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ABSTRACT

Macroautophagy/autophagy is an important intracellular mechanism for the maintenance of cellular
homeostasis. Here we show that the CERKL (ceramide kinase like) gene, a retinal degeneration (RD)
pathogenic gene, plays a critical role in regulating autophagy by stabilizing SIRT1. In vitro and in vivo,
suppressing CERKL results in impaired autophagy. SIRT1 is one of the main regulators of acetylation/
deacetylation in autophagy. In CERKL-depleted retinas and cells, SIRT1 is downregulated. ATG5 and
ATG7, 2 essential components of autophagy, show a higher degree of acetylation in CERKL-depleted
cells. Overexpression of SIRT1 rescues autophagy in CERKL-depleted cells, whereas CERKL loses its
function of regulating autophagy in SIRT1-depleted cells, and overexpression of CERKL upregulates
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SIRT1. Finally, we show that CERKL directly interacts with SIRT1, and may regulate its phosphorylation at
Ser27 to stabilize SIRT1. These results show that CERKL is an important regulator of autophagy and it

plays this role by stabilizing the deacetylase SIRT1.

Introduction

Macroautophagy (hereafter autophagy) is an important intra-
cellular pathway, which plays a critical role in maintaining
cellular homeostasis and regulating the response to environ-
mental stressors [1-4]. When autophagy is activated, phago-
phores engulf the cytoplasmic material, and then mature into
double-membrane autophagosomes; these subsequently fuse
with lysosome, resulting in degradation of the delivered mate-
rial [5-7]. Autophagy is classically described as a response
that is immediately activated when cells are subjected to
nutrient deprivation. However, increasing evidence shows
that autophagy plays an important role in maintaining a stable
intracellular environment by degrading toxic aggregates, mis-
folded proteins, and damaged organelles [2]. Dysregulation of
autophagy is implicated in many diseases, including cancer,
immune diseases and neurodegeneration [1,8-10].

In the eye, autophagy proteins are strongly expressed, and
autophagic activity is increased under cellular stresses such as
oxidative conditions, intense light and mitochondrial damage
[11]. Therefore, autophagy is important to the health and
function of the retinal pigment epithelium (RPE) and the
retina itself [12,13]. In eyes, in addition to the function of
maintaining the stable intracellular environment, a noncano-
nical autophagy pathway supports the phagocytosis of photo-
receptor outer segments and maintains the retinoid levels in
RPE [14]. Previous studies have shown that specific defects of

autophagy in RPE result in alterations in autophagy flux and
in vision defects [15], whereas photoreceptor-specific defects
cause photoreceptor death and vision defects [12,13].
Alterations in autophagy flux are observed both in age-related
macular degeneration (AMD) and in retinitis pigmentosa
(RP) patients [16,17].

CERKL, one of the RP causative genes, was first identified
in a RP Spanish family and later was associated with cone-rod
dystrophy (CRD) [18-21]. Regarding CERKL location in the
retina, immunofluorescence of mouse and zebrafish cryosec-
tions reveal a location in the ganglion cell layer (GCL), inner
nuclear layer (INL), and the inner segments (IS) and outer
segments (OS) of photoreceptors. Currently there is debate as
to whether CERKL is located in RPE [22-27].

Previous studies of the function and disease mechanism of
CERKL have shown that CERKL fails to show any kinase
activity even though it shares an integral diacylglycerol kinase
(DAGK) signature with CERK (ceramide kinase) [28-30].
Nonetheless, it has been demonstrated that CERKL protects
cells from stress, especially oxidative stress [31]. In our pre-
vious study, we showed that CERKL interacts with TXN2
(thioredoxin 2) and acts as a novel player in the regulation
of the mitochondrial PRDX (peroxiredoxin)-mediated antiox-
idant pathway [27]. These findings provide a new direction
for research into CERKL, although further studies are still
necessary. Recently, our team generated a stable cerkl
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knockout zebrafish model that displays rod-cone dystrophy
and disturbance in photoreceptor OS phagocytosis; the mole-
cular mechanism is still unclear [32]. As autophagy plays an
important role in maintaining the stable intracellular environ-
ment, and the noncanonical pathway has a close connection
with RPE phagocytosis, in this study we analyzed if and how
CERKL regulated autophagy in vivo and in vitro.

In the present study, we demonstrated that in cerkl””
zebrafish, the basal level of autophagy in photoreceptors and
RPE cells was reduced prior to the onset of photoreceptor
death. We also showed in vitro that CERKL played an impor-
tant role in the formation of autophagosomes in APRE-19
cells. While CERKL did not directly affect the components of
autophagosomes, it did affect post-transcriptional regulation
of autophagy. CERKL affected the protein stability of SIRT1,
the deacetylase of ATG5 and ATG7, by directly interacting
with SIRT1 and regulating its phosphorylation. Our findings
have suggested a novel molecular mechanism for the main-
tenance by CERKL of homeostasis and visual function in the
retina.

Results
Autophagy is impaired in cerkl”" zebrafish retinas

To understand the CERKL-mediated molecular mechanism in
pathogenesis, we examined autophagy flux in cerkl™ zebrafish
retinas by determining the level of L¢3 and Sqstm1. LC3B-I is
localized in the cytosol, and when it is conjugated with phos-
phatidylethanolamine and converted to LC3-II, the latter is
present on phagophore membranes and autophagosomes and
to a lesser extent in autolysosomes. Therefore, the assay of
‘LC3 puncta’ and the ratio of LC3-II to LC3-I provide a useful
measure of autophagy initiation [33], while SQSTM1 is a well-
characterized autophagy receptor and substrate that is ele-
vated after autophagy inhibition [34,35]. Compared to the
wild-type retinas, extracts of cerkl™” retinas showed a signifi-
cant decrease in the ratio of Lc3-1I to Le3-1, and a significant
increase of Sqstm1 at 1-month old prior to the onset of retinal

degeneration (RD) (Figures 1(a) and S1). A basal level of Lc3
puncta was present in control retinas, while cerkl™”" retinas
showed fewer Lc3 puncta in IS, INL and RPE (Figure 1(b,c)).
These results indicate that autophagy is impaired in cerkl™”"
retinas.

Autophagy flux is impaired in CERKL-depleted ARPE-19 cells

To address the potential role of CERKL in regulating autop-
hagy, we knocked down the expression of CERKL in ARPE-19
cells (Figure S2). As siCERKLI was more effective than
siCERKL2, we mainly used siCERKLI (hereafter referred to
as siCERKL) in subsequent experiments. Compared to the
negative control (NC) ARPE-19 cells, the ratio of LC3-II to
LC3-I was significantly decreased by 38% and SQSTMI also
increased by 23% in CERKL-depleted cells compared with the
NC (Figures 2(a) and S3), indicating that basal autophagy was
suppressed by knocking down CERKL.

In an effort to extend these results, autophagy was stimu-
lated by rapamycin treatment or serum starvation in the NC
and CERKL-depleted cells. As shown in Figure 2(b,c), treat-
ment of NC cells with rapamycin caused a roughly 6-fold
increase in autophagy, an effect that was suppressed in
CERKL-depleted cells undergoing the same treatment. A
similar result was observed when serum starvation was used
to stimulate autophagy in CERKL-depleted cells: the level of
autophagy increased with increased time of starvation in NC
cells, whereas in CERKL-depleted cells the level of autophagy
remained basically unchanged (Figure 2(d,e)).

To further confirm these results, the formation of endo-
genous LC3 puncta and exogenous GFP-LC3 puncta was
analyzed in the NC and CERKL-depleted cells in both the
normal and starved condition. As noted in Figure 2(f,g), the
number of LC3 puncta decreased in CERKL-depleted cells in
both conditions. We also quantified GFP-LC3 puncta forma-
tion. In CERKL-depleted cells, the number of GFP-LC3
puncta per cell decreased by 42.5% in normal conditions
and decreased by 42.7% in the starved condition, compared
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Figure 1. Autophagy flux was impaired in cerkl™ retinas. (a) Immunoblotting of Lc3 and Sqstm1 in retinal extracts from wild-type (WT) and cerkI™” zebrafish aged
1 month. (b) Immunostaining analysis of Lc3 in retinas of WT and cerkl™” zebrafish aged 1 month. Scale bars: 10 um. INL, inner nuclear layer; ONL, outer nuclear layer;
IS, inner segments. (c) Immunostaining analysis of Lc3 in RPE of WT and cerkl™” zebrafish aged 1 month. Scale bars: 10 pum.
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Figure 2. Autophagy was impaired in CERKL-depleted ARPE-19 cells. (a) Immunoblotting analysis of LC3 and SQSTM1 in negative control (NC) and CERKL-depleted
ARPE-19 cells. (b and ¢) Immunoblotting and quantification of the levels of endogenous LC3-1l:LC3- ratio in NC and CERKL-depleted ARPE-19 cells post treatment
with DMSO and 100 nM rapamycin for 2 h. Means+ SEM of 5 repeats are shown. (d and e) Immunoblotting and quantification of the levels of endogenous LC3-II:LC3-
| ratio in NC and CERKL-depleted ARPE-19 cells under normal and serum starvation (SS) condition for 1, 2 and 4 h. Means+ SEM of 5 repeats are shown.
() Immunostaining analysis of LC3 in NC and CERKL-depleted ARPE-19 cells induced by siRNA under normal and SS condition for 1 h. Scale bars: 10 pm.
(9) Immunostaining of the distribution of exogenous GFP-LC3 in NC and CERKL-depleted ARPE-19 cells under normal and SS condition for 1 h. Scale bars: 10 um.

with NC cells (Figure S4). Given that CERKL appears to be
required for basal and starvation- and rapamycin-stimulated
autophagy, we thought it possible that CERKL mainly affects
the formation of autophagosomes.

In order to corroborate that autophagy flux was inhibited
by the CERKL depletion, bafilomycin A; was used to block
the fusion of autophagosomes and lysosomes in NC and
CERKL-depleted cells. As shown in Figure 3(a,b), the ratio
of LC3-II to LC3-I increased approximately 4 times when
treated with bafilomycin A; in NC cells, whereas the ratio in
CERKL-depleted cells increased approximately 3 times, indi-
cating that CERKL-depletion did not block the autophagy
flux. We also observed the colocalization of autophagosomes
and lysosomes in NC and CERKL-depleted cells by transiently
overexpressing GFP-LC3 and RFP-LAMP1 to detect the for-
mation of autolysosomes. As noted in Figure 3(c), the
decrease of autolysosomes in CERKL-depleted cells was
mainly caused by the decreased formation of autophagosomes
by CERKL depletion.

CERKL did not directly interact with the components of
autophagosomes

Given that CERKL appears to be required for autophagy in
ARPE-19 cells, we thought it possible that CERKL might
directly influence the formation of autophagosomes. We
therefore used immunofluorescence to investigate if CERKL
might have a colocalization with autophagosomes. As seen in
Figure 4(a), exogenous FLAG-CERKL shared no colocaliza-
tion at all with LC3 puncta. Furthermore, there was no inter-
action between CERKL and ATG proteins (data not shown).
We then considered if CERKL might participate in the pro-
cess of autophagosome formation. As noted in Figure 4(b,d),
the level of two of the major proteins of LC3 ubiquitin-like
conjugation, ATG5 and ATG7, were assessed in NC or
siCERKL ARPE-19 cells. No significant change was found.
Based on these observations, we next investigated whether
the upstream regulators of autophagy were impaired. The
activation of the energy sensor AMP-activated protein kinase
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Figure 3. Autophagic flux was impaired in CERKL-depleted ARPE-19 cells. (a and b) Immunoblotting and quantification of the levels of endogenous LC3-11:LC3-I ratio
in negative control (NC) and CERKL-depleted ARPE-19 cells under DMSO and 2.5 nM bafilomycin A; condition for 3 h. Meanst SEM of 5 repeats are shown.
(c) Immunostaining analysis of the colocalization GFP-LC3 and RFP-LAMP1 in NC and CERKL-depleted ARPE-19 cells. Scale bars: 10 pm.

(AMPK) activates autophagy, and in atg5~" mice, an autop-
hagy-depleted model, there is increased activation of AMPK
[36]. In CERKL-depleted cells, we also observed an increased
activation of AMPK (Figure 4(c,d)), indicating that autophagy
might be expected to be activated in CERKL-depleted cells,
while in fact it was impaired.

CERKL affected autophagy via SIRT1

A previous study suggests that autophagy is also regulated by
protein post-translational modification [37]. Acetylation of
autophagy proteins plays an important role in autophagic
flux. SIRT1, a mammalian deacetylase, deacetylates several
ATG proteins, such as ATG5, ATG7 and LC3, during starved
conditions [38]. Thus, we examined the protein level of SIRT1
under a CERKL-depleted condition in vitro and in vivo. As
seen in Figure 5(a-d), SIRT1 was significantly decreased by
52.2% in CERKL-depleted cells (siCERKLI) (Figure 5(a,b)),
whereas in cerkl™ zebrafish retina, Sirtl levels decreased by
approximately 70% (Figure 5(c,d)), indicating that CERKL
affected autophagy via SIRT1. To confirm this hypothesis,
we overexpressed SIRT1 in CERKL-depleted cells to rescue
the impaired autophagy. As predicted, the ratio of LC3-II to
LC3-I was increased after transient overexpression of SIRT1

in CERKL-depleted cells (Figure 5(e)). Given that CERKL
affects autophagy via SIRT1, we assessed the level of acetyla-
tion in CERKL-depleted cells. As noted in Figure 6(a,b), the
level of acetylated ATG5 and ATG7 both increased when
CERKL was knocked down. Taken together, these data
demonstrated that CERKL affected autophagy via the role of
SIRT1 in regulating acetylation of ATG proteins.

