy (Figs. 4–7), we expect that the CNN 

model will be the approach of choice because it performs better than RF in both high- and 

low-SNR conditions (Fig. 7). More importantly, the CNN approach eliminates the need for 

computationally intensive image feature calculations, takes advantage of highly efficient 

GPU hardware acceleration for spot segmentation, and leads to a 25–30-fold increase in the 

spot detection speed. This last feature is essential to process large data sets of images 

generated by high-throughput microscopes (up to 105 images per 24 h). For these reasons, 

the CNN model, which we named SpotLearn, is an ideal choice for ML-mediated spot 

detection of Oligopaint DNA FISH signals. We expect that SpotLearn could be further 

improved by tuning the hyperparameters of the model—namely, the number of filters in the 

convolutional layers, the filter activation functions, the number of downsampling and 

upsampling levels—and by including batch normalization (Ioffe and Szegedy 2015). In 

addition, it might be possible to improve the SpotLearn model accuracy and to further 

strengthen it against overfitting by performing K-fold cross-validation by training K 

SpotLearn models on training-validation data sets (He et al. 2016). Finally, it might also be 

worthwhile to explore data augmentation strategies (vertical and horizontal flips and 

shifting) for increasing the size of the data training sets (Huang et al. 2017). More generally, 

it should also be possible to use SpotLearn for a range of cellular and biomolecular imaging 

applications requiring spot detection as an intermediate step. For instance, SpotLearn could 

be used in lieu of traditional spot detection algorithms for detecting single molecules in 

super-resolution and localization microscopy (Betzig et al. 2006; Smith et al. 2010; Liu et al. 

2017) and for detecting nascent RNA transcripts in live cell images (Larson et al. 2011). 

Altogether, we anticipate that SpotLearn will become an important tool for the detection of 

genomic loci in a high-throughput fashion and in the study of the 3D genome organization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Representative maximum intensity projection images of MDA-MB-231 cells from one 

of the 48 wells with a unique Oligopaint DNA FISH set from test plate Test-P2. The DAPI-

stained nuclei (blue channel) are displayed in grayscale, whereas the Alexa488 (green 

channel), ATTO565 (red channel), and Cy5 (far-red channel) channels are displayed using 

green, red, and cyan lookup tables, respectively. Scale bar, 10 μm. (B) Three Oligopaint 

DNA FISH channels corresponding to the region enclosed by the dashed box in A. (C) 

Representative surface rendering of the DNA FISH signals intensity identified by the solid-

white colored boxes in B. The surface plots were generated by interpolating the raw DNA 

FISH signal intensities (Z-axis, arbitrary units) of 8 × 8 pixels region centered around the 

brightest pixel of the DNA FISH spot (1 pixel = 0.325 μm). The DNA FISH signal intensity 

for the Alexa488-labeled genomic locus had higher background around 1000 arbitrary units 

(a.u.) with peak signal of ~2000 a.u., thus leading to a signal-to(background/)noise ratio 

Gudla et al. Page 16

Cold Spring Harb Symp Quant Biol. Author manuscript; available in PMC 2019 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(SNR) of ~2. The ATTO565- and Cy5-labeled DNA had lower background, 400 and 160 

a.u., respectively, and SNR of 5 and 9, respectively.
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Figure 2. 
(A) Schematic of the image analysis workflow for detecting DNA FISH signals from high-

throughput microscope images (blue-shaded block). The top branch after the spot detection 

block corresponds to a first approach for detecting and filtering DNA FISH signal using a 

random forest (RF) classifier, whereas the bottom branch corresponds to a second approach 

using fully CNN (U-Net-2L). UCMs, ultrametric contour maps; RF, random forest(s); 

UMSWT, undecimated multiscale wavelet transform. (B) The U-Net-2L architecture used 

for DNA FISH signal segmentation. During the training phase, the CNN model uses a 

grayscale DNA FISH image (top left) along with binary mask (GT; top right) corresponding 

to DNA FISH signals for optimizing the model parameters using error back-propagation. 

Gudla et al. Page 18

Cold Spring Harb Symp Quant Biol. Author manuscript; available in PMC 2019 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The numbers below each layer in the CNN correspond to the number of convolution filters 

and the height of each layer is proportional to the height of the input image(s). During the 

prediction (inference) phase, for a given grayscale DNA FISH image (bottom left) the CNN 

model predicts the probability of each pixel belonging to a DNA FISH signal (bottom right). 
Red boxes represent the 2D convolutional layer with 3 × 3 filter size and ReLU activation; 

purple boxes represent the maximum-pooling layers using 2 × 2 window size; green boxes 

represent the up-convolutional (convolutional transpose) layer; yellow boxes correspond to 

dropout layers; the gray box corresponds to a 1 × 1 convolution layer with sigmoid 

activation function for generating probability for each pixel belonging to a DNA FISH 

signal; green boxes along with dashed boxes represent concatenation layer to merge 

information from different resolutions/ scales.
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Figure 3. 
(A) Confusion matrix for calculating the out-of-bag accuracy for the random forest (RF) 

classifier for filtering out mis-segmented nuclei from the DAPI channel. TP, true positives; 

FP, false positives; FN, false negatives; TN, true negatives. (B) A representative example of 

classes (class-Good and class-Bad) assigned by RF classifier to the segmented objects in the 

DAPI channel using seeded watershed with ultrametric contour maps. Red and yellow colors 

represent class-Good and class-Bad nuclei, respectively. Nuclei along the edge of the field of 

view are filtered out before applying the RF classifier. Scale bar, 10 μm.
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Figure 4. 
(A) Representative examples of DNA FISH images used for generating the training set(s) for 

(a) spot filtering using random forest classifier(s) and (b) binary masks for CNN spot 

segmentation. Scale bar, 10 μm. (B) Spots detected by the wavelet-based method with low 

stringency detection parameters. Each detected object in the nucleus is labeled with a yellow 

color bounding box. (C) Detected objects after user annotation using an interactive KNIME 

workflow. Spots labeled class-goodFISH and class-badFISH by the user are shown in green 

and red colors, respectively. Nuclei in which all the DNA FISH signals were labeled as 

class-goodFISH were used for generating the binary masks for CNN.
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Figure 5. 
Confusion matrices for calculating the out-of-bag accuracy for random forest (RF) 

classifier(s) for filtering out background signals in the (A) Alexa488 channel, (B) ATTO565 

channel, and (C) Cy5 channel. (D) Confusion matrix for the RF classifier trained with 

images from all the DNA FISH channels. TP, true positives; FP, false positives; FN, false 

negatives; TN, true negatives.
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Figure 6. 
Illustrative examples of DNA FISH spot detection by random forest (RF) and CNN methods 

on a random set of nuclei from test plate Test-P2. (A–C) Representative images with 

Alexa488, ATTO565, and Cy5-labeled DNA FISH (rows: Alexa488, ATTO565, Cy5). “GT” 

rows correspond to ground truth FISH regions (yellow color) identified by a user. “RF” rows 

correspond to DNA FISH spot regions after applying RF filtering to remove background 

regions, green colored spot regions represent true DNA FISH signals (true positives), red 

colored spot regions represent background signals even after RF filtering (false positives), 
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and blue colored spot regions represent true DNA FISH signals that did not get detected 

(false negatives). CNN rows correspond to DNA FISH spots detected by the U-NET-2L spot 

detection method. The color scheme of the spot regions in CNN rows is identical to in the 

RF rows. Scale bar, 10 μm.
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Figure 7. 
Summary of DNA FISH signal detection, using (a) random forest (RF) filtering on spots 

identified by the wavelet-based method and (b) CNN, on randomly selected set of DNA 

FISH images from test plate Test-P2. (A) Results for 184 Alexa488-labeled DNA FISH 

images with 527 spots. (B) Results for 186 ATTO565-labeled DNA FISH images with 523 

spots. (C) Results for 153 Cy5-labeled DNA FISH images with 440 spots.
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Figure 8. 
Plots comparing the number of DNA FISH signals (copy number) detected per nucleus in 

MDA-MB-231 cells between biological replicates. The results for 36 genomic loci labeled 

using 12 unique combinations of Alexa488-, ATTO565-, and Cy5-labeled DNA Oligopaint 

probes are displayed in the first, second, and third row, respectively. DNA FISH probe sets 

were designated with an “i-j-k” scheme, where “i” is an identifier for the gene locus labeled 

with Alexa488, “j” is an identifier for the gene locus labeled with ATTO565, and “k” is an 

identifier for the gene locus labeled with Cy5. The left column shows the copy number 

histograms using the RF classifier for spot filtering, and the corresponding results from 

CNN-based spot-detection method (U-Net-2L) are in the right column. Each dot in the 

histogram represents the mean proportion of nuclei with the detected copy number 
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calculated over the four technical replicates. The bars represent the standard deviation (SD) 

of the mean across the technical replicates.

Gudla et al. Page 27

Cold Spring Harb Symp Quant Biol. Author manuscript; available in PMC 2019 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	MATERIALS AND METHODS
	Cell Culture
	Oligopaint DNA FISH
	Experimental Layout
	High-Throughput Image Acquisition
	Nucleus Segmentation and Filtering
	Spot Detection and Filtering
	Fully CNN Model for FISH Spot Detection
	Quantitative Assessment Methodology
	Implementation
	Code Availability

	RESULTS
	Complex Oligopaint Libraries of Probes Generate Diverse FISH Signals
	Random Forest Filtering for Nuclear Segmentation
	Training Strategy and Initial Testing for the Performance of Two Different ML-Aided Spot Detection Algorithms
	Comparison between RF and CNN for FISH Spot Detection Accuracy
	Distribution of the Oligopaint DNA FISH Signals Sets as Detected by RF and CNN Models

	DISCUSSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.

