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Summary

Clusters of Neisseria meningitidis (Nm) urethritis among primarily heterosexual males in multiple 

United States cities have been attributed to a unique non-encapsulated meningococcal clade (the 

U.S. Nm urethritis clade, US_NmUC) within the hypervirulent clonal complex 11. Resistance to 

antimicrobial peptides (AMPs) is a key feature of urogenital pathogenesis of the closely related 

species, N. gonorrhoeae. The US_NmUC isolates were found to be highly resistant to the model 

AMP, polymyxin B (PmB, MICs 64–256 μg/ml). The isolates also demonstrated stable 

subpopulations of heteroresistant colonies that showed near total resistant to PmB (MICs 384–

1024 μg/ml) and colistin (MIC 256 μg/ml) as well as enhanced LL-37 resistance. This is the first 

observation of heteroresistance in N. meningitidis. Consistent with previous findings, overall PmB 

resistance in US_NmUC isolates was due to active Mtr efflux and LptA-mediated lipid A 

modification. However, whole genome sequencing, variant analyses and directed mutagenesis 

revealed that the heteroresistance phenotypes and very high level AMP resistance were the result 

of point mutations and IS1655 element movement in the pilMNOPQ operon, encoding the type IV 

pilin biogenesis apparatus. Cross-resistance to other classes of antibiotics was also observed in the 
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heteroresistant colonies. High-level resistance to AMPs may contribute to the pathogenesis of 

US_NmUC.

Graphical Abstract

A unique meningococcal clade (US_NmUC) is causing urethritis clusters in multiple U.S. cities. 

US_NmUC isolates were resistant to the model antimicrobial peptide polymyxin B (PmB) and 

further expressed heteroresistant colonies highly resistant to PmB and colistin. Stable 

heteroresistance was caused by mutations and IS1655 insertions in the pilMNOPQ operon, which 

mediates the type IV pilin biogenesis, and conferred cross-resistance to other classes of antibiotics. 

This is the first observation of heteroresistance in N. meningitidis.
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Introduction

Neisseria meningitidis (Nm), an obligate human pathogen, is carried asymptomatically in 

the nasopharynx of 5–10% of adults and is transmitted by close contact with respiratory 

droplets of oral or nasal secretions. Nm is also a leading cause of meningitis and rapidly 

fatal sepsis in otherwise healthy individuals that can cause large epidemic outbreaks 

(Rouphael & Stephens, 2012, Stephens et al., 2007). While capsular polysaccharide 

conjugate and protein-based meningococcal vaccines provide protection, invasive 

meningococcal disease is a continued worldwide problem.

Nm and Neisseria gonorrhoeae (Ng) are the only two Neisseria species that are human 

pathogens and these organisms most commonly colonize respiratory and urogenital tracts, 

respectively. Historically, Nm has not been a significant cause of urogenital disease and was 

infrequently recovered from the urogenital tract (cervix, vagina, and urethra) and rectum. 

However, there have been sporadic case reports in which Nm was isolated from patients with 

urethritis, cervicitis, vaginitis, proctitis, pelvic inflammatory disease, and postpartum 
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endometritis dating back to the 1940s (Givan et al., 1977, Conde-Glez & Calderon, 1991, 

Maini et al., 1992). Recently, sustained sexually transmitted meningococcal urethritis 

outbreaks have been reported (Bazan et al., 2016, Bazan et al., 2017, Toh et al., 2017, Tzeng 

et al., 2017, Retchless et al., 2018). In one study, seventy-five Nm urethritis cases detected 

between January and November of 2015 in Columbus OH, represented 20% of all men who 

presented during that time with urethral GNID and growth of oxidase-positive Gram-

negative diplococci (Bazan et al., 2017). Similar Nm-associated urethritis clusters have now 

been observed in multiple U.S. cities (Bazan et al., 2016, Bazan et al., 2017, Toh et al., 2017, 

Retchless et al., 2018). These urethritis-associated Nm isolates are members of a novel 

nongroupable US Nm urethritis clade (US_NmUC) in the cc11/ET-15 hyperinvasive lineage 

(Tzeng et al., 2017). The US_NmUC isolates do not make capsules (Toh et al., 2017, Tzeng 

et al., 2017) due to an IS1301 insertion that caused a multi-gene deletion at the capsule 

biosynthesis locus (Tzeng et al., 2017). Unlike many Nm isolates, the US_NmUC isolates 

are capable of efficient nitrite dependent anaerobic growth. This is due to a gene conversion 

event that introduced gonococcal aniA-norB genes, which encode enzymes that catalyze 

conversion of nitrite to nitric oxide and then nitrous oxide (Tzeng et al., 2017). Thus, the 

emergence of US_NmUC as a urethritis pathogen is likely the result of multiple evolutionary 

genetic events that allow better assimilation into the same niche first adopted by gonococci 

(Tzeng et al., 2017, Retchless et al., 2018).

Resistance to host-derived antimicrobial peptides (AMPs) is a key feature of neisserial 

pathogenesis at mucosal surfaces (Johnson & Criss, 2011, Tzeng & Stephens, 2015). A 

hallmark of gonococcal (and meningococcal) urethritis is the influx of PMNs, which employ 

both oxidative (production of reactive oxygen species) and non-oxidative (release of AMPs) 

killing mechanisms (Johnson & Criss, 2011, Criss & Seifert, 2012). In both Nm and Ng, 

resistance to PMN-derived and epithelial derived AMPs is mainly due to the activity of the 

LptA-mediated lipid A modification by phosphoethanolamine and the Mtr efflux pump 

(Tzeng et al., 2005). We have previously performed mariner random mutagenesis screening 

and identified transposon mutants in pilM and pilP that increased AMP resistance (Tzeng et 
al., 2005). In this report we show that the US_NmUC isolates are highly resistant to the 

AMP polymyxin B (PmB), a well-recognized surrogate for endogenous AMPs, and also 

exhibit “heteroresistance” (subpopulations of higher resistant colonies in the zone of 

inhibition) to PmB and colistin (polymyxin E). Increased AMP resistance of these isolates is 

linked to mutations in pilM and pilQ. PilQ is a member of the secretin family of proteins, 

and a major component of the outer membrane (Berry et al., 2012). PilM is a cytoplasmic 

ATP-binding protein that together with PilN/O/P proteins forms the inner membrane 

platform of the type IV pilus biogenesis complex (Ayers et al., 2009). Nm heteroresistance 

selected by PmB exposure, in addition to enhance resistance to colistin and LL-37, also 

conferred cross-resistance to several antibiotics, suggesting entry of these antibiotics is PilQ 

dependent. Heteroresistance to PmB has been described in several other Gram-negative 

bacterial pathogens, (Li et al., 2006, Lo-Ten-Foe et al., 2007, Hermes et al., 2013, Hjort et 
al., 2016, Jayol et al., 2015, El-Halfawy & Valvano, 2013) but this is the first demonstration 

of this phenomenon in Neisseriae.
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Results

US_NmUC isolates demonstrate heteroresistance to polymyxin B and colistin

AMP resistance is an important pathogenic trait for both Ng and Nm. PmB E-test strips were 

used to determine the PmB MICs and revealed that the non-encapsulated US_NmUC 

isolates were highly resistant (Supplemental Table S1; Figure 1A). Of 52 CNM isolates, 41 

(79%) had PmB MIC of 128–256 μg/ml and MICs of 10/11 remaining isolates were 64–96 

μg/ml. One isolate, CNM34, had a significantly lower PmB MIC (16 μg/ml). Whole genome 

analysis of this isolate revealed a 2-bp deletion in mtrC, which encodes a key component of 

the Mtr efflux pump (Shafer et al., 1998). Two US_NmUC isolates from Atlanta had MICs 

of 96 and 128 μg/ml, respectively (Table S1). For comparison, the PmB MIC of a well-

characterized unencapsulated meningococcal M7 strain (Swartley & Stephens, 1994, Tzeng 

et al., 2005) is 64 μg/ml. The PmB MICs of a clinical gonococcal isolate recovered during 

the Columbus urethritis outbreak (CNG20) and two gonococcal reference strains (FA19 and 

FA1090) were 48, 48 and 96 μg/ml, respectively; while the PmB MIC of a multi-drug 

resistant (MDR) gonococcal isolate from Japan, H041, (Ohnishi et al., 2011) is 192 μg/ml. 

These data suggest that the non-encapsulated US_NmUC isolates display equal or greater 

AMP resistance than gonococci.

Many of the US_NmUC isolates displayed PmB heteroresistance (Li et al., 2006, Lo-Ten-

Foe et al., 2007); i.e., they yielded subpopulations of highly PmB resistant colonies in the 

zone of inhibition in disc diffusion and E-test assays (e.g. CNM3 shown in Figure 1A). 

These isolates also yielded higher MIC values in microbroth dilution assays. For example, 

the PmB MIC of CNM3 was 256 μg/ml by E-test, but was 1,024 μg/ml using the microbroth 

dilution assay. In contrast, neither the gonococcal strains tested nor M7 exhibited 

heteroresistance. However, during E testing, we did observe heteroresistant colonies of 

FAM18, a serogroup C cc11 reference strain, and a serogroup W cc22 invasive isolate 

GA18736 from Georgia (E-test pictures shown in supplemental figure 1), indicating that 

heteroresistance in Nm is not only found in US_NmUC isolates.

Heteroresistance of the US_NmUC isolates was confirmed using population analysis 

profiling (PAP) assays (El-Halfawy & Valvano, 2015). CNM3, CNM8 and the non-

encapsulated FAM18 derivative FM7 was not eliminated by > 16-fold increases in PmB 

concentration (Figure 1B). In contrast, growth inhibition of M7 and FA1090 occurred across 

a narrow PmB concentration range. MC58 and FA19 also did not exhibit heteroresistance 

(data not shown). Interestingly, although CNM8 and FM7 failed to form colonies in the zone 

of inhibition in E tests (Figure 1A), these strains were heteroresistant in the PAP assay 

(Figure 1B).

We also examined whether the isolates exhibiting PmB heteroresistance would display 

analogous phenotypes toward another clinically used AMP, colistin (polymyxin E). As 

shown in Figure 1C, CNM3 and FM7 displayed the heteroresistance profile toward colistin; 

while the growth of M7 and FA1090 was inhibited across a narrow range. These data were 

consistent with the PmB resistance profiles of these strains. Further, the colistin E-test of 

CNM3 also showed colonies within the zone of inhibition (insert in Fig. 1C).
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Heteroresistance to PmB is stable in US_NmUC isolates

Heteroresistance to PmB, colistin and other antimicrobial agents in some bacteria is transient 

and reverts in the absence of continuous antimicrobial pressure (Napier et al., 2014, El-

Halfawy & Valvano, 2015). To test if heteroresistance in the US_NmUC isolates was 

reversible, colonies picked from the zones of inhibition of CNM isolates (Table 1) were 

repeatedly passed on GCB agar plates in the absence of PmB. The elevated PmB MICs of 

these colonies were retained, suggesting that their enhanced PmB resistance was stable and 

likely due to genetic change(s). One of the recovered heteroresistant mutants, 3R4, was 

examined for resistance to colistin using PAP and E-test. The mutant was more resistant to 

colistin with a MIC greater than 256 μg/ml, whereas the MIC of the parental isolate CNM3 

to colistin was ~ 48–64 μg/ml (Figure 1C). The resistance to LL-37 was also compared. The 

strains were treated with varying concentrations of LL-37 for 30 min followed by plating for 

viable CFU counts. The 3R4 mutant was more resistant to LL-37 in all concentrations tested 

than the parental strain (Figure 2), thus supporting the hypothesis that PmB heteroresistance 

confers cross-resistance to host endogenous antimicrobial peptides.

Identification of heteroresistance associated mutations using genome sequencing

Genomes of eight heteroresistant colonies (3R3, 14R2, 17R1, 32R1, 32R2, 33R1, 37R1 and 

45R2) derived from 7 CNM isolates (first number in strain designation is the parental CNM 

number, Table 1) were sequenced. Variants were identified by aligning the raw sequence 

reads against a CNM10 reference genome using PATRIC (www.patricbrc.org). Separately, 

assembled contigs were also compared to the CNM10 genome using the genome comparator 

(www.pubmlst.org).

Variants (Supplemental Data set S1) were examined for genes with previously reported roles 

in antimicrobial resistance. Alterations in several pil genes were identified in multiple 

heteroresistant mutants, pilU (33R1), pilM (45R2), pilQ (14R2, 17R1) and the pilS cassettes 

(silent incomplete pilin coding fragments responsible for antigenic variation of PilE) