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Abstract

Meningeal inflammation and encapsulation of neural electrode arrays is a leading cause of device 

failure, yet little is known about how it develops over time or what triggers it. This present work 

characterizes dynamic changes of meningeal inflammatory cells and collagen-I in order to 

understand the meningeal tissue response to neural electrode implantation. We use in vivo two-

photon microscopy of CX3CR1-GFP mice over the first month after electrode implantation to 

quantify changes in inflammatory cell behavior as well as meningeal collagen-I remodeling. We 

define a migratory window during the first day after electrode implantation hallmarked by robust 

inflammatory cell migration along electrodes in the meninges as well as cell trafficking through 

meningeal venules. This migratory window attenuates by 2 days post-implant, but over the next 

month, the meningeal collagen-I remodels to conform to the surface of the electrode and thickens. 

This work shows that there are distinct time courses for initial meningeal inflammatory cell 

infiltration and meningeal collagen-I remodeling. This may indicate a therapeutic window early 

after implantation for modulation and mitigation of meningeal inflammation.
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1. Introduction

Penetrating neural electrodes are essential tools for electrophysiological monitoring and 

electrical stimulation of neurons to enable brain-computer interfaces, neuromodulation, and 

longitudinal neuroscience research [1–8]. Despite their clinical promise, neural electrodes 

have limited long-term performance due to their poor integration into host tissue. [9–16]. As 

a consequence, electrode recording failure within months to years after implantation has 

been reported in rodent [17, 18], cat[19], and primate models [20, 21] for chronically 

implanted electrode devices.

Many strategies have been pursued to improve the longevity of neural electrodes, with most 

focused on alleviating glial scarring and neurodegeneration within the brain parenchyma 

[22]. The neural tissue response, however, is not the only biological source of failure. The 

fibrous meningeal tissue at the surface of the brain can proliferate and encapsulate aspects of 

the electrode array that reside at the surface of the brain (commonly referred to as the 

“platform” or “base” of an electrode array). The meninges consists of layers of fibrous tissue 

at the brain’s surface (figure 1(a)) that provide mechanical protection to the brain [23], 

harbor the major arteriole and venule inputs and outputs of the brain [24], and is essential in 

controlling brain inflammation and waste clearance [25–28]. After injury, however, 

inflammatory cell influx and increased collagen synthesis can create thickening of the 

meningeal tissues [28–30].

In the context of neural implants, implantation of large arrays in non-human primates and in 

the clinical setting requires a large (>16 cm2) craniotomy that can significantly affect bone 

regrowth and wound healing [21, 31, 32]. These large “critical-sized” defects can still impair 

bone repair even when the bone is replaced after surgery [32]. As a result of critical-sized 

cranial defects, collagen within the craniotomy tends to thicken and bone regrowth is 

limited, but this can be improved by filling the craniotomy with scaffolds [33–35]. This may 

explain findings that meningeal tissue and collagen-I progressively grows around and under 

the electrode device and can lead to ejection of the device from the cortex [19]. In their 

landmark studies analyzing failure modes of 78 Utah style electrode arrays implanted in 

non-human primates, Barrese et al. show that 53% of chronic device failures occur due to 

meningeal encapsulation and ejection of devices, with more arrays displaying some degree 

of meningeal encapsulation [21, 36]. Similar or greater rates of this phenomena have been 

observed for Utah array implants in rodent [37, 38] and cat [19] models. Meningeal 

encapsulation mirrors the foreign body response to implanted devices in other non-CNS 

tissues, which ultimately results in fibrous encapsulation of the device [39, 40]. Interestingly, 

meningeal encapsulation of neural devices is prevalent for chronically implanted sub- and 

epi-dural electrocorticographic electrode grids as well [41–44]. This suggests that the 

encapsulation response does not require traumatic brain penetration to proceed.

Nonetheless, several studies have also reported cellular exchange between the meningeal and 

intracortical compartments adjacent to penetrating electrode arrays. Suspected fibroblast 

migration from the meninges along the electrode shank can occur in implants that protrude 

through the meninges, but not in implants that are fully embedded in the cortex [45–48]. A 

similar cell migration route may be partly responsible for the large population of blood-
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borne macrophage at the intracortical tissue-electrode interface. Previous studies have shown 

that over 60% of monocytes at the interface come from outside instead of migration of 

resident brain microglia [12].

The current, limited solutions for preventing meningeal encapsulation of device extend to 

creating physical barriers between the device and meningeal tissue [49, 50] and 

pharmacologically inhibiting fibroblast proliferation [51], but these solutions have not 

changed the narrative on meningeal encapsulation [21, 52]. To create targeted prevention 

and mitigation strategies for meningeal encapsulation, we must understand the triggers and 

control switches for the fibrous growth. In the present work, we use in vivo two-photon 

microscopy in a mouse model for implanted intracranial electrodes to quantify meningeal 

inflammatory cell response and meningeal collagen-I remodeling over the first month post-

implantation. We build on our previous results showing rapid dynamic cell behavior at the 

meningeal surface [52] to define a migratory window for meningeal inflammatory cells. 

Over the first day after implant, meningeal inflammatory cells show rapid migration along 

the surface of the electrode at the meningeal-electrode interface and through pial vessels. 

Over the next weeks, there is low cell migration in these compartments and stable, but 

variable, inflammatory cell density in the tissue surrounding the electrode. By the first 

month post-implant, meningeal collagen remodels to conform to the surface of the electrode 

and thickens. These findings ultimately suggest that there is a rapid meningeal response in 

the early period after implantation that may present a therapeutic window to alter the long-

term outlook for meningeal encapsulation of neural electrodes arrays.

2. Materials and Methods

2.1. Animals and surgery

This study used a total of 8 mice, with a total of 12 craniotomies. Of these, 6 craniotomies 

were filled with silicone elastomer, 5 craniotomies were filled with saline, and 1 craniotomy 

was filled with a hydrogel sealant. One subject had significant bubble formation within the 

silicone at the meningeal-electrode interface and was only used for meningeal thickness 

quantification. One additional subject failed to recover from implantation by day 2 of 

implantation and was removed from the study. All subjects were CX3CR1-GFP transgenic 

mice with GFP expression in brain microglia and macrophage as well as circulating 

leukocytes such as myeloid cells, NK cells, dendritic cells, and neutrophils controlled by the 

CX3CR1 promotor (Jackson Laboratories, Bar Harbor, ME)[53]. All animals were male and 

between 3–6 months of age at time of implantation. Implantation was based on previous 

surgical optimization[52]. Briefly, animals were anesthetized with 75mg/kg ketamine and 

10mg/kg xylazine and head-fixed with ear bars. Animals’ temperature and respiration was 

maintained with a heating pad and oxygen line. After cleaning with isopropyl alcohol and 

betadine, the animals’ scalps were resected and bilateral craniotomies (~4×3mm) over 

visual, motor, and somatosensory cortices were drilled with a high-speed dental drill. Non-

functional, 3mm single shank silicon planar electrode arrays (NeuroNexus, Ann Arbor, 

Michigan) were manually implanted in the center of the craniotomy targeting somatosensory 

cortex (figure 1(a), left). Dura was not removed prior to implantation. Implants were inserted 

to approximately 1mm, which was assessed by inserting until all electrode sites were 
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submerged in tissue and confirmed by post-mortem analysis of explanted electrodes (figure 

6(d)). Implants were approximately inserted 30° angle, which was gauged by protractor 

confirmed by post-insertion imaging. For all implants, angle of insertion was on average 

34.8° with a standard deviation of 10.3°. The tab of the electrode was broken off with 

surgical microscissors after implantation such that the broken end was level with the top of 

the skull (figure 1(a), right). Any electrode fragments in the imaging window were removed 

by gentle saline washes. Minimal movement of the electrode was noted while cutting the 

shank. This was confirmed by the minimal dural defect observed after implantation (figure 

5(a)) and lack of bleeding after cutting the electrode. Craniotomies were either filled with a 

sealant material or with pH controlled, osmotically balanced saline that was sterilized by 

manufacturer prior to use. The sealant material was either an in situ forming silicone 

elastomer sealant (Kwik-Sil, World Precision Instruments, Sarasota, FL), or a novel in situ 
forming hydrogel sealant (described below). All sealant materials were applied through 

sterilized applicator tips or needles. After filling the craniotomy, it was covered with a cover 

glass. The cranial window was secured with light-curable cement (Composite Flowable; 

Henry Schein, NY, USA), and animals were allowed to recover. Animals showed no signs of 

infection throughout the study. All procedures and experimental protocols were approved by 

the University of Pittsburgh, Division of Laboratory Animal Resources and Institutional 

Animal Care and Use Committee in accordance with the standards for humane animal care 

as set by the Animal Welfare Act and the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals.

2.2. Hydrogel preparation and validation

For one animal, the craniotomy was sealed with <10µL of an in situ forming hydrogel 

(referred to as PEG/PEI hydrogel). The gel was prepared by mixing 10% w/v 4-arm 

poly(ethylene) glycol (10 kDa, JenKem Technology USA, Plano, TX, USA) with 10% v/v 

branched polyethylenimine (25 kDa, Sigma-Aldrich) in a 10:1 ratio in sterile saline, which is 

similar in composition to commercially available, FDA approved PEG/PEI hydrogels [54]. 

Hydrogel precursor solutions were filter sterilized prior to mixing. All gels cured within 30s. 

The biocompatibility of the hydrogel was determined by a conditioned media study on a 

Highly Aggressive Proliferating Immortalized (HAPI) microglial cell line (provided by Dr. 

Xiaoping Hu, University of Pittsburgh) as previously described [55–57]. HAPI cells were 

selected as they are of a leukocyte lineage, and therefore similar to the CX3CR1(+) cells we 

observe in the in vivo portion of this study. HAPI cells were plated in at 105 cells/well in a 

24-well plate. Cells were grown in control media (DMEM/F12 with 10% Fetal Bovine 

Serum and 1% penicillin-streptomycin, ThermoFisher Scientific) until 80% confluency. 

Media was replaced with either fresh control media, or control media that had been 

conditioned with a freshly crosslinked PEG/PEI hydrogel overnight. Conditioning did not 

affect pH, which was measured by pH strips. After 1 day of exposure, cells were stained 

with a Live/Dead Cell Viability Assay (ThermoFisher Scientific) and imaged with a 

fluorescence microscope. Cell viability was determined by comparing the area of each 

image occupied with live cells to the area of each image occupied with dead cells (analysis 

completed on the NIH software ImageJ).
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2.3. In vivo two-photon Imaging

At 0.5, 0.75, 1, 2, 4, 7, 14, 21, and 28 days post implant (dpi), animals were sedated with 1–

1.5% isoflurane and head-fixed with ear bars for imaging. For vascular contrast, animals 

received intraperitoneal injections of sulforhodamine 101 (SR101) (~0.05 cc; 1 mg/ml). 

Animals were placed under a two-photon laser scanning microscope with a Bruker scan 

head (Prairie Technologies, Madison, WI), TI:sapphire laser tuned to 920 nm (Mai Tai DS; 

Spectra-Physics, Menlo Park, CA), light collection through non-descanned photomultiplier 

tubes (Hamamatsu Photonics KK, Hamamatsu, Shizuoka, Japan), and a 16x, 0.8 numerical 

aperture water immersion objective (Nikon Inc., Milville, NY) as previously described [52, 

58, 59]. Laser power was maintained between 20–40 mW. All images were collected 

through Prairie View software. For each imaging session, “Z-stack” tissue volumes from 

each craniotomy (410 × 410 × 82µm XYZ at a resolution of 0.8 X 0.8 X 2 µm) were scanned 

at 1 minute intervals (frame scan rate: 0.69Hz; line scan rate: 357 Hz) for 15–30 minutes. 

Additional Z-stacks were collected with filters to resolve second harmonic generation (SHG) 

at half the laser wavelength (~460nm), which enables intrinsic imaging of collagen-I (shown 

in blue in figure 1(b), top left). For a subset of animals (3 from the silicone sealant group and 

2 from the saline sealant group), devices were explanted at the experimental endpoint and 

imaged under two-photon microscopy. Additional devices were damaged during 

explantation and not viable for explant analysis.

2.4. Non-human primate explant analysis

To compare and contrast these murine findings with higher order animals, we examined the 

ex vivo meningeal collagen around a 10×10 shank Utah style array (Blackrock 

Microsystems, Salt Lake City, UT) that had been implanted in the motor cortex of a rhesus 

macaque for ~2.5 years (tissue was donated by the Motorlab, directed by Dr. Andrew 

Schwartz, at University of Pittsburgh). Following transcardial perfusion with 4% 

paraformaldehyde, the brain was removed with the Utah array and surrounding bone left 

intact. After post-fixation in 10% paraformaldehyde, micro computed tomography 

(microCT) was performed with a multi-modal Siemens Inveon micro-CT/SPECT/PET 

system (Inveon, Siemens Inc., Knoxville, TN, USA) as previously described[37]. The Utah 

array and surrounding tissue (>5mm margin) was dissected out of the brain. Brain tissue 

adjacent to one side of the Utah array was sectioned away with a Vibratome until the shanks 

of one edge of the device were visible. These shanks were imaged for second harmonic 

generation imaging as described in section 2.3.

2.5. Image processing, analysis, and statistics

2.5.1. Cell velocity analysis—CX3CR1(+) cellular element migration along the 

electrode’s surface at the meningeal-electrode interface was estimated by a “cell migration 

index” . First, time-series z-stacks of the silicone sealant group were preprocessed by a 

median filter (3×3 pixel kernel). For each time frame, images along the Z-axis were summed 

to project the 3D Z-stack into a single 2D plane. Motion between frames was corrected by a 

recursive rigid body transformation (StackReg plugin for ImageJ software[60]). A region of 

interest (ROI) around the meningeal-electrode interface was manually-defined based on the 

boundary between the electrode’s surface and the SHG signal of the meningeal collagen-I. A 
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custom Matlab script (MathWorks, Boston, MA) was used to determine the “cell migration 

index” for the CX3CR1(+) cellular elements in each time-series. First, to determine which 

pixels were part of CX3CR1(+) cellular elements, images were binarized based on an image 

intensity threshold (mean pixel intensity + the standard deviation of pixel intensities for each 

frame). The difference in number of CX3CR1(+) cellular elements within the ROI between 

consecutive frames was used to estimate the amount of migration during each frame. This 

number was normalized to the total number of CX3CR1(+) cellular elements to produce the 

cell migration index, where a “0” value indicates no migration and a “1” value indicates that 

all CX3CR1(+) cellular elements showed movement. The cell migration index was averaged 

across frames for each time-point to enable statistical comparisons across time-points. All 

animals with silicone filled sealants were used for this analysis (n = 5), however, due to 

animal attrition and large motion artifacts in some imaging sessions, n = 4 from 0.5–1dpi 

and 14–21dpi, n = 5 from 2–7dpi, and n =3 at 28dpi. Statistical comparisons over time were 

performed with one-way ANOVA and Tukey HSD post-tests (Matlab; significance: p < 

0.05).

Individual cell velocities were also calculated by manual tracking at 0.5–1dpi in ImageJ. 

Velocities are presented as mean velocity over 5–30min windows. Cell diameters were based 

on the major axis of ellipses fitted to each migrating cell. Migratory direction preference was 

calculated by defining movement “toward interface” as negative X-direction movement and 

“away from the interface” as positive X-direction movement, where the X-direction is along 

the length of the electrode. Preference was defined by net movement/ absolute value of total 

movement for each cell, where a “−1” value would indicate that a cell moved exclusively 

toward the interface, a “+1” value would indicate that a cell moved exclusively away from 

the interface, and a value of “0” would indicate that the cell moved equal distance toward 

and away from the interface.

2.5.2. Cell density analysis—Density of meningeal CX3CR1(+) cellular elements 

within 100µm of the implanted electrode was determined for silicone sealed craniotomies 

over time. A custom Matlab script was used to automatically segment meningeal cells from 

cortical cells based on the SHG collagen-I signal. A maximum intensity projection of the 

SHG z-stack was used to find the Z-location with the most intensity collagen-I signal for 

each XY coordinates. This information was used to fit a cubic polynomial surface over the 

surface of the brain using the “fit” function in Matlab’s Curve Fitting Toolbox. Each fit was 

manually inspected. To determine meningeal density, the number of pixels with CX3CR1(+) 

cellular elements (defined by a threshold set to the mean pixel intensity plus the standard 

deviation of image intensity of the maximum intensity Z-projection image) within ± 10µm 

of the fitted meningeal surface were summed. The sample region was confined to within 

100µm of the implanted electrode as defined by the distance transform (“bwdist” function in 

Matlab). All animals with silicone filled sealants were used for this analysis (n = 5), 

however, due to animal attrition and large motion artifacts in some imaging sessions, n = 4 

from 0.5–1dpi and 14–21dpi, n = 5 from 2–7dpi, and n =3 at 28dpi. The total area of the 

meningeal CX3CR1(+) signal was normalized to the total area of sampled meningeal 

surface. Statistical analysis of changes in density over time was carried out with a one-way 

ANOVA (Matlab).
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2.5.3. Blood vessel trafficking analysis—To determine the extent of leukocyte 

trafficking through large pial vessels in silicone sealed or saline filled craniotomies, vessels 

labeled with SR101 were first identified as either venule or arteriole by measuring vessel 

dilation over 0.5 to 2dpi, where venules showed >10µm dilation as previously described 

[61]. A total of 7 venules and 5 arterioles over 6 animals were identified (). To track the 

amount of cellular trafficking, images were preprocessed with a median filter (3×3 pixel 

kernel). The maximum intensity projection of Z-stack slices that contained the center of the 

pial vessels along the XY plane was taken and motion was corrected by recursive rigid body 

transformation (StackReg plugin for ImageJ). For image series with low SR101 leakage, 

vessel ROIs could be segmented by creating a binary mask of vessels in the SR101 channel 

3D Z-stacks to exclude all non-vessel pixels (example images shown in figure 4(a), right). 
Following definition of the vessel ROIs, the CX3CR1 channel was binarized using the 

IsoData threshold technique[62], and the number of CX3CR1(+) cells were counted for each 

frame using ImageJ Particle Analysis particles (particles <10µm2 in area were discounted as 

noise). The average number of CX3CR1(+) cells over each imaging session was quantified. 

This analysis does not capture if cells cross the vessel wall or not. The number of trafficking 

cells in and the diameter venules and arterioles at 0.5–1dpi and 2–4dpi were compared by 

two-way ANOVA with Tukey’s HSD post-hoc tests (Matlab; significance: p < 0.05).

2.5.4. Meningeal shape and thickness analysis—To assess if the meninges 

remodeled around the electrode after implantation, the margin of collagen-I tissue at the 

meninges-electrode interface was traced with the “getline” function in Matlab. Given the 

parabola-shaped nature of the collagen margin, we fit a 2nd degree polynomial to our trace 

using the “polyfit” function in Matlab and calculated curvature at the model’s vertex. In this 

assessment, larger curvature means that the collagen-I margin is more separated from the 

electrode’s surface, while less curvature implies that the collagen-I margin is flatter and 

more conformal against the face of the electrode. Changes in curvature over time were 

assessed by one-way ANOVA with Tukey’s HSD post-hoc tests (Matlab; significance: p < 

0.05). Curvature measurements within 12–24h were averaged together for the 1dpi value for 

each animal. For this analysis, all silicone sealed animals that survived for at least 21 dpi 

were used, resulting in n = 4 for 1–21dpi and n = 3 for 28dpi. A custom Matlab script was 

also used to automate the measurement of meningeal thickness in 3D Z-stacks with SHG 

images for both the silicone and saline sealed craniotomies. Following a 3D median filter 

(5×5×5 pixel kernel), a maximum intensity projection along the Z-axis was taken of the 

SHG signal. The 2D projection was used to manually defined an ROI drawn around the 

SHG(+) collagen-I signal surrounding the implants. The 3D z-stacks were then binarized 

based on a threshold of 0.5*mean pixel intensity of the maximum intensity projection ROI. 

Holes were filled in the binarized 3D stack with the “imfill” function in Matlab. Binarized 

images were manually inspected to ensure that a mask of the SHG(+) collagen-I was 

extracted. The thickness of the meninges was determined by taking the sum of pixels along 

the Z-axis at each XY location in the ROI. Sums were multiplied by Z-axis resolution 

(2µm). Any XY location in which the SHG(+) signal exceeded the depth of the Z-stack was 

automatically removed. To compare the thickness at 1dpi and the experimental endpoint 

(21–28dpi, depending on the animal) for the silicone and saline sealant groups, two-way 

ANOVA analysis with Tukey’s HSD post-hoc tests were used (Matlab; significance: p < 
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0.05). Thickness measurements within 12–24h were averaged together for the 1dpi value for 

each animal. All animals with visible SHG signal within 100 µm of the electrode were used 

for this analysis: n = 6 for the silicone group at 1dpi, n= 5 for all other groups.

3. Results

Fibrous meningeal encapsulation and ejection of chronically implanted electrode arrays is 

one of the most common causes for electrode recording failure. To understand the 

progression of meningeal inflammation that can lead to fibrous encapsulation, we implanted 

7 CX3CR1-GFP mice with single shank Michigan-style silicon electrode devices and used 

two-photon microscopy to quantify changes in inflammatory leukocyte behavior and 

meningeal collagen from 12h to 28 days post implant (dpi).

3.1. A migratory window for rapid CX3CR1(+) cell movement along electrode shank in the 
meningeal compartment

By 0.5 dpi, we noted robust migration on the implanted electrode device’s surface that 

largely subsided by the end of the first week post implant (supplementary movie 1; figure 

2(a)). Between 7–28dpi, cells on the probe appeared to aggregate and spread along the 

surface of the device, and had unclear boundaries between cells. Due to the ambiguous 

boundaries of individual cells, quantification of cell movement from 0.5–28dpi relied on 

counting the changes in number of CX3CR1(+) pixels (determined by a threshold) during 

each imaging session. Electrodes implanted in craniotomies that were filled with saline 

became buried in tissue by 7–14dpi, and were not included in cell migration quantification 

(see section 3.5.). Consistent with our qualitative assessment, there was significantly greater 

cell migration along the surface of the device at 0.5 – 1dpi compared to 4–28dpi (figure 2(b); 

one-way ANOVA p < 0.00001; Tukey HSD post-hoc tests p < 0.05 for all 0.5–1dpi to 4–

28dpi comparisons except for 0.5dpi compared to 7 dpi). The shapes of 30 migrating cells 

from 0.5–1dpi were measured by ellipse fitting and each cell’s position was tracked for at 

least 5 minutes to determine cell velocity (figure 2(c)). Due the tight clumping of cells at 

time points after 1dpi, it was not feasible to track cell velocities on the electrode’s surface. 

Nonetheless, our migration index results (figure 2(a)) suggest that there is little migration 

during this period. From 0.5–1 dpi, cells had a mean diameter of 10.31 ± 3.46 µm velocity of 

3.04 ± 2.31 µm/min (mean ± SEM), with no apparent correlation between these two 

parameters (linear regression r2 = 0.02). These speeds are >60-fold greater than microglial 

cell body migration toward electrode implants at the same time points [61]. Migration 

direction preference was determined by normalizing the net distance traveled along the 

length of implant (where “-” is toward the interface and “+” is away from the interface as 

noted in figure 2(a)) to the absolute value of the total distance traveled along the length of 

the implant (figure 2(d)). Individual cells show preference for going toward the interface, 

away from the interface, or neither, but without a discernable average preference (−0.14 

± 0.70, mean ± std. dev.), suggesting that cells are potentially responding to a multitude of 

chemotactic and other environmental cues.
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3.2. Variable meningeal CX3CR1(+) cell densities around the implant over the first month

In addition to inflammatory cell migration along the device, another critical metric to 

understanding meningeal-electrode interactions is inflammatory cell density changes in the 

meningeal tissue surrounding the implant. To cleanly differentiate meningeal inflammatory 

cells from brain inflammatory cells, we defined the meningeal surface by meningeal 

collagen-I through second harmonic generation imaging (figure 3(a)). Cellular density in 

ROIs along this boundary were quantified over time for silicone filled craniotomies in four 

animals (figure 3(b)). Saline filled craniotomies were not quantified over time because 

electrodes became fully buried in brain tissue underneath the meninges by 7–14dpi (see 

section 3.5.), impeding our ability to define the electrode’s location There was some 

fluctuation in cell density within 100µm of the implant between animals and over time, but 

no statistically significant change in cell density (one-way ANOVA p = 0.5961). The 

variability over time may echoes the high variability of the cortical response to implanted 

electrodes [63].

3.3. Robust CX3CR1(+) cell trafficking through venules at ≤1dpi decreases by 2–4dpi

To understand potential sources of the inflammatory cells that migrate along the surface of 

the device and fluctuate in the surrounding meningeal tissue, we quantified CX3CR1(+) 

cellular trafficking through blood vessels. Venules could be differentiated from arterioles 

based on a dilatory response over the first days after implantation (figure 4(a) left, 4(b)) as 

previously described [61]. Venules dilation began to subside by 4dpi (5.0 ± 2.58 µm 

reduction in diameter, p < 0.01), which is consistent with other reports [64]. ROIs confined 

to within vasculature could be defined (figure 4(a), right) and the number of CX3CR1(+) 

cells in these ROIs over each imaging session could be quantified by automated particle 

analysis. This analysis does not capture if cells cross the vessel wall or not. Over the first 4 

days, we quantified 692 trafficking cells with a mean diameter of 9.56 ± 4.57 µm (mean ± 

std. dev.). We noted that most detected cell trafficking was confined to venules within the 

first day after implantation (figure 4(c)). Due to our relatively slow image acquisition rate 

(frame rate: 0.69Hz), it is likely that we only captured trafficking of leukocytes that were 

adhered to the surface of blood vessels [65]. In this case, the lack of leukocyte adhesion to 

arterioles is consistent with previous findings [66, 67]. To confirm these observations, we 

statistically compared the number of trafficking cells in venules and arterioles at the 0.5–

1dpi period and 2–4dpi period (figure 4(c)). There were significant effects between vessel 

types (two-way ANOVA: p < 0.001), with Tukey’s post-hoc tests confirming that there were 

significantly more leukocytes trafficked through venules at 0.5–1dpi compared to all other 

groups.

3.4. Collagen-I at the meningeal-electrode interface remodels over the first month post-
implant

While CX3CR1(+) cell migration along implanted electrodes and through venules peaks 

within the first day after implantation, collagen-I remodeling occurred over a period of 

weeks (figure 5(a)). After implantation, collagen-I was torn at the insertion site, resulting in 

a parabola-shaped defect in the meninges. By two weeks post-implant, however, the collagen 

had begun to remodel and was flatter and more conformal to the face of the electrode. We 
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quantified this by fitting a parabola to the collagen-I margin at the meningeal-electrode 

interface and calculating the curvature at the parabola’s vertex (figure (5(b)). The curvature 

of the margin changed over the first month (one-way ANOVA, p < 0.001), with significantly 

reduced curvature between 14–28 dpi compared to 1–4dpi (Tukey’s HSD Post-Hoc test, p < 

0.05). This reduction confirms that the collagen did remodel over the first month and 

became more conformal to the flat surface of the electrode. In addition to changes in the 

shape of the meningeal-electrode interface, the meningeal tissue in the craniotomy thickened 

over the first month. Meningeal thickness could be quantified through automated 

measurements upper and lower bounds of the collagen-I(+) meningeal tissue along the Z-

axis (figure 5(c)). Within 1dpi, meningeal thickness was consistent between animals, 

regardless of the craniotomy being filled with silicone or saline (silicone: 21.61 ± 7.84 µm; 

saline: 18.36 ± 1.20 µm; mean ± SEM). By the endpoint (21–28dpi), the meninges had 

thickened for each animal (silicone: 43.06 ± 8.17 µm; saline: 40.20 ± 7.84 µm; mean ± 

SEM). There was a statistically significant effect for changes in thickness over time, but not 

between sealant material (two-way ANOVA: p < 0.0005). While all animals showed 

thickening between 1 dpi and endpoint, there was high variability in the amount of 

thickening. As a result, post-hoc tests revealed trending significant differences between 1dpi 

and endpoint for the silicone (p = 0.076) and saline (p = 0.057).. As a note, the implants in 

saline filled craniotomies were buried in meningeal tissue by 7–14dpi, and so their locations 

could not always be identified. Meningeal thickness measurements for these animals were 

based on estimates of their last known location based on vascular landmarks and implant 

location.

3.5. Implants in saline-filled craniotomies become buried in meningeal tissue by 14dpi

In animals with silicone-sealed craniotomies, electrodes were fixed in place by silicone had 

an edge that remained outside of the meninges. In animals with saline-filled craniotomies 

and without the silicone sealant to fix the implant in place, electrodes were progressively 

buried in the meningeal tissue (figure 6(a)). For each time-point, we determined if the 

meningeal-facing end of the implanted device was fully buried in CX3CR1(+) cells or not (n 

= 5; figure 6(b)). By 7–14dpi, all implants were found submerged in meningeal tissue. For 

some animals, we could still locate the implant after it was fully buried in tissue and 

confirmed that the electrode was indeed under remodeled meningeal collagen-I (figure 6(c)). 

After sacrifice, we explanted devices (2 from saline filled craniotomies and 3 from silicone 

filled craniotomies) and qualitatively examined them with two-photon microscopy (figure 

6(d)). While it is unclear how many adherent cells were removed during the explantation 

process, we noted that the remaining cells had distinct morphologies between the saline and 

silicone craniotomies. Namely, CX3CR1(+) cells adhered to devices in silicone-filled 

craniotomies were larger and more densely distributed along the device than cells adhered to 

devices in saline-filled craniotomies. The latter devices were completely buried in tissue by 

7–14dpi, and so may not have been subjected to micromotion-related strain or diffusive 

exchange with the meninges [46] [45].

3.6. Additional considerations for hydrogel sealants: cell migration through gel matrix

Throughout this study, we noted that there was no cellular or dye infiltration into silicone 

sealants. In order to explore if meningeal cell infiltration was possible in porous, hydrophilic 
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hydrogels, we filled one craniotomy with an in situ forming hydrogel composed of 

poly(ethylene) glycol and polyethyleneimine (PEG/PEI gel) that is a non-resorbable variant 

to FDA approved PEG/PEI gels [68]. The gel showed no significant cytotoxicity issues in 
vitro (supplementary figure 1). In vivo, meningeal CX3CR1(+) cells showed robust 

migration within the hydrogel matrix, which was not observed with the silicone sealant 

(supplementary movie 2; figure 7(a), migrating cells denoted by white “*”). Side projection 

images of this craniotomy confirm that cell and dye infiltration is occurring within the 

PEG/PEI gel, but not the silicone sealant (figure 7(b)). These side projections also confirm 

that there is not a significant degree of swelling for this gel as compared to previous reports 

30% PEG/PEG cross-linked gels [52]. The size and velocity of cells migrating through the 

gel between 1–14dpi were quantified (figure 7(c) and (d), 3–5 cells per time point). Cells 

appear to have slightly elevated velocity compared to cell migration along the electrode’s 

surface at 0.5–1dpi, but similar diameter (figure 2(c)).

4. Discussion

4.1. The meningeal inflammation timeline

A critical step in designing prevention and mitigation strategies for meningeal encapsulation 

is to understand its time course and progression. We used in vivo microscopy to track both 

CX3CR1(+) meningeal inflammatory cell dynamics as well as meningeal tissue growth. 

Importantly, the CX3CR1-GFP has expression in most circulating leukocytes (monocytes, 

dendritic cells, NK cells) as well as tissue macrophage/microglia and some lymphocytes. 

While this limits our ability to specifically identify cell types throughout our analysis, it 

provides a comprehensive view of cellular infiltration in the meninges. We show that there is 

a meningeal reaction to implanted electrodes within the first hours after implantation. This 

initial reaction consists of rapid cell migration along the surface of the device, as well as cell 

migration through or along the inner wall of pial venules. Meningeal cell migration speeds 

along the electrode are >60X faster than microglial migration rates toward the probe, 

potentially providing a fast attack mechanism to the implant [61]. This is not surprising, as 

cell migration along a planar surface (such as the meninges) can proceed at much faster rates 

than through a volume (such as the brain parenchyma)[69]. Interestingly, this migration is 

transient, and drastically decreases after the first day post-implant. Others have reported that 

leukocyte migration through venules occurs within the first hour after cortical injury [67]. 

While their work did not follow leukocyte migration past 16h post-implant, a separate study 

found that there are normal levels of circulating leukocyte counts by 2 weeks after 

intracortical electrode implantation, but it is unclear how much earlier normalization could 

have occurred [12]. This early migratory window likely represents inflammatory 

mobilization to the craniotomy and implant site as the initiation of wound healing [30]. It is 

also possible that some of the cells migrating along the electrode’s surface are entering the 

brain. Ravikumar et al., have reported that by 2 weeks post implant, over 60% of 

macrophage at the intracortical tissue-electrode interface are from peripheral sources [12]. 

Future studies should focus on determining if the migrating cell population identified in the 

current study is contributing to intracortical macrophage aggregation.
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While the initial migratory window subsided within the first day after implant, meningeal 

inflammation continued to progress over the next weeks. We observed stable, but variable, 

cell densities in the meningeal tissue surrounding the device throughout the implantation 

period. The high variability may be on account to variable vascular damage due to 

implantation [70]. While we did note variable amounts of vascular dye leakage after 

implantation, we were unable to clearly visualize vascular damage around the implant due to 

lack of dye perfusion into damaged vessels. There was persistent remodeling of the 

meninges over the first 2 weeks. Implants in craniotomies with silicone sealant were held in 

place and remained protruding through the meninges for the duration of the experiment. 

This was not the case for implants in craniotomies without a silicone sealant to fix the 

implant in place. These devices were completely encapsulated and buried in CX3CR1(+) 

cells by 7–14 days post-implant. It is unclear whether this is due to meningeal cell 

proliferation, sinking of the brain’s surface after surgical edema subsided, or both. 

Nonetheless, this finding draws concern for probe migration for floating or untethered 

wireless electrodes.

By two weeks post-implant, the meningeal collagen-I tissue remodeled to be flatter and 

more conformal to the surface of the electrode. Additionally, the meninges had a significant 

change in thickness that was independent of sealant condition. This is roughly on par with 

the time course of encapsulation and ejection of 4×4 Utah arrays in rats, which can happen 

within 3 months post-implant [37, 38]. In the present study, we show that fibrous tissue 

remodeling becomes statistically observable only after the first week of implantation and 28 

dpi, which is after we observed the peak of meningeal inflammatory cell migration and 

adhesion to the electrode shank. This sequence of events is corroborated by other studies 

showing that macrophage presence on foreign bodies is a necessary precursor to fibrous 

encapsulation [71]. While CX3CR1-GFP expresses in multiple cell types (macrophage, NK 

cells, dendritic cells, and neutrophils), the immobile, irregularly shaped cells at the 

meningeal-electrode interface by 7dpi are morphologically consistent with Iba-1(+) 

macrophage found on foreign bodies in the meninges [41, 52]. This may suggest that the 

inflammatory immobilization during the migratory window is instrumental for the 

meningeal remodeling observed at later time points.

4.2. Disambiguating effects of implant, sealant, and craniotomy

During the migratory window in the first days after implantation, the electrode is targeted by 

meningeal inflammation. The craniotomy may be an underappreciated contributor to the 

inflammatory response when compared to the implantation injury and the foreign body 

response. It is possible that the electrode is merely a bystander during the broader wound 

healing response of bone healing. In support of this, craniotomy alone has been implicated 

in cognitive impairment as well as transient elevation of inflammatory cytokines, astrocyte 

markers, phagocytosis markers, and antigen presenting cells to a similar degree as traumatic 

brain injury in a mouse model [72–74]. Craniotomy can also lead to significant meningeal 

thickening in both rabbit and dog models [75, 76]. These effects can also be modulated by 

the size of the craniotomy [77, 78]. The large craniotomies used in this study are considered 

“critical-size” cranial defects in mice, which result in poor bone regrowth and meningeal 

thickening [35, 79]. Smaller craniotomies would have likely resulted in faster bone growth 
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over the craniotomy and potentially altered meningeal inflammation and wound healing. 

While smaller craniotomies in neural engineering are often used in small animal models, 

large device implantations in non-human primate and clinical populations often use 

substantial craniotomies > 16cm2 that are considered critical sized in human [21, 31, 32]. 

Further, while these larger craniotomies are often sealed with autologous bone graft, defects 

of this scale can suffer from poor bone graft integration [32]. This suggests that, while the 

critical-sized defect used in this study may have been a factor in the meningeal response, it is 

a scaled model for clinical deployments of neural implants. Future studies can probe the 

effect of the craniotomy by examining meningeal encapsulation in craniotomies of varying 

sizes or by allowing the craniotomy to heal to before device implantation. Polymeric and 

growth-factor loaded scaffolds have also been effective in improving wound healing after 

critical-sized cranial defects and therefore should also be pursued to modulate craniotomy-

effects in neural implant biocompatibility [33–35, 80].

Surgical preparation may also have an impact on the formation of fibrous tissue. In this 

study as in other mouse studies, the electrode was implanted through the very thin dura (~20 

µm thick, see figure 5) [17]. Larger animals typically have thicker dura (>300 µm in rhesus 

macaque) that is typically reflected prior to insertion and then sutured back in place [21, 41]. 

This additional intervention in the meninges may lead to exacerbated meningeal 

encapsulation as hemorrhage [28, 29] and mechanical trauma [30] in the meninges are both 

known to increase inflammatory mobilization and collagen synthesis within the meninges. 

Despite this, epi-durally implanted ECoG grids also generate a significant encapsulation 

response, suggesting that the effects from craniotomy and/or chronic foreign body placement 

are sufficient to generate a response [42, 43].We have also previously noted that the silicone 

sealant material can generate its own foreign body response [52]. We controlled for this by 

tracking meningeal remodeling in a cohort of implantations into craniotomies with no 

sealant. There were similar levels meningeal thickening with or without the sealant. Without 

the sealant to fix the implant in place, however, the device became buried in meningeal 

tissue. As an alternative to a “no-sealant” condition, choosing a different sealant or dural 

graft material can impact the degree of fibrotic response [75, 76, 81]. We examined the 

meningeal inflammatory response to anon-degradable PEG/PEI gel that is similar to 

commercially available resorbable PEG-based gels [68, 76]. The PEG/PEI gel had rapid 

inflammatory cell infiltration within the gel, which was not observed in the silicone sealant. 

This may be due to the hydrophilicity and high pore size of low-molecular weight PEG-

based hydrogels, which promotes infiltration [82]. Previous reports have shown that cellular 

infiltration may promote more rapid wound healing, but it is unclear how rapid wound 

healing would interact with meningeal encapsulation of neural implants [83]. Cell 

infiltration may have additional implications for drug-eluting hydrogels, where infiltrating 

cells related to inflammation and wound healing would be exposed to the highest 

concentration of drug within the gel [84]. As a case study of the PEG/PEI gel, these results 

show that cellular infiltration is possible in hydrogel sealant materials, but these results 

cannot be generalized to PEG/PEI or other hydrogel materials. Future studies should further 

explore the interaction of hydrogel materials and meningeal inflammation, as well as 

optimizing pore size, hydrophilicity, and degradation to identify a superior sealant material 

[85, 86].
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4.3. Relevance for fibrous implant ejection in high order animals

These results show that there is a consistent meningeal response in the first month of 

implantation for mice. There is a similarly consistent, fibrous reaction to implants in rats and 

cats [19, 37, 38]. In non-human primates, however, there are no studies that track 

progression of meningeal encapsulation, only reports on when devices have failed from 

meningeal encapsulation (21–261 days post implant for 9 devices) [21, 36]. It is likely that 

there is progressive increase of encapsulation leading to that failure point. Electrical 

impedance spectroscopy may provide some in vivo monitoring of encapsulation. Some 

groups have reported trends of decreasing electrical impedance for Utah style electrodes that 

are encapsulated and ejected from the brain [36, 37]. This may be due to the cone-shape of 

the Utah array shank. As the electrode site is pushed up through the cone-shaped tract, there 

would be an increasing gap between the electrode surface and the surrounding tissue that 

could lead to lower impedance. Decreasing impedance could also be explained by electrode 

insulation delamination and electrode site shortage, and so cannot be considered a unique 

signature for meningeal encapsulation and ejection [37, 87].

While the meningeal thickening observed in the current study appears to be uniform 

throughout the craniotomy, we observed that collagen at the meningeal-electrode interface 

grew to be more conformal to the face of the electrode. This is similar to10×10 Utah arrays 

in non-human primates, where fibrous growth appears to conform around the exterior of the 

device (figure 8) [36]. In explanted devices from these higher order animals, collagen-I 

signal often appears to tightly follow the edge of the device’s platform (figure 8(b)). While 

we observe similarities in collagen remodeling behavior between these models, conformal 

encapsulation of the larger Utah arrays is more often identified as a source of failure than for 

planar style devices. This may be partly due to the large 2D platform that is present on the 

Utah array. The presence of a large 2D platform even without penetrating shanks—such as 

an ECoG grid—is sufficient to elicit a meningeal encapsulation response [41–44]. Notably, 

in the Utah array, the gold wire that bridge the connector and the platform are potted with 

medical-grade silicone, and may generate a similar meningeal reaction as the silicone sealant 

[52] or silicone platform ECoG grids [41, 44]. To interrogate the role of the platform 

footprint and material as well as the non-human primate meningeal response, controlled 

histological studies with discrete end-points should be conducted.

4.4. Mitigation strategies and future directions

Preventing meningeal fibrosis is a major obstacle to wide-spread translation of brain-

computer interface technologies. We have shown that there is a migratory window in the first 

days after implant that precedes meningeal fibrosis. With the CX3CR1-GFP model, we were 

able to survey a broad scope of inflammatory cell activity, but were unable to identify 

whether migrating cells were myeloid, neutrophil, dendritic, or NK cells. Future studies 

should either use more cell-specific models or post-mortem histology to further identify cell 

types, as this could be useful in defining therapeutics and further understanding the 

relationship between migration and fibrosis. Another way to elucidate the relationship 

between these phenomena is to modulate that initial migratory window. Roth et al. have 

shown that anti-inflammatory therapeutics as well as purinergic signaling inhibitors are 

viable routes to modulate acute meningeal inflammation [30]. Cell adhesion to the electrode 
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shanks, electrode array platforms, and dural sealants and grafts may also serve as a critical 

precursor to encapsulation. Macrophage and fibroblast adhesion to substrates can be 

modulated by surface treatments of L1 cell adhesion molecule [58, 88–91] as well as 

different polymeric surfaces [92]. Inflammatory macrophage behavior can also be modulated 

with controlled-drug release from meningeal-interfacing domains of implants [51, 93–97]. 

Anti-fibrotic medication may also be a viable target [98].

On a macroscale, the surgical preparation and device design may also have critical 

repercussions for meningeal inflammation and encapsulation. The precision and size of 

craniotomies affects the amount of post-operative inflammation [73, 77] and choice of dural 

repair method and material can have an impact on the amount of meningeal fibrosis [75, 81]. 

To our knowledge, there have been no controlled optimization studies for these parameters. 

The presence of a 2D platform in the meninges may also govern the fibrotic response. 

Advances in ECoG devices can be emulated to pursue mesh style platforms [42] and flexible 

platforms [99–101] to reduce meningeal encapsulation of neural electrodes.

5. Conclusions

With cell migration speeds 60X faster than the cortex, the meningeal response to implanted 

electrode devices may be a “fast attack” mechanism. A transient, migratory window of cell 

infiltration to the electrode precedes meningeal remodeling at later timepoints. This 

migratory window may provide a critical therapeutic target for reducing long-term 

meningeal encapsulation.
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Figure 1. 
In vivo imaging of meningeal response to implanted electrode arrays. (a) Example two-

photon microscope images of pre-implant meningeal biology in CXCR1-GFP mice. Top-

down images of the meninges (top left) and underlying cortex (top right) show distinct 

collagen I (blue), vascular (red), and CX3CR1(+) cellular morphologies (green). A side 

projection of the same region shows the spatial relationship between the meningeal and 

cortical compartments (bottom). The boundary between the meninges and cortex can be 

defined by the bright blue collagen trace along the surface of the brain. (b) Schematic of the 

in vivo implantation set-up. Left: Bilateral cranial windows are prepared for each mouse. 

Craniotomies are either filled a sealant material (silicone elastomer or PEG gel) or saline (no 

sealant) prior to being covered with a glass cover slip. Right: A cross-section of the set-up 

highlights that implants are fully underneath the glass coverslip. A two-photon microscope 

objective can be lowered over the glass coverslip to enable longitudinal imaging.
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Figure 2. 
Meningeal CX3CR1(+) cells migrate along the electrode’s surface during the first days post-

implant. (a) Superimposed images of the meningeal-electrode interface (ROI denoted by 

blue dashed box) at earlier (red) and later (green) time points show CX3CR1(+) cell 

movement as green and red, while stable elements are yellow. Images are tracking the same 

animal over time. (b) A cell migration index (fraction of cells at the meningeal-electrode 

interface that are moving) shows that there is significantly greater migration at 0.5–0.75 dpi 

compared to 4–28dpi (one-way ANOVA, p < 0.00001; * denotes significant differences from 

both 0.5–1dpigroups with Tukey’s HSD post-hoc tests, ^ denotes significance relative to 

0.75–1 dpi only ; p < 0.05).Data presented as mean ± SEM, where n = 4 from 0.5–1dpi and 

14–21dpi, n = 5 from 2–7dpi, and n =3 at 28dpi). (c) Migrating cells at 0.5–1dpi have a 

velocity of 3.04 ± 2.31 µm/min and a diameter of 10.31 ± 3.46 µm with no apparent 

relationship between these parameters (mean ± st. dev.) with a linear regression R-squared 

value of 0.02. Individual cells displayed in graph (n = 30). (d) Migrating cells show no clear 

preference (For each cell: net movement / total distance traveled) for migrating toward (blue 

bars) or away from (red bars) the interface.
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Figure 3. 
Meningeal CX3CR1(+) cell densities fluctuate but are stable over the first month post 

implant. (a) Meningeal CX3CR1(+) cells (green) are automatically segmented from 3D 

image stacks if they are within or above the meninges (defined by continuous collagen I 

sheet; blue). These representative images track the same animal over the first month post 

implant. (b) The density of meningeal CX3CR1(+) cells (% of meningeal ROI that contains 

CX3CR1 signal) shows large fluctuations over time for each animal. Data presented as mean 

± SEM, where n = 4 from 0.5–1dpi and 14–21dpi, n = 5 from 2–7dpi, and n =3 at 28dpi (not 

significant; one-way ANOVA p = 0.5921; n = 4).
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Figure 4. 
CX3CR1(+) cell trafficking through pial venules during the first 4 dpi. (a) Left: 

Representative images of pial vessels labeled by SR101 at 18h (top) and 48h (bottom) post-

implant adjacent to the electrode (blue box). An arteriole (red “A”) and a venule (blue “V”) 

were identified based on dilation response after implantation. Right: CX3CR1(+) cells 

within vessels were quantified over time. Frames over 15 minutes of imaging were 

superimposed, with each frame displaying a unique color defined by the “Time color code”. 

Cells that migrate during a single frame retain the color of that frame, whereas cells that are 

stable over the imaging period appear as white. A region of high cell migration is seen in the 

venule (blue “<“) at 18h, but not at 48h. (b) Large pial vessel diameters (12 vessels from 6 

animals) were measured over time. Vessels that showed >10µm dilations were considered 

venules (blue). The net increase in venule diameter relative to 1 dpi was significantly greater 

than arterioles at 2 and 4 dpi (two-way ANOVA, p <0.01 for group and time effects; 

significant differences with Tukey’s HSD post-hoc test: ** = p< 0.01, * = p<0.05). (c) 

Particle analysis of flowing cells detected significantly more cells migrating through venules 

at 0.5 to 1 dpi compared to arterioles at the same time as well as venules and arterioles at 2 

to 4 dpi (two-way ANOVA, p <0.001 for group effects; * (p < 0.05) and ** (p <0.01) 

denotes significant decrease from venules at 0.5 to 1 dpi with Tukey’s HSD post-hoc test). 

Data presented as mean ± SEM.
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Figure 5. 
Meningeal remodeling over the first month post implant. (a) Top-down views (top) of 

meningeal collagen I from the same animal at 12h and 28 days post implant reveals that, 

collagen-I (outlined in red) remodels to conform to the electrode surface (highlighted in 

blue). Side views (bottom) show that the meninges thicken (meninges outlined in red) (b) 

The curvature of collagen-I at the meningeal-electrode interface reduces over the first 

month, indicating a flatter, more conformal collagen interface (one-way ANOVA p < 0.001; 

significant reducMons relaMve to 1 dpi (*), 2 dpi (†), and 4 dpi (#) assessed with Tukey’s 

HSD post hoc tests; p <0.05). This analysis used all silicone sealed animals with visible 

meningeal-electrode interfaces (n = 4 for 0.5–21dpi, n = 3 for 28dpi) (c) Automated 

quantification of meningeal thickness within 1 dpi and at the experimental endpoint 

(between 21–28 dpi) shows statistically significant change in meningeal thickness over time 

(two-way ANOVA p< 0.005 for time effect; n = 6 for silicone at 1dpi, n = 5 for all other 

groups)). Sealant condition did not affect meningeal thickness, suggesting that the 

thickening was not in response to the presence of silicone. All data presented as mean ± 

SEM.
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Figure 6. 
Without the silicone sealant to fix the devices in place, electrodes were buried under the 

meninges by 14 dpi. (a) Representative images tracking the meningeal-electrode interface 

from the same animal over the first week post-implant (the electrode boundary is outlined in 

white). By 7 days post implant, the device is almost entirely buried in tissue. (b) For 5 

devices implanted in craniotomies without silicone, 100% were completely buried in in 

tissue by 14 days post-implant. (c) Representative images from 21 dpi to confirm that, after 

being buried, electrodes are fully underneath meningeal collagen (left panel) and within the 

underlying cortex (right panel; the electrode is outlined in white). (d) CX3CR1(+) cells 

adhered to devices explanted at 28dpi from the silicone group (top) are morphologically 

distinct from those adhered to saline sealed devices (bottom). 2 explants are shown for each 

condition. All scale bars are 200 µm.
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Figure 7. 
In situ forming PEG/PEI hydrogels elicit a unique meningeal inflammatory response. (a) 

Meningeal CX3CR1(+) cells show robust migration through the PEG/PEI gel for at least 1 

to 14 days post implant. Superimposed images at earlier time points (red) and later 

timepoints (green) show migrating cells as distinct red and green elements (denoted by white 

“*”), while stable elements are in yellow. The electrode is outlined in white. The boundary 

between the meninges and the hydrogel is denoted by white arrowheads. (b) Side projections 

at 7 dpi confirm that meningeal CX3CR1(+) cells (green) vascular dye (red) infiltrate the 

hydrogel (top) but not the silicone (bottom). (c) The velocity of cells migrating within the 

PEG/PEI gel are stable over 14 days. (d) The diameter of cells migrating within the 

PEG/PEI may increase after implantation (3–5 cells per time point, data presented as mean ± 

SEM).
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Figure 8. 
Ex vivo imaging of fibrous encapsulation of Utah array platform implanted in a rhesus 

macaque for 2.5 years. (a) MicroCT reconstruction of the cortex and skull surrounding the 

implanted Utah array suggests that the array is still within the brain. Notably, soft tissues 

such as brain parenchyma and collagen I do not have sufficient contrast to be segmented in 

these images. Thick meningeal tissue is found above the device (red “*”). Optical 

aberrations are due to a metal artifact caused by the gold wiring at the array’s platform. (b) 

Second harmonic imaging along the length of shanks shows significant fibrous collagen 

growth around the platform of the device (red dotted box). Importantly, The XZ plane image 

(left) shows that the fibrous growth extends beyond the platform to the shanks (outlined by 

solid red lines). A YZ side view (right) shows that that the meningeal collagen I has 

remodeled to curve around the device’s platform. The signal at the tip of the devices is not 

morphologically consistent with collagen-I, and is likely an edge effect the parylene-C 

insulation.
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