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ABSTRACT
RNA processing encompasses the capping, cleavage, polyadenylation and alternative splicing
of pre-mRNA. Proper muscle development relies on precise RNA processing, driven by the
coordination between RNA-binding proteins. Recently, skeletal muscle biology has been
intensely investigated in terms of RNA processing. High throughput studies paired with
deletion of RNA-binding proteins have provided a high-level understanding of the molecular
mechanisms controlling the regulation of RNA-processing in skeletal muscle. Furthermore,
misregulation of RNA processing is implicated in muscle diseases. In this review, we compre-
hensively summarize recent studies in skeletal muscle that demonstrated: (i) the importance of
RNA processing, (ii) the RNA-binding proteins that are involved, and (iii) diseases associated
with defects in RNA processing.
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Introduction

Skeletal muscle

In healthy humans, skeletal muscle accounts for
approximately 35–45% of body composition [1,2].
Skeletal muscle is a highly organized contractile
organ that converts chemical energy into mechan-
ical energy to allow for functional movement.
Skeletal muscle serves a variety of other biological
functions besides maintaining posture and body
position. It protects the openings of the urinary
and digestive tracts, regulates body temperature,
and regulates nutrient homeostasis by acting as
a major storage site for lipids and carbohydrates
[3,4]. Throughout the body, skeletal muscles come
in various shapes and sizes; however, the basic
anatomy is the same. Bundles of multinucleated
muscle cells (myofibers) make up a whole muscle
and within the myofibers are thousands of myofi-
brils that contain billions of myofilaments [1,3]
(Figure 1(a)). Skeletal muscle consists of 80% pro-
tein, most of which are the myofilament proteins,
actin and myosin. Myofilament proteins form the
sarcomere and are the major contractile unit of
a skeletal muscle [1,3]. Sarcomeres are organized
into parallel and overlapping thin (actin) and thick

(myosin) filaments that undergo cycles of actin-
myosin cross-bridge formation [3,5] (Figure 1(a),
bottom right).

The unique architecture of skeletal muscle ensures
for rapid and synchronous conduction of an action
potential and subsequent release of calcium from the
sarcoplasmic reticulum [6] which is essential for the
excitation-contraction coupling needed to generate
force. The transverse tubular system within muscle
cells is formed by the transverse tubules (T-tubules)
which are deep invaginations of the plasma mem-
brane allowing for the close connection of the extra-
cellular environment with the sarcoplasmic reticulum.
Both T-tubules and the sarcoplasmic reticulum
mature within the first three postnatal weeks in
mouse skeletal muscle and are essential for adult
muscle function [6,7]. Muscle contraction occurs
when membrane depolarization and subsequent cal-
cium release from the sarcoplasmic reticulum facil-
itates cross-bridge formation between actin and
myosin. Myosin acts as the motor of the muscle
because of an ATPase domain in the myosin head.
The calcium-dependent troponin-complex and tro-
pomyosin associate with the actin filament to prevent
it from binding tomyosin until excitation-contraction
occurs [5,8]. Thus, muscle contraction is a result of
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sliding of the filaments and shortening of the
sarcomere.

Myofiber types and metabolism

The ability of skeletal muscle to perform a very
diverse array of functions throughout the body
is afforded by a heterogeneity in the types of
myofibers that differ in their contractile ability
and metabolic requirements. Classically, myofi-
bers are categorized by their expression of the
myosin heavy chain ATPase isoforms [9]. In
general, myofibers expressing the slow type
I myosin ATPase (slow-twitch myofibers) rely
on oxidative metabolism, are resistant to fati-
gue, and have a slow rate of contraction. Type
II myofibers express a fast myosin heavy chain,
contract and fatigue rapidly, and rely on glyco-
lytic metabolism [9]. Muscle fiber types are
further sub-classified based on developmental

stage, contractile speed, color, oxidative activity,
pH lability of actomyosin ATPase, motor unit
innervation, and fatigability among others [3,8].

Extensive RNA processing in muscle biology

Decades of research have demonstrated that skele-
tal muscle is one of the most dynamic tissues in
the body. Muscle has an inherent ability to fine
tune its response to environmental and physiolo-
gical changes, including but not limited to exer-
cise, diet, disuse, and disease [10–13]. Many
adaptations of skeletal muscle are through tran-
scriptional programs that modulate patterns of
gene expression. However, mechanisms that
directly target RNA also have the potential to
modulate muscle physiology, suggesting that post-
transcriptional mechanisms have important regu-
latory functions in skeletal muscle biology.

Figure 1. RNA processing in skeletal muscle. (a). Cross-section of a representative skeletal muscle. Individual multinucleated muscle
fibers (blue dots) are bundled into fascicles. Each muscle fiber is made of myofibrils that contain the myofilaments, actin and myosin.
T-tubules penetrate the muscle fiber and come into close proximity to the sarcoplasmic reticulum which surround the myofilaments.
(b). Interactive view of RNA processing. After RNA polymerase-II (RNA Pol-II) transcribes DNA, newly synthesized mRNA is capped, cut
and polyadenylated by the cleavage and polyadenylation factor, and then spliced. (c). Alternative splicing of a cassette exon that can
either be included or skipped in the final mRNA transcript. (d). Alternative polyadenylation site selection. The 3ʹUTRs of some genes
contain multiple polyadenylation signals that can be recognized by the polyadenylation and cleavage factor (CPSF). After the
cleavage and polyadenylation factor binds to a polyadenylation signal (PAS), the polyA polymerase (PAP) adds the string of
adenosines to the end of the mRNA transcript. This panel shows an example where three mRNA transcripts are generated by
different polyadenylation site selection.
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RNA processing

RNA processing encompasses four main processes:
(a) capping, (b) alternative splicing, (c) cleavage, and
(d) polyadenylation of the pre-mRNA to produce
a mature mRNA (Figure 1(b)). Capping of the 5ʹ
end of the RNA is necessary for mRNA translation,
the recruiting of proteins involved in alternative spli-
cing [14] and polyadenylation, and to prevent tran-
script degradation by 5ʹ to 3ʹ exonucleases [15]
(Figure 1(b)). Alternative splicing of pre-mRNA is
a co- and posttranscriptional mechanism of gene
regulation by which one gene can encode multiple
protein isoforms due to the inclusion or exclusion of
alternative regions (Figure 1(c)). Alternative splicing
increases proteome diversity from a limited number
of protein-coding genes. mRNA cleavage and poly-
adenylation are regulated by the cleavage and poly-
adenylation factor (CPSF). The 3ʹ end of newly
transcribed pre-mRNAs are cleaved from RNA poly-
merase-II (Pol-II) followed by the addition of
a polyadenine tail (polyA) to the 3ʹ end of a pre-
mRNA transcript to prevent mRNA degradation
(Figure 1(d)). Importantly, alternative polyadenyla-
tion creates different 3ʹ untranslated regions
(3ʹUTR) which can impact transcript stability and
thus further contribute to gene expression regulation.

Capping in muscle biology

Skeletal muscle contains 50–75% of total body
protein [1] and the balance between protein synth-
esis and degradation governs muscle mass [12].
Thus, research focused on the molecular mechan-
isms regulating mRNA translation has been instru-
mental in understanding how skeletal muscle
responds to environmental and physiological chal-
lenges. The terminal 5ʹ nucleotide of all Pol-II
transcribed eukaryotic mRNAs contains an N7-
methylated guanosine cap structure (5ʹm7G) [15].
The capping process is coupled to transcription
and occurs within the first 25–30 nucleotides of
newly transcribing RNAs [15–17]. The m7G cap
serves a central role in the life cycle and biological
function of an mRNA and is largely regulated by
the binding of protein factors within the nucleus
and cytoplasm. In the nucleus, the heterodimeric
cap binding complex comprised of CBP80 and
CBP20 proteins [18], interacts with a variety of

other protein complexes to influence pre-mRNA
splicing [19], polyadenylation processing [20],
exosomal mediated RNA degradation [21], and
nuclear export [22–24]. Once an mRNA is
exported to the cytoplasm, the cap binding com-
plex, still bound to the m7G cap, recruits eukar-
yotic initiation factors (eIF) to initiate translation
of the mRNA [25–27].

Possibly the most well studied mechanism control-
ling mRNA translation in skeletal muscle is the
mechanistic target of rapamycin complex-1
(mTORC1) pathway. mTORC1 activity is positively
regulated by anabolic signals like growth factors,
mechanical loading, and nutrients following feeding
[28–31] and negatively regulated by catabolic condi-
tions like starvation, aging, and disuse, among others
[32–34]. Upon its activation, mTORC1 phosphory-
lates two known substrates that regulate cap-
dependent translation – eIF4E binding proteins 1
and 2 (4EBP1 and 4EBP2) and the 70 kDa ribosomal
S6 protein kinase (p70S6K1, also known as S6K1).
Hyperphosphorylation of 4EBP1 or 4EBP2 releases
eIF4E and permits its interaction with eIF4G to pro-
mote the formation of eIF4F complex and subsequent
5ʹ cap recognition, ribosome loading, and translation
initiation [25,35,36] (Figure 2, left). S6K1 phosphory-
lates several substrates involvedwith the 5ʹmRNA cap
and translation initiation, including programmed cell
death-4 (PDCD4) and eIF4B [37,38] (Figure 2, right).

S6K1 regulation of skeletal muscle

Myotubes that express a constitutively active form of
S6K1 have increased fiber diameter indicative of ske-
letal muscle hypertrophy [39]. Several studies have
demonstrated reductions in total body and muscle
mass in S6K1 knockout mice compared to their wild-
type counterparts [40,41]. The reduction in skeletal
muscle mass has been attributed to a reduction in
myofiber cross-sectional area and not to a loss in
myofiber number [41]. Furthermore, muscle fiber
cross-sectional area was increased in S6K1 knockout
mice when electroporated with a constitutively active
AKT, an upstream activator of mTORC1, suggesting
that S6K1 is not necessary for muscle hypertrophy
in vivo [42]. Cotransfection of a constitutively active
AKT and an non-phosphorylatable form of 4EBP1
also inducedmuscle hypertrophy in wildtype animals;
however, muscle hypertrophy was reduced in S6K1
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knockout mice, suggesting that 4EBP1 compensates
for the loss of S6K1 inmuscle growth [42]. Functional
studies also demonstrated that loss of S6K1 reduced
muscle force normalized to the muscle weight [42].
Collectively, these data suggest that there are multiple
pathways regulating skeletal muscle growth and
furthermore that S6K1 plays a role in regulating mus-
cle hypertrophy and muscle force.

Protein synthesis and 4EBP1 and 4EBP2

Relatively little is known about the role of 4EBP1
and 4EBP2 in the regulation of skeletal muscle mass.

The 4EBP1 and 4EBP2 double knockout mouse
revealed no effect on body mass, lean mass, or the
absolute mass of the gastrocnemius or soleus muscle
under basal or septic conditions [43]. Sepsis, but not
loss of 4EBP1 and 4EBP2 reduced in vivo rates of
protein synthesis, the magnitude of reduction was
similar between wild type and knockout mice, and
these changes were concurrent with reductions in
the phosphorylation of 4EBP1 and S6K1 [43]. Sepsis
also caused a 55% reduction in eIF4E bound to
eIF4G in the wild type mice; however, the double
knockout mice showed no difference even though
protein synthesis was decreased [43]. These findings
suggested that other mechanisms control translation
initiation after 5ʹ cap recognition. Combined, these
data demonstrate that mTORC1 governs translation
initiation through its kinase activity toward factors
that regulate 5ʹm7G cap binding.

Alternative splicing in skeletal muscle

Alternative splicing allows single genes to give rise
to multiple mature mRNAs (Figure 1(c)). Skeletal
muscle, together with brain and heart, are the
tissues that exhibit the highest levels of tissue-
specific and conserved alternative splicing [44].
Skeletal muscle undergoes extensive physiological
changes during development to produce fully
functional adult muscles [45]. At the molecular
level, these changes are accompanied by numerous
transcriptional and posttranscriptional changes,
including those controlled by alternative splicing
mechanisms [46,47]. Alternative splicing changes
are controlled mostly by RNA-binding proteins
(RBPs) that change their expression levels during
development. Below we describe some examples of
the functional importance of alternative splicing in
muscle patho-physiology.

BIN1 mis-splicing, t-tubule defects, and muscle
weakness

Bridging integrator-1 (BIN1), also known as amphi-
physin-2, is a BAR-domain protein involved in mem-
brane curvature dynamics and endocytosis [48]. In
skeletal muscles, BIN1 is involved in the formation
of T-tubules and membrane tubular invaginations
[48–51]. Several exons of the Bin1 gene are regulated
by alternative splicing in different tissues,

Figure 2. Regulation of mRNA capping and translation initia-
tion by mTORC1. In response to anabolic stimuli, mTORC1
phosphorylates multiple downstream targets to govern the
formation of the multi-protein eukaryotic initiation factor 4F
complex (eIF4F) and subsequent translation initiation. The eIF4F
complex is comprised of eIF4E (m7G mRNA cap binding pro-
tein), eIF4G (initiation factor scaffold protein), and eIF4A (RNA
helicase) and its formation is the rate limiting step in translation
initiation. Phosphorylation of eIF4E binding proteins 1 and 2
(4EBP1 and 4EBP2) frees eIF4E and allows it to bind to
the m7G cap. The kinase activity of the 70 kDa ribosomal S6
protein kinase (S6K1) is increased in response to phosphoryla-
tion by mTORC1. S6K1 phosphorylates programmed cell death-
4 (PDCD4) and relieves its inhibitory effect on eIF4A. S6K1 also
phosphorylates eIF4B which further promotes helicase activity
of eIF4A.
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developmental stages, and pathological conditions
[49,51,52]. Exon 11 is only expressed in skeletal mus-
cles and encodes a phosphoinositide binding domain
[49,51]. Phosphoinositides bind membrane proteins
like BIN1 to aid in membrane trafficking, reorganiza-
tion of the cytoskeleton, and cell signaling [53,54]. The
inclusion of exon 11 is developmentally regulated in
skeletal muscles mostly between birth and adulthood
[49], a postnatal time window that overlaps the for-
mation of the T-tubules. When exon 11 is skipped,
BIN1 lacks the phosphatidylinositol 5-phosphate
binding site and thus this isoform is not able to reg-
ulate membrane tubulation and formation of the
T-tubules [49] (Figure 3(a)). In humans with myo-
tonic dystrophy (DM), exon 11 is lacking in adulthood
leading to severe alterations in T-tubule organization
and muscle weakness. When Bin1 splicing is manipu-
lated in mouse models to force the skipping of exon
11, animals develop defects in T-tubule organization
and muscle weakness, similar to what is observed in
humans suffering with DM [49]. A mutation that
affects exon 11 splicing has been identified in
a family with rapidly progressive centronuclear myo-
pathy [55]. Interestingly, a mutation in the same
acceptor splice site is the genetic cause of inherited
centronuclearmyopathy in dogs. In both humans and
dogs, the mutations led to the skipping of exon 11,
ultrastructural defects in muscle, muscle weakness,
and atrophy [55]. Collectively, these data demonstrate
that splicing regulation of exon 11 of the Bin1 gene is

evolutionary conserved and is implicated in T-tubule
biogenesis and maintenance and ultimately in muscle
strength in health and disease.

Cav1.1 mis-splicing and muscle wasting

TheCACNA1S gene encodes theCav1.1 proteinwhich
is a calcium channel and voltage sensor that controls
excitation-contraction coupling in muscle cells.
Inclusion of exon 29 of the CACNA1S gene is devel-
opmentally regulated and encodes for amino acids
that connect two transmembrane domains of the pro-
tein [56]. Skipping of exon 29 shortens the loop con-
necting the two domains and causes weak voltage
sensitivity [56,57] (Figure 3(b)). In healthy adult mus-
cles, exon 29 is mostly included, while in individuals
with DM exon 29 is absent [58]. The characteristic
muscle weakness and centralized nuclei in humans
with DM is also observed in mice administered an
antisense oligonucleotide (ASO) to block inclusion of
exon 29 [58]. Alternative splicing of CACNA1S is
antagonistically regulated by two RBPs, muscle blind
like-1 (MBNL1) and CUGBP Elav-Like Family
Member-1 (CELF1), which are involved in DM and
will be discussed later in this review [58].

Insulin receptor splicing and metabolism

The INSR gene encodes the insulin receptor and
exon 11 is alternatively spliced giving rise to two

Figure 3. Regulation of alternative splicing in muscles. Several genes that are alternatively spliced produce different phenotypes in
muscle depending on whether the alternative exon is included or skipped. (a). Alternative splicing of exon 11 of Bin1 pre-mRNA
contributes to T-tubule formation and maintenance. (b). Skipping of exon 29 in Cav1.1 results in weak voltage sensitivity in adult
skeletal muscle. (c). Inclusion of exon 11 of Insr pre-mRNA allows for stronger binding of insulin by the insulin receptor and thus
insulin sensitivity. Skipping of exon 11 in adult muscles results in insulin resistance. (d). A switch from the adult to the fetal splicing
isoforms of Ppp3ca, Ppp3cb and Ppp3cc leads to higher calcium phosphatase activity. (d). A switch in the splicing isoform of Cltc,
Tmed2, Trip10 or Snap23 contributes to muscle homeostasis and T-tubule maintenance.

TRANSCRIPTION 5



protein isoforms, INSR-A and INSR-B. INSR-A
and INSR-B exist in a ratio that depends on tissue
contexts, developmental stage, or disease condi-
tions [59–61]. The INSR-A form lacks exon 11, is
prevalent in fetal stages, and is highly expressed in
the nervous system, whereas the INSR-B form
includes exon 11, is prevalent in adulthood, and
is highly expressed in adipose tissue, liver, and
muscle [60,61]. The INSR-A splice variant prefers
binding of insulin growth factor-2 (IGF2) over
insulin growth factor-1 (IGF1) and insulin, while
the INSR-B is more sensitive to insulin [61,62]
(Figure 3(c)). Alternative splicing of the INSR
gene is regulated by multiple RBPs, including
CELF1, MBNL1, and the heterogenous ribonu-
cleoprotein family (HNRNP) family [63–65]. In
skeletal muscle, insulin and IGF1 activate the
PI3K/AKT/mTOR pathway which determines
myofiber size [66]. Mis-splicing of INSR pre-
mRNA is observed in diabetes and muscular dys-
trophies [67] where there is a switch from the
expression of the INSR-B variant to the INSR-A
isoform in muscle tissues. This transition alters
PI3K/AKT signaling and leads to insulin resistance
[59,67].

Alternative splicing of calcineurin-A and
activation of NFATC signaling

Calcium plays a key role in muscle contraction and
force generation [68]. Several genes encoding proteins
involved in calcium homeostasis are alternatively
spliced in skeletal muscle development [69].
Calcineurin is a calcium-dependent phosphatase that
controls calcium handling and skeletal muscle hyper-
trophy by transducing external signals to the nucleus
[70]. Indeed, skeletal muscle growth is governed by
calcineurin-dependent signaling events [68]. During
skeletal muscle development, there are three genes
encoding the catalytic subunit of calcineurin-A
(Ppp3ca, Ppp3cb, and Ppp3cc) that are regulated by
alternative splicing transitioning from the expression
of fetal to adult isoforms [47]. The fetal isoform pro-
teins encoded by these genes have a higher calcineurin
phosphatase activity which induces the nuclear locali-
zation of NFATC, a family of transcription factors
involved in muscle fiber-specificity [47,70–72]
(Figure 3(d)). Experiments using ASOs in adult mice
and differentiated myotubes in culture, revealed that

when the fetal isoforms were forced to be expressed in
adult muscles, there was a prolonged muscle relaxa-
tion time, the calcineurin target NFATC3 showed
a more nuclear localization, and transcription of sev-
eral NFATC targets was affected.

Alternative splicing of trafficking genes and
muscle cell architecture

Skeletal muscle is a complex tissue composed of
membrane compartments and tubular invaginations
that are important for excitation-contraction cou-
pling. Adult skeletal muscle cells are larger than fetal
and neonatal ones and thus need specialized mem-
brane components for proper muscle contraction.
Membrane trafficking proteins regulate internaliza-
tion, recycling and degradation of ion channels,
receptors and membrane components. Numerous
genes encoding membrane trafficking and endocyto-
sis proteins are alternatively spliced during mouse
skeletal muscle development to aid in the transition
of fetal to adult muscles [47,73]. Reversion of four
trafficking genes (Cltc, Tmed2, Trip10, and Snap23) to
the fetal alternative splicing patterns led to enlarged
muscle fibers and disruption of T-tubule organization
which demonstrated the importance of adult alterna-
tive splice isoforms in the maintenance of muscle
homeostasis [73] (Figure 3(e)).

In summary, alternative splicing is important
for the development of fully functional skeletal
muscles. Alterations in alternative splicing contri-
bute to the development of muscle weakness, irre-
gular metabolism, and defects in intracellular
architecture. However, a vast number of splice
isoforms have not yet been studied and the func-
tional consequences of alternative splicing are still
under-investigated.

Alternative polyadenylation in muscle
biology

Polyadenylation is the terminal step of mRNA pro-
cessing, during which immature mRNA is cleaved
fromPol-II and a string of 100–250 adenosinemono-
phosphates are added to the transcript (polyA tail)
(Figure 1(d)). The addition of the polyA tail prevents
enzymatic cleavage of the transcript, allows for
nuclear export, and promotes efficient translation
initiation. A highly-conserved set of proteins
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comprises the polyadenylation complex and includes
the cleavage and polyadenylation specificity factor
(CPSF) and the cleavage stimulation factor (CstF).
CPSF recognizes the polyadenylation signal (a cis
AAUAAA motif) and cleaves 10–30 nucleotides
downstream of a CA-site, releasing Pol-II from the
nascent mRNA. The polyadenylation complex is
regulated by surrounding elements, typically found
within the 3ʹUTRs (for recent reviews [74,75]).

Numerous genes contain multiple polyadenylation
sites. Commonly, alternative polyadenylation (APA)
sites are found within the 3ʹUTRs and, therefore, their
selection does not alter the translated polypeptide
sequence but can critically affect stability. Such sites
are termed UTR-APAs [76]. Alternative polyadenyla-
tion sites can also be located upstream of a coding
element and therefore, site selection results in alter-
native transcripts and polypeptides. These sites are
termed coding region-alternative polyadenylation
(CR-APA) [76]. In CR-APA, a single gene can give
rise to multiple transcripts and the resulting proteins
may have different functions. APA at these locations
may impact mRNA stability, translation efficiency,
nuclear export, and protein function [75,76].

The regulation of polyadenylation site selection is
highly dynamic and is influenced by numerous RBPs.
The advent of next generation sequencing has allowed
for increased understanding of alternative polyadeny-
lation site selection in a tissue-specific manner. RNA-
sequencing analysis in C. elegans has revealed wide-
spread use of alternative polyadenylation sites inmus-
cle tissue [77]. Furthermore, muscle tissue has distinct
polyadenylation signatures with approximately 30%
of transcripts using tissue-specific alternative polya-
denylation [77]. Tissue and developmental-specific
expression of RBPs, microRNAs (miRNA), and
other regulatory factors contribute to alternative poly-
adenylation site selection during muscle development
and are discussed in detail later in the review.

Posttranscriptional regulation of muscle-specific
genes by alternative polyadenylation and
miRNAs

Several of the alternatively polyadenylated 3ʹUTRs
identified in C. elegans contain miRNA binding
sites, suggesting that alternative polyadenylation is
a tissue-specific posttranscriptional regulatory

mechanism [77]. One specific example of such regu-
lation has been demonstrated for the Paired box gene-
3 (PAX3) which is a major regulator of muscle stem
cell development [78]. Upon myogenic differentia-
tion, PAX3 mRNA expression is significantly down-
regulated via the miRNAmiR-206 andmiR-1 [79,80].
Quiescent muscle stem cells express PAX3 at varying
degrees with particular subpopulations paradoxically
expressing high PAX3 and high miR-206 [78].
Myogenic progenitors, preferentially utilize an
upstream polyadenylation site in PAX3 which short-
ens the 3ʹUTR and allows transcripts to escape
miRNA-induced silencing [78] (Figure 4(a)).

RNA-binding proteins in skeletal muscle
physiology

During skeletal muscle development, temporal regu-
lation of transcriptional and posttranscriptional net-
works are essential for proper function [45] (Figure 5).
RBPs control alternative splicing,mRNA stability, and
polyadenylation in skeletal muscle. In terms of alter-
native splicing regulation, RBPs exert this regulatory
role by helping the spliceosome during splicing reac-
tions, recruiting other splicing factors or adaptor
molecules, or directly promoting skipping or inclusion
of the alternative region [81]. The regulationofmRNA
stability determines whether the final mRNA tran-
script is degraded before translation occurs.
Synthesis and decay rates of mRNA transcripts are
determined by the transcript itself and its interaction
with RBPs [82,83]. Polyadenylation site selection is
also controlled in muscle by several RBPs and this
regulation contributes to an overall muscle-specific
polyadenylation profile [84]. The resulting transcripts
can then be regulated bymiRNAs, ultimately allowing
for muscle-specific gene expression programs. In the
next paragraphs, we describe several families of RBPs
that are involved in RNA processing in skeletal
muscles.

HNRNPs

Members of the HNRNP family lack a serine-
arginine rich domain and tend to promote exon
skipping; however, some members of the family
can act as both splicing repressors and activators
[85,86]. HNRNPs often compete with serine-
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arginine rich domain proteins for binding sites on
pre-mRNAs. HNRNPF and HNRNPA1 regulate, for
example, alternative splicing of the INSR gene by
binding to intronic and exonic splicing regulatory

elements [63]. Additionally, HNRNPH1 controls
alternative splicing of the RNA binding fox-1 homo-
log-2 (RBFOX2) [87], a critical splicing regulator in
skeletal muscle. Indeed, HNRNPH1 depletion

Figure 4. Regulation of polyadenylation in muscles. (a). The length of Pax3 3ʹUTR determines whether the transcript can be silenced
by the microRNA miR-206. When a proximal polyadenylation site is used, the 3ʹUTR is shorter and lacks the miR-206 binding site and,
in consequence, the transcript can escape the miR-206-induced silencing. In contrast, when a distal polyA site is used, the 3ʹUTR
contains those binding sites leading to the silencing. (b). The polyA binding protein-1 (PABPN1) suppresses weak polyadenylation
and cleavage sites by blocking the cleavage and polyadenylation factor (CPSF) from binding to these sites. Therefore, PABPN1
promotes the usage of a distal polyA site and thus longer transcripts by this mechanism. (c). Triple knockout of MBNL proteins in
mice leads to the reactivation of fetal polyadenylation programs that preferentially use distal sites and thus generates short 3ʹUTRs.
MBNL proteins bind similar sites as the CPSF does. In this way, binding of MBNL proteins close to the proximal polyA sites prevents
CPSF from binding and promotes the selection of more distal polyA sites.

Figure 5. Expression of RNA-binding proteins during muscle development and myogenesis. The expression levels of several RNA-
binding proteins (RBPs) change during muscle cell differentiation (myogenesis) (a) and skeletal muscle development (b). CELF:
CUGBP Elav-like family member, MBNL: muscleblind like protein, QK: quaking, PTBP: polypyrimidine binding proteins, RBFOX: RNA
binding fox-1 homolog.
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caused splicing changes in RBFOX2 downstream
targets [87]. HNRNPH1 is upregulated in myotonic
dystrophy type-1 (DM1) and by interacting with two
other RBPs that are misregulated in this disease
(CELF1 and MBNL) contributes to mis-splicing of
the INSR [88]. The preferential expression of INSR-
A over INSR-B ultimately leads to insulin resistance
in individuals with DM1 [88].

Two HNRNPs that have been implicated exten-
sively in alternative splicing regulation are the poly-
pyrimidine binding proteins, PTBP1 and PTBP2.
These two proteins are very similar in their sequences
and RNA-binding abilities [89]. PTBP1 and PTBP2
bind preferentially to CUCUCU-motifs [90] and pro-
mote exon inclusion or exon skipping depending on
their binding location relative to the alternative exon
[91–93]. Even though PTBP1 and PTBP2 are similar,
some alternative splicing events respond more to one
protein than the other [94]. PTBP1 protein levels
decrease during myotube formation in the C2C12
mouse muscle cell line [46], a well-established model
of myogenesis in vitro (Figure 5(a)). To the best of our
knowledge, PTBP2 has not been yet investigated in
the context of muscle cell differentiation or skeletal
muscle development.

Quaking protein

QK protein levels increase during myogenesis
[95] (Figure 5(a)) and QK regulates alternative
splicing decisions by binding to ACUAA-motifs,
which are known to be enriched in regions down-
stream of muscle-specific exons. QK also binds to
UAAY-motifs located 1–20 nucleotides after the
ACUAA-motif [96]. When QK binds upstream of
the alternative region, it promotes its inclusion.
When QK binds downstream, it promotes skip-
ping [95]. Together with PTBP1, QK co-regulates
alternative splicing of an important set of muscle-
specific genes during myogenesis [95]. Almost
40% of the genes regulated by alternative splicing
during myogenesis are controlled by one or both
of these RBPs [95].

CELF proteins

CELF proteins bind to GU-rich sequences and are
involved in different aspects of RNA processing [97].
In vitro, CELF1 is upregulated during myogenesis

(Figure 5(a)) [46] and its depletion leads to stabiliza-
tion of GU-rich transcripts [98]. CELF1 and CELF2
are elevated in fetal muscle but are downregulated
during postnatal development (Figure 5(b)) [46,47].
Constitutive CELF1 knockout mice exhibited growth,
viability, and spermatogenesis defects [99] and several
splicing andmRNA stability CELF1 targets were iden-
tified in the hearts of these animals [100]. CELF1 and
MBNL1 compete for similar 3ʹUTR binding sites and
act antagonistically in skeletal muscles and hearts
[101]. Indeed, CELF proteins can destabilize mRNAs
whileMBNL proteins aid in their translation [98,102].

PABPN1

The poly-adenine-binding protein nuclear-1
(PABPN1) is a major component of the alternative
polyadenylation complex [103]. PABPN1 blocks weak
polyadenylation sites and PABPN1 depletion has
been shown to cause genome-wide 3ʹUTR shortening
[104], (Figure 4(b)). Muscle expression of PABPN1
decreases during aging and human mutations in the
PABPN1 gene are associated with oculopharyngeal
muscular dystrophy (OPMD) [105] An OPMD-asso-
ciated PABPN1mutant displayed a general preference
for proximal polyadenylation cleavage sites [104].
More recently, studies have investigated the role of
PABPN1 in polyadenylation site selection within
internal gene regions [105]. When PABPN1 function
is lost, alternative polyadenylation site selection dis-
plays an overall preference for distal polyadenylation
sites, indicating a mechanism for transcriptome
changes in aged muscle and in OPMD [105].
Interestingly, transcripts that use the distal polyade-
nylation site are sequestered in the nucleus and, thus,
not efficiently translated [105]. Therefore, PABPN1
appears to have multiple roles in polyadenylation site
selection and may regulate translational silencing in
muscle during aging and OPMD.

MBNL proteins

The muscleblind-like family of proteins, MBNL1
and MBNL2 extensively regulate alternative splicing
during muscle development [84]. MBNL proteins
also bind the 3ʹUTR of nascent mRNA transcripts
and are key regulators of polyadenylation site selec-
tion [84]. MBNL proteins tend to bind to YGCY-
motifs [106] and are downregulated during mouse
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skeletal muscle development [47] (Figure 5(b)).
MBNL1 depletion in mice causes several of the
symptoms, splicing changes, and polyadenylation
switches observed in humans suffering with DM
[84,107,108] Similarly, MBNL1 depletion in mouse
embryonic fibroblasts altered polyA site selection
for thousands of genes and induced a global rever-
sion in polyadenylation site selection back to a fetal
profile which is present in DM both in humans and
mice (Figure 4(c)) [84]

RBFOX proteins

Fox homolog proteins (RBFOX) are highly expressed
in adult skeletalmuscles (Figure 5(b)) and are required
for tissue development and muscle cell differentiation
[46,109–111]. RBFOX proteins tend to bind to
GCATG-sequences at a location greater than 500
nucleotides from the regulated alternative region
[112]. RBFOX1 can also bind to expanded CCUG-
repeats that are a hallmark of myotonic dystrophy
type-2 (DM2) [113]. MBNL proteins compete with
RBFOX1 for binding to CCUG-repeats. In fact, over-
expression of RBFOX1 results in less MBNL1 seques-
tration and less of a DM2 phenotype possibly due to
the correction of alternative splicing changes caused
by MBNL1 sequestration [113]. Deletion of RBFOX1
in mice causes extensive alternative splicing changes,
loss of muscle function, and reduced force production
[110]. RBFOX2 depletion prevents myoblast fusion
partially through splicing regulation of the transcrip-
tion factor known as myocyte-specific enhancer fac-
tor-2D (Mef2d) [111,114]. Furthermore, depletion of
both RBFOX1 and RBFOX2 in mice resulted in
a severe loss of muscle mass and alteration of splicing
of numerous transcripts [109]. Among these changes,
these mice exhibit mis-splicing of the calpanin-3
expressing an active form of this protease that leads
to an increase in protein degradation by the protea-
some [109]. Combined, these data demonstrate the
importance of RBFOX proteins in RNA processing in
skeletal muscle physiology.

In summary, RBPs are key regulators of RNA
processing in skeletal muscles and misregulation
of their expression, localization, or functions leads
to defects in mRNA stability, alternative splicing,
and polyadenylation. In the next section, we focus
on the epigenetic regulation of myogenesis and
further in the review we detail muscle disorders

caused by defects in RNA processing and
RNAbased therapies.

Epigenetic regulation of myogenesis

RBPs have long been known to influence muscle
architecture. However, only within the last
20 years has the role of epigenetics and myogen-
esis and lineage determination been uncovered.
Perhaps the most well-known regulator of myo-
genesis is the myoblast determination protein
(MYOD1) which associates with histone-
modifiers to promote muscle cell differentiation.
Specifically, MYOD1 initiates a feed-forward
myogenic program that facilitates the differentia-
tion of myoblasts into myotubes [115]. Early
studies revealed that histone deacetylase
I (HDAC I) associates with MYOD1 in myo-
blasts, thereby inhibiting transcription of
MYOD1 target genes [116,117]. In contrast,
a myogenic program of gene expression is
induced in differentiating muscle cells when
MYOD1 is associated with histone acetyl trans-
ferases (HATs) [116–118], (Figure 6). Indeed,
genome-wide studies have demonstrated that
myogenesis leads to changes in global histone
modifications [119] While the overall distribu-
tion of histone modifications appear to be con-
served during differentiation, there is a marked
reduction of histone 3 (H3) acetylation in myo-
tubes compared with myoblasts [119]. In addi-
tion, H3 trimethylation of lysine 27 (H3K27me3)
is associated with gene repression in myo-
tubes [119].

The importance of histone acetylation in striated
muscle identity has recently been expanded.
Particularly, the nucleosome remodeling and deace-
tylase (NuRD) complex regulates tissue identity. Loss
of Chd4, the catalytic subunit of the NuRD complex
in cardiomyocytes activates skeletal muscle lineage
genes. Interestingly, deletion of Chd4 in skeletal mus-
cle cells promotes the expression of cardiac genes
[120]. Therefore, epigenetic mechanisms, particularly
histone acetylation, are important for myogenesis and
muscle specification. Still, the contribution of histone
modifications and epigenetics in general to RNA pro-
cessing in muscle cells is unknown.

Although the relationship between RNA proces-
sing and epigenetics has yet to be investigated in the
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context of skeletal muscle, evidence from neuronal
and cancer cell lines suggests that histone modifica-
tions can mediate alternative splicing [121–126].
Membrane depolarization of neuroblastoma cells
hyperacetylated the region surrounding exon 18 in
the neural cell adhesion molecule (NCAM) gene
resulting in exon skipping [121,122]. Creating
a more permissive chromatin environment via treat-
ment with an HDAC inhibitor increased exon skip-
ping whereas enrichment of repressive marks
around exon 18 promoted its inclusion [121,122].
Histonemarks have also been shown to interact with
RNA binding proteins directly or through adaptor
proteins [125,126]. For example, the MORF-related
gene 15 (MRG15) mediates the interaction between
H3K36me3 and the splicing factor PTBP1 [125].
This suggests a model by which histone marks
recruit splicing machinery and in turn regulate
exon inclusion or skipping. Future studies investigat-
ing the connection between splicing and epigenetics
in a muscle context may elucidate important regula-
tory mechanisms that control muscle development
and regeneration.

RNA processing in muscle diseases and
therapies

DM

Myotonic dystrophy is a disease characterized bymus-
cle wasting, relaxation and damage to the nervous

system [84,113,127–130]. There are two main forms
of adult onset myotonic dystrophy: DM1 and DM2.
DM1 is caused by 50–3,000 CTG repeats in the 3ʹUTR
of the DM1 protein kinase (DMPK) gene that accu-
mulate over time; however, full penetrance of the
disease occurs at 50 repeats [131,132] (Figure 7(a)).
DM2 is caused by 75–11,000 CCUG repeats within
intron 1 of the CCHC-type zinc finger nucleic acid
binding protein gene (CNBP, also known as ZNF9)
(Figure 7(b)) [133]. Both of these repeat expansions
cause the formation of toxic hairpin RNAs that
sequester RBPs, like MBNL proteins [134]. This
results inmisregulation of RNAprocessing. For exam-
ple, sequestration of MBNL leads to its loss-of-
function and thus a reversion of adult splicing and
polyadenylation programs back to fetal ones
[135,136]. DM1 is more severe than DM2 because
CUG-repeats both sequester MBNL proteins (loss-of-
function) and induce CELF hyperactivation (gain-of-
function) [113,137]. The more CUG-repeats present
appear to positively correlate with MBNL protein
sequestration and severity of the disease [130]. The
lower severity of DM2 compared to DM1 can be
attributed to the fact that the CCUG-repeats do not
sequester MBNL proteins as well as CUG-repeats do
[113]. Furthermore, RBFOX proteins bind to CCUG-
repeats but not to CUG-repeats which allows RBFOX
proteins to compete with MBNL proteins in DM2,
preventing complete MBNL1 sequestration. In this
manner, the phenotype is less severe in DM2 than in
DM1 [110].

Several therapeutics are used in the treatment of
DM (Figure 7(c)). ASOs are used to block the tran-
scription of portions of CUG-repeats in the 3ʹUTR of
the DMPK gene and in this manner correct MBNL
sequestration. DMSXL mice have a mutant form of
the human DMPK gene and a similar amount of
CUG-repeats compared to humans with DM and
treating these mice with the ASOs led to weight
gain, improvement in muscle strength, and a 70%
decrease in the abundance of CUG-repeat RNA in
skeletal muscle [128]. A second therapy uses ASO
gapmers that bind upstream of the CUG repeats.
Gapmers recruit RNAse-H which degrades the
CUG-repeats and corrects the molecular defects of
the disease [138]. This is an effective therapy because
mutant DMPK and RNAse-H normally accumulate
in the nucleus. A third therapy is not RNA-based and
instead uses various small molecules that block

Figure 6. Regulation of myogenesis by MyoD1 activation of
muscle genes. In myoblasts, MyoD1 associates with histone
deacetylases (HDACs), leading to repression of muscle genes.
During differentiation, MyoD1 interacts with histone acetyl
transferases (HATs) to deposit acetylation (Ac) on histones of
MyoD1 target genes. Acetylation of these muscle target genes
promotes muscle fate determination.
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MBNL1 sequestration. This prevents the global mis-
regulation of alternative splicing programs that
occurs in DM1 [139].

Congenital myotonic dystrophy (CDM)

Congenital myotonic dystrophy (CDM) is a form of
DM1 that is present prenatally and inherited in an
autosomal dominant manner [129,130]. CDM is
caused by the presence of 750–1,000 CUG-
expansions in the 3ʹUTR of the DMPK gene [130]
(Figure 7(d)). Interestingly, CDM exhibits unique
hypermethylation of CpG sites near the CUG-
repeats but the full implications of this CpG hyper-
methylation are still unknown [140] The degree of
methylation upstream of the repeat prevents the tran-
scriptional regulator CTCF from binding to the site

[130] and the loss of CTCF regulation results in tran-
scriptional dysregulation and transcription of more
CTG-repeats [140]. Changes in alternative splicing
and alternative polyadenylation are altered in tissues
affected by CDM [130]. AMbnl1/Mbnl2/Mbnl3 triple
knockout mouse recapitulated numerous features of
CDM and the reactivation of the fetal splicing and
polyadenylation patterns [130] (Figure 4(c)), demon-
strating the role of MBNL proteins in the disease.
Finally, severe CDM results in muscle immaturity
due to the improper activation of the cytokine, IL-6,
an inhibitor of myoblast differentiation [140,141].

Duchenne muscular dystrophy (DMD)

DMD is an X-linked disease resulting in progressive
muscle loss. The majority of DMD cases are caused

Figure 7. Myotonic dystrophy. (a). Myotonic dystrophy type-1 (DM1) is characterized by 50–3,000 CUG-repeats in the 3ʹUTR of DM1
protein kinase (DMPK) gene. The CUG-repeats cause RNA hairpins that sequester muscleblind like protein-1 (MBNL1) which leads to
global changes in alternative splicing, polyadenylation, and mRNA stability. In DM1, the CUGBP Elav-like family member-1 (CELF1) is
hyperphosphorylated and this leads to its gain-of-function. (b). Myotonic dystrophy type-2 (DM2) is characterized by 75–11,000
CCUG-repeats in the intron 1 of the CCHC-type zinc finger nucleic acid binding protein (CNBP, also known as ZNF9) gene. CCUG-
hairpins sequester RNA binding fox-1 homolog proteins (RBFOX) which leads to extensive changes in alternative splicing and
polyadenylation. CELF1 also becomes highly expressed and hyperphosphorylated in DM2. (c). Therapies for DM1. First, antisense
oligonucleotides (ASOs) are used to block the transcription of portions CUG-repeats and in this manner MBNL sequestration is
corrected. Second, gapmers that bind upstream of the CUG-repeats recruit RNAse-H which degrades the CUG-repeats and corrects
the molecular defects of the disease. A third therapy is not RNA-based and instead uses various small molecules that block MBNL1
sequestration. This prevents the global misregulation of alternative splicing programs that occurs in DM1. (d). Congenital myotonic
dystrophy (CDM) is characterized by 750–1,000 CUG-repeats at the 3ʹUTR of DMPK and hypermethylation of CpG islands upstream of
the repeats. This results in sequestration of MBNL proteins as in DM1 and therefore, misregulation of alternative splicing,
polyadenylation, and mRNA stability. Severe CDM results in muscle immaturity due to the improper activation of the cytokine, IL-
6, an inhibitor of myoblast differentiation.
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by a reading framemutation in theDMD gene which
is 79 exons long and encodes the dystrophin protein
which in muscles links actin with the extracellular
matrix [142–144] (Figure 8(a)). Mis-splicing of some
exons within theDMD gene has also been implicated
in DMD; however, splicing variants contribute to
less than 7% of all disease-causing variants. In
2016, the FDA approved the ASO known as
Eteplirsen to promote the skipping of exon 51 in
DMD pre-mRNA [143]. Skipping of exon 51
restores the reading frame and thus produces
a partially functional DMD protein [143,144]
(Figure 8(b)). Since Eteplirsen is applicable to
approximately 14% of all DMD cases [143], other
ASO technologies are currently in clinical trials
[145]. Small molecule therapy has been used to gen-
erate compounds that increase exon 51 skipping

[146]. Dantrolene is a small molecule that targets
the ryanodine receptor and has been used to treat
hyperthermia but also works to treat DMD [146].
Dantrolene promotes exon 51 skipping in the DMD
mouse model (mdx) and also reprogrammed myo-
tubes from DMD patients. The mode of action is
suspected to be linked to the ryanodine receptor but
the complete mechanism is not known [146].

Amyotrophic lateral sclerosis (ALS)

ALS is a devastating and progressive neuromuscu-
lar disease characterized by motor neuron death.
In recent years, the importance of RNA proces-
sing, and especially RBPs in the ALS pathology has
been elucidated [147–149]. Numerous mutations
associated with ALS give rise to protein or RNA

Figure 8. Other diseases and RNA-based therapies. (a). Duchenne muscular dystrophy (DMD) is characterized by mutations which
disrupt the reading frame resulting in truncated dystrophin proteins. Truncated dystrophin leads to muscle atrophy and muscle
weakness. Two frequent frameshift mutations are in exon 44 and exon 51. (b). Restoration of the DMD reading frame is possible
using antisense oligonucleotides (ASOs). Here, ASOs are used to induce the skipping of exon 51 of DMD pre-mRNA. Skipping of this
exon restores the reading frame and results the expression of functional dystrophin protein. (c). Generation of functional SMN
protein in Spinal Muscular Atrophy (SMA). SMA is caused by a lack of survival motor neuron (SMN) protein. This happens when there
is a deletion or mutation in the survival motor neuron-1 (SMN1) gene or increased copy number of SMN2. SMN2 produces much less
functional SMN protein because of a C/T transition that prevents inclusion of exon 7. Multiple therapies have been devised for SMA
that corrects for the loss of SMN1 by promoting exon inclusion in SMN2 via ASOs to increase SMN protein levels.
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aggregates that sequester RBPs outside of the
nucleus and prevents them from regulating their
targets. C9orf72 is the most commonly mutated
gene in familial and sporadic ALS, accounting for
approximately 40% and 10% of cases, respectively
[150]. ALS-associated C9orf72 mutations
(GGGGCC-repeat expansions) lead not only to
transcriptional defects in the C9orf72 gene itself,
but also to downstream RNA processing abnorm-
alities [151,152]. Mutated C9orf72 RNA forms dis-
tinct aggregates in the cytosol which are thought to
contribute to RNA toxicity via the sequestration of
the HNRNP proteins outside of the nucleus [153].
A nearly universal clinical feature of ALS is the
presence of cytoplasmic inclusion bodies com-
posed of the DNA binding protein of 43 kDa
(TDP43) [154,155]. In individuals with ALS, mis-
folded TDP43 aggregates in the cytosol of spinal
motor neurons and glial cells leading to fronto-
temporal lobe degeneration [154]. Nuclear TDP-
43 binds to thousands of RNAs and primarily is
enriched at introns where it regulates alternative
splicing [156,157]. The cytoplasmic aggregation of
TDP43 depletes nuclear TDP43 and, thus, dysre-
gulation of its targets is commonly observed in
ALS [157]. TDP43 also plays a role in RNA stabi-
lity and homeostasis [158], and whole genome
RNA instability has been recently demonstrated
in fibroblasts from individuals with ALS [159].
TDP43 interacts with other RNA processing fac-
tors, such as Matrin-3 (MATR3) and Fused-in-
sarcoma (FUS) [160,161], that are frequently
mutated in ALS [161–164]. While MATR3 is
involved in polyadenylation site selection and
intron retention via interactions with PABPN1
[162–164], FUS is a RBP that colocalizes with
wild-type TDP43 in cytoplasmic inclusion bodies
in models of ALS [161]. However, studies in
autopsy human tissues do not support the idea
that FUS and TDP43 overlap [165], indicating
the need for additional studies to explore the
potential interaction between FUS and TDP43
[166]. In summary, ALS-associated mutations in
RBPs lead to dysregulation of RNA processing and
stability. Furthermore, enrichment of mutations in
multiple RBPs in the pathology of ALS indicates

that RNA processing may play a vital role in the
development of the disease.

Spinal muscular atrophy (SMA)

SMA is a progressive motor neuron disease that
affects young children. SMA is caused by a lack of
survival motor neuron (SMN) protein. This hap-
pens when there is a deletion or mutation in the
survival motor neuron-1 (SMN1) gene or
increased copy number of SMN2. SMN1 and
SMN2 produce the same protein because SMN2
arose from a gene duplication event of SMN1.
However, SMN2 produces less functional SMN
protein because of a C/T transition that prevents
an exonic enhancer from including exon 7 [167].
Multiple therapies have been devised for SMA that
corrects for the loss of SMN1 by promoting exon
inclusion in SMN2 via ASOs to increase SMN
protein levels [168–170] (Figure 8(c)). This
approach rescues the phenotype of SMA observed
in a SMN mouse model and, in 2016, the FDA
approved the ASO Nusinersen to treat SMA in
humans [168,169]. A second therapy for SMA is
to provide a copy of SMN via adenoassociated
virus and this treatment resulted in a longer sur-
vival time of humans with SMA and increased the
expression of SMN protein in mice [169,171].
Finally, small molecules are also efficacious in
promoting SMN2 exon 7 inclusion [172], thus,
several therapies targeted to RNA processing
seem promising to treat SMA.

Perspectives

RNAprocessing contributes to skeletal muscle devel-
opment and function and its misregulation can lead
to devastating muscular diseases. Several RBPs reg-
ulate RNA processing in muscles and also contribute
to the pathogenesis of diseases. However, there are
numerous questions that still need to be answered
about how RNA processing is regulated in skeletal
muscle. First, there are likely thousands of splice
variants and alternative polyadenylated transcripts
with unexplored functions. Second, more research
is needed to fully understand the functional
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consequences of global networks of alternative spli-
cing and polyadenylation in muscles. Third, thor-
ough mechanisms elucidating how RBPs are
regulated during skeletal muscle development and
diseases have not been completely defined. Fourth,
cellular processes such as epigenetics and lifestyle
could also play a role in RNA biology which can be
explored in skeletal muscle. A greater understanding
of the mechanisms controlling RNA processing in
skeletal muscle will facilitate the development of new
therapeutics to treat muscular diseases.
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