CERKL regulated the stability of SIRT1

Given that knocking down CERKL reduced the protein level
of SIRT1 (Figure 5(a,e)), both endogenous and exogenous, we
then considered the possibility that CERKL might affect the
protein stability of SIRT1. We therefore assayed the half-life
of SIRT1 in CERKL-depleted cells. Protein levels of SIRT1
declined with a half-life of approximately 10 h by CERKL
siRNA (Figure 7(a,b)). Previous work has suggested that the
phosphorylation of SIRT1 at Ser27 (p-S27) increases the pro-
tein stability of SIRT1 [39], and that SIRT1 phosphorylation
at Ser47 exhibits an opposite function, inducing a brief activa-
tion of SIRT1 function and degradation of SIRT1 thereafter by
the proteasome [40]. Consequently, we investigated the level
of SIRT1 p-S27 and SIRT1 p-S47 in CERKL-depleted cells.
Interestingly the ratio of SIRT1 p-S27 and SIRT1 p-S47 to
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Figure 4. CERKL did not directly interact with the components of autophagosomes. (a) Immunostaining analysis of endogenous LC3B or exogenous GFP-LC3 and
FLAG-CERKL in ARPE-19 cells. Scale bars: 5 um. (b) Immunoblotting of the autophagy proteins ATG5 and ATG7 in NC and CERKL-depleted ARPE-19 cells. (c)
Immunoblotting of the upstream regulator proteins of autophagy in NC and CERKL-depleted ARPE-19 cells. (d) Quantification of proteins presented in panels B and C.
Relative expression of proteins in relation to TUBA. Means+ SEM of 5 repeats are shown.

total SIRT1 were both reduced in CERKL-depleted cells
(Figure 7(c,d)).

To further confirm the results, we overexpressed CERKL in
ARPE-19 cells. As noted in Figure 8(a,b), although endogen-
ous SIRT1 did not show a significant upregulation in CERKL-
overexpressing cells, the 2 phosphorylated forms of SIRT1I,
p-S27 and p-S47, increased significantly. As a result, the

stability and activity of SIRT1 should both be upregulated.
To confirm this inference, we then assessed the stability of
SIRT1 and the level of autophagy in CERKL-overexpressing
cells. As shown in Figure 8(c,d), SIRT1 displayed greater
stability when CERKL was overexpressed. Autophagy detected
through western blotting and immunofluorescence assay was
also upregulated (Figures 8(e,f) and S6), along with the
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Figure 5. CERKL affected autophagy via SIRT1. (a and b) Immunostaining and quantification of the protein levels of SIRT1 in negative control (NC) and CERKL-
depleted ARPE-19 cells. Relative expression of proteins in relation to TUBA. Means+ SEM of 5 repeats are shown. (c and d) Immunostaining and quantification of the
protein levels of Sirt1 in retinal extracts from wild-type (WT) and cerkl™" zebrafish aged 1 month. Relative expression of Sirt1 in relation to Tuba. Means+ SEM of 4
repeats are shown, each sample contain eyeballs of 4 zebrafish. (e) Inmunoblotting of the levels of endogenous LC3-Il:LC3-I ratio under a gradient expression of
exogenous FLAG-SIRT1 in NC and CERKL-depleted ARPE-19 cells. Each well was transfected with 0.5 pg FLAG-SIRT1 plasmid in lane 2 and 4, 1 pg in lane 5, and 2 ug

in lane 6.

reduction of SQSTML. In addition, we overexpressed CERKL
in SIRT1-depleted cells and found that autophagy was not
upregulated (Figure S7). These results further proved that the
effect of CERKL on autophagy is dependent on SIRT1.

CERKL directly interacted with SIRT1

Given that SIRT1 was stabilized by CERKL, we thought it
possible that CERKL directly interacted with SIRT1 to affect
its protein stability. Co-immunoprecipitation (co-IP) assays
were performed to test this potential interaction. As shown
in Figure 9(a,b), the anti-FLAG antibody (but not the con-
trol IgG) could immunoprecipitate GFP-CERKL, while the
reverse co-IP with anti-GFP antibody also showed that
GFP-CERKL interacted with FLAG-SIRT1. Moreover,
immunofluorescence assays were done in an attempt to
determine where the interaction occurs. Although GFP-
CERKL exhibits dynamic cellular distributions, FLAG-
SIRT1 and GFP-CERKL colocalized in both the cytoplasm
and nucleus of ARPE-19 cells (Figure 9(c)). To investigate

how CERKL affects the phosphorylation of SIRTI, we
assayed the level of interaction between CERKL and phos-
phorylated SIRT1. As shown in Figure 9(d), SIRT1 p-S27
had less interaction with CERKL. We constructed vectors to
simulate phosphorylated and unphosphorylated SIRT1, and
measured their level of interaction with CERKL. Consistent
with previous results, SIRT15*’P, the missense mutant simu-
lating SIRT1 p-S27, had less interaction with CERKL com-
pared with WT and with other mutants (Figure 9(e)).

Discussion

CERKL, a gene causing autosomal recessive RP and CRD,
plays a role in photoreceptor degeneration. Previous studies
have shown that CERKL protects cells from stress, especially
oxidative stress. Our previous data showed that CERKL mod-
ulates the redox state of TXN2 via protein-protein interaction
to reduce reactive oxygen species. Here we demonstrate that
CERKL plays a key role in autophagy in the retina by
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modulating the protein stability of an NAD-dependent dea-
cetylase, SIRT1.

Autophagy is an intracellular process that allows for the
degradation of proteins and organelles. Normally, autophagy
involves the formation of double-membrane autophagosomes
as a cellular response to stress and classically is induced by
starvation. Other stressors, such as oxidative and endoplasmic
reticulum (ER) stress, hypoxia, and infection can also trigger
autophagy. Autophagy occurs at a basal level mainly to main-
tain homeostatic function during protein and organelle turn-
over. Suppression of basal autophagy in neural cells causes
neurodegenerative disease. Here we found that autophagy in
photoreceptor and RPE cells was reduced in cerkl”” zebrafish
compared with the wild type. As previous studies have shown
that CERKL is located in photoreceptors and RPE [25,27], we
speculated that CERKL could regulate autophagy in these
cells.

In photoreceptors, protein aggregation, oxidative stress
and ER stress increase as a result of autophagy
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downregulation [41]. The mouse model deleting Atg5 spe-
cifically in rods displays a reduced ONL from 2 months
and photoreceptor death [13]. The Atg7ARod mouse shows
no gross abnormalities, although the photoreceptors display
sensitivity to light stress [11]. Atg5 deletion in cones results
in a reduction in cone number from 4 months [12]. In
RPE, LC3-associated phagocytosis, a noncanonical pathway
that utilizes some of the autophagy machinery, controls the
phagocytosis of daily shed photoreceptor outer segments
during renewal of photoreceptors. The essential function
of autophagy (to avoid lipofuscin and reactive oxygen spe-
cies accumulation) also contributes to the antioxidant
response of RPE cells. Atg5ARPE mice have decreased 11-
cis retinal compared to normal mice and show loss of visual
function [14]. Our study with cerkl™ zebrafish displays
phenotypes similar to those of the models above. In order
to further prove that CERKL affected autophagy, we
knocked down CERKL in ARPE-19 cells. In CERKL-
depleted cells we observed the suppression of basal autop-
hagy. In addition, by rapamycin treatment and starvation to
stimulate autophagy, a reduction in autophagy was
observed in CERKL-knockdown cells, which further indi-
cated that CERKL mainly affects the formation of
autophagosomes.

Conversely, the expression of the autophagy components
ATGS5 and ATG7 proteins was unchanged after knocking
down CERKL. In addition, CERKL did not show any coloca-
lization with the LC3 puncta, indicating that CERKL might
not affect the assembly of autophagosomes. By contrast to the
downregulation of autophagy in CERKL-depleted cells, the
upstream activator AMPK was activated, indicating that
when CERKL was knocked down in cells, the homeostasis
was disrupted.

Given that the autophagy signaling pathway was not
affected by knocking down CERKL, we turned our atten-
tion to the post-transcriptional regulation of autophagy.
Post-transcriptional regulation is essential for modulating
autophagy in order to adapt to different types of environ-
mental stress, both with regard to amplitude of autophagy
activity and its duration [37]. The post-translational mod-
ifications of autophagy can be classified into 3 categories:
phosphorylation, ubiquitination and acetylation. SIRTI, a
NAD-dependent deacetylase, is one of the main regulators
of acetylation-deacetylation in autophagy [38]. Some com-
ponents of the autophagy machinery, ATG5, ATG7, and
LC3, are deacetylated by SIRT1 in response to starvation,
an event necessary to induce autophagy. In CERKL-
depleted cells, we found that the protein level of SIRT1
was reduced, and, as a consequence, the acetylation level
of ATG5 and ATG7 increased. Therefore, we hypothesize
that the role CERKL plays in autophagy is via the deacety-
lase activity of SIRT1. The results that SIRT1 could recover
the suppressed autophagy in SIRT1-depleted cells and over-
expressing CERKL in SIRT1-depleted cells could not upre-
gulate autophagy further supported this hypothesis.

The SIRT!I mRNA was not downregulated by CERKL-
depletion (Figure S5). However, the half-life of SIRT1 pro-
tein was markedly reduced following downregulation of
CERKL. The protein stability of SIRT1 is regulated by
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Figure 7. CERKL regulated the stability of SIRT1. (a) SIRT1 protein levels at indicated times post treatment with 200 pg/ml cycloheximide (CHX) in negative control
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repeats are shown. (c and d) Immunostaining and quantification of the protein

levels of SIRT1 p-S27 and p-S47 in NC and CERKL-depleted ARPE-19 cells. Relative

expression of proteins in relation to TUBA. Means* SEM of 5 repeats are shown.

post-translational phosphorylation at Ser27 and Ser47.
SIRT1 is phosphorylated by MAPK8/JNK1 at Ser47, indu-
cing a brief activation of SIRT1 function and degradation of
SIRT1 thereafter by the proteasome [40]. The phosphoryla-
tion at Ser27 of SIRT1, induced by MAPK9/JNK2, increases
SIRT1 protein stability. In the present study, we showed
that the levels of SIRT1 p-S27 and p-S47, both regulated by
CERKL, decreased with CERKL-depletion, and increased
with CERKL overexpression. In addition, SIRT1 p-S27
showed less interaction with CERKL compared with total
SIRTI. Therefore, we hypothesize that CERKL may stabilize
SIRT1 by regulating the phosphorylation of SIRT1 at Ser27.

As the substrates of SIRT1 are not limited to ATG
proteins, SIRT1 is able to deacetylate histones and initiate

heterochromatin formation resulting in gene silencing.
SIRT1 also deacetylates several non-histone target pro-
teins, such as the tumor suppressor TP53/p53, members
of the FOXO family, stress response proteins NFKB and
XRCC6/Ku70, and the mitochondrial biogenesis regulator
PPARGCI1A/PGC-1a [42]. Given that SIRT1 plays a cru-
cial role in the cellular stress response, this suggests that
in cerkl”” zebrafish, not only autophagy but other aspects
of cell function such as metabolism, would also be
affected. However, more experiments are needed to
prove this hypothesis. Nevertheless, replenishment of
autophagy or activation of SIRT1 may be a potential
clinical treatment of retina degeneration caused by
CERKL mutations.
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Figure 8. Overexpressing CERKL stabilized SIRT1. (a and b) Immunostaining and quantification of the protein levels of SIRT1 p-S27 and p-S47 in ARPE-19 cells
overexpressing GFP and GFP-CERKL. Relative expression of proteins in relation to TUBA. Meanst SEM of 5 repeats are shown. (c and d) SIRT1 protein levels at the
indicated times post treatment with 300 ug/ml CHX in ARPE-19 cells overexpressing GFP and GFP-CERKL. Relative expression of SIRT1 in relation to GAPDH. Means
+ SEM of 3 repeats are shown. (e) Immunostaining analysis of LC3 and SQSTM1 in ARPE-19 cells overexpressing GFP and GFP-CERKL. (f) Immunostaining of the
distribution of LC3 in ARPE-19 cells overexpressing GFP and GFP-CERKL. Scale bars: 10 um.

Materials and methods
Zebrafish maintenance

All procedures of the animal experiments were reviewed and
approved by the Institutional Animal Care and Use Committee
at the College of Life Science and Technology, Huazhong

University of Science and Technology, and all experiments
were conducted according to the relevant guidelines. Zebrafish
larvae and adults were maintained at 26-28.5°C under a 14-h
light/10-h dark cycle. Fertilized eggs were collected and main-
tained in E3 medium in an incubator (at ~ 28.5°C) for 72 h until
the larvae hatched.
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Figure 9. CERKL directly interacted with SIRT1. (a and b) Reciprocal co-immunoprecipitation assays. ARPE-19 cell extracts transfected with plasmids encoding GFP-
CERKL and FLAG-SIRT1 were immunoprecipitated with one indicated tag antibody (FLAG in A, and GFP in B) and analyzed by immunoblotting analysis with the other
antibody. (c) Immunostaining analysis of the colocalization of CERKL and SIRT1 in ARPE-19 cells transfected with plasmids encoding GFP-CERKL (green) and FLAG-
SIRT1 (red). Scale bars: 10 pm. (d) ARPE-19 cell extracts from cells transfected with plasmids encoding GFP-CERKL and FLAG-SIRT1 were immunoprecipitated with GFP
antibody and analyzed by immunoblotting analysis with FLAG antibody and SIRT1 p-S27 antibody. (e) ARPE-19 cell extracts from cells transfected with plasmids
encoding GFP-CERKL and wild-type or mutant forms of FLAG-SIRT1 were immunoprecipitated with GFP and analyzed by immunoblotting analysis with FLAG

antibody.

Plasmid constructs and RNA interference

The full-length CERKL and SIRTI1 cDNAs were subcloned,
respectively, into the pEGFP-C1 (Miaolingbio, P0134),
p3xFLAG-CMV (Sigma, E7533) and pcDNA3.1 (Invitrogen,
V79520) vectors. A FLAG tag was added to the end of the
SIRT1 N terminus by PCR. Missense mutants were constructed
by PCR based on the wild-type gene and verified by sequencing.

Small interfering RNAs (siRNAs) targeting different
encoding regions of human CERKL were synthesized and
purified by RiboBio (Guangzhou, China). CERKL siRNA 1
was used in the experiment. The targeting nucleotide
sequences were as follows:

si-CERKL 1: 5'-GAATAATACTGGTGGATAT-3/,

si-CERKL 2: 5'-GGCAAATGATCCAGGGTCA-3'".

The siRNA duplexes with nonspecific sequences were used
as siRNA negative control (si-NC).

Cell culture and co-immunoprecipitation

ARPE-19 cells (American Type Culture Collection, CRL-
2302) were cultured at 37°C in DMEM/F12 (Gibco,
11330057) supplemented with 10% FBS, 100 units/ml penicil-
lin, and 100 pg/ml streptomycin (Invitrogen, 10378016).

Autophagy was induced by replacement of full growth
medium with Earle’s buffered saline solution (EBSS; Sigma,
E2888) for 1, 2 and 4 h, or by treating cells with 100 nM
rapamycin (Sigma, 553210) in the presence of complete
growth medium for the same period for 2 h.



Autophagy flux was blocked by treating cells with 2.5 nM
bafilomycin A; (Sigma, 196000) in the presence of complete
growth medium for the same period for 3 h.

Cell transfection was performed with Lipofectamine™ 3000
(Invitrogen, L3000015). Plasmids encoding GFP-LC3 and
RFP-LAMP1 were generously provided by Dr. Cui Xiukun
(Henan University, Henan, China).

Cells were cotransfected with plasmids encoding GFP-
CERKL and FLAG-SIRT1 or the corresponding mutant
expression plasmids. After 24 h, cell lysates were harvested
and immunoprecipitated with one antibody and protein G
beads (Millipore, 16-266), and washed and analyzed by wes-
tern blotting with the antibody for the other proteins.

Cells were transfected with siNC or siCERKL. After 72 h,
cell lysates were harvested and immunoprecipitated with pan
acetyl-lysine antibody (ABclonal, A2391) and protein G beads,
and washed and analyzed by western blotting with the
antibody.

For protein half-life experiments cells were treated with
200 pg/ml or 300 pg/ml cycloheximide (Amresco, 94271) 12 h
following transfection with siRNAs or plasmids and subse-
quently sampled at the indicated times.

Antibodies

The list of antibodies used in the present study is provided in
Table 1.

Immunocytochemistry

Transfected cells were fixed in phosphate-buffered salien
(PBS; Biosharp, 173665) containing 10% formaldehyde for
10 min, permeabilized with PBS containing 0.5% Triton
X-100 (Sigma, X100) for 15 min and blocked with PBS
containing 10% normal goat serum (Boster, AR1009) for
1 h at room temperature (RT). Cells were then incubated
with the primary antibody (1:500-1000) solubilized in PBS
containing 1% BSA (Biofroxx, 4240GR100) at 4°C overnight
and Alexa Fluor 488 or 594 nm secondary antibody (1:1000;
Invitrogen, A11005, A11008) for 1 h at 37°C. After staining
with DAPI for 5 min, slides were mounted. Fluorescence

Table 1. Table List of primary antibodies used in this study.
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images were captured using a confocal laser-scanning micro-
scope (Fluo View™ FV1000 confocal microscope, Olympus
Imaging).

Immunohistochemistry and histology

Zebrafish eyes were isolated and fixed with 4% paraformalde-
hyde in PBS for 12 h at 4°C, cryoprotected in 30% sucrose
(Sinopharm, 10021418) overnight, and embedded in OCT
compound (SAKURA, 4583). Cryostat sections (10- to 15-
um thick) containing the whole retina including the optic
disk were rinsed with PDT (PBS solution containing 1%
DMSO and 0.1% Triton X-100) for 10 min and blocked
with blocking solution (PDT containing 1% BSA and 10%
normal goat serum) for 1 h at RT. Primary antibodies
(1:500-1000) were prepared in blocking solution containing
2% normal goat serum and slides were incubated overnight at
4°C. Slides were washed 3 times with PDT and incubated with
Alexa Fluor 488 or 594 secondary antibody (1:1000) for 1 h at
37°C. DAPI was diluted with PBS to final 5 pg/mL and used
to label the nucleus. The slides were washed 3 times with PBS
and then mounted under glass coverslips. Fluorescence
images were captured using a confocal laser-scanning micro-
scope (Fluo View™ FV1000 confocal microscope, Olympus
Imaging). The procedure details were conducted as described
previously [43].

Western blotting

Cells and zebrafish eyes were collected and lysed in SDS lysis
buffer (Beyotime, P0013G) with protease inhibitor cocktail
(Roche, 04693159001). Protein concentration was determined
using the BCA protein assay kit (Beyotime, P0010). Proteins
were separated by 12% SDS-PAGE and transferred to nitro-
cellulose membranes (Millipore, HATF00010). The blots were
incubated with primary antibodies (1:500-5000), followed by
HRP-labeled secondary antibodies (1:20,000; ThermoFisher,
31430, 31460). ECL plus substrate (Pierce, 32132) was used
for the detection of signals. The procedure was conducted as
described previously [44].

Antibodies Source Recognize Dilution
Anti-LC3B Abcam Ab48394 Zebrafish and human LC3B 1:1000 for WB
1:200 for IF
Anti-CERKL Sigma-Aldrich HPA035444 Human CERKL 1:1000 for WB
Anti-SQSTM1/p62 ABclonal A7758 Human SQSTM1 1:1000 for WB
Anti-ATG5 ABclonal A7252 Human ATG5 1:1000 for WB
Anti-ATG7 ABclonal A0691 Human ATG7 1:1000 for WB
Anti-SIRT1 ABclonal A11267 Zebrafish and human SIRT1 1:700 for WB
Proteintech 13161-1-AP Zebrafish and human SIRT1 1:700 for WB
Anti-phospho-SIRT1 (Ser27) Cell Signaling Technology 2327 Human SIRT1 p-527 1:500 for WB
Anti-phospho-SIRT1 (Ser47) Cell Signaling Technology 2314 Human SIRT1 p-S47 1:200 for WB

ABclonal A2391
ABclonal A1229
ABclonal AP0116
Proteintech 11306-1-AP
Proteintech 11224-1-AP

Anti-pan acetyl-lysine
Anti-AMPK
Anti-AMPK p-T172
Anti-BECN1/BECLIN1
Anti-TUBA/a-TUBULIN

Anti-GADPH ABclonal AC027
Anti-FLAG MBL M185-3L
Anti-GFP Absmart

Proteintech 50430-2-AP

Human AMPKa

Human phospho-PRKAA/AMPKa p-T172
Human BECN1

Zebrafish and human TUBA

Human GAPDH

FLAG

GFP

GFP

1 mg per 1 ml cell lysate for IP
1:1000 for WB

1:1000 for WB

1:700 for WB

1:5000 for WB

1:3000 for WB

1:5000 for WB

1:5000 for WB

1 mg per 1 ml cell lysate for IP
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RNA extraction and RT-qPCR

Total RNA of zebrafish was extracted using Trizol (Life,
15596018), and quantified by NanoDrop spectrometry (Thermo
Scientific, Wilmington, DE, USA). cDNA was generated using
MMLYV reverse transcriptase (Invitrogen, 28025013). Real-time
PCR was performed using AceQ® qPCR SYBR® Green Master
Mix (Vazyme, Q141-02/03) according to the manufacturer’s
instructions, and relative gene expression was quantified using
the Step One Plus™ Real-Time PCR System (Life Technologies).

Statistical analysis

All data were presented as meanst+ SEM. Data groups were
compared by Student’s t-test (Prism 6.0 software; Graphpad
Software, Inc., La Jolla, CA, USA). Differences between
groups were considered statistically significant if p < 0.05.
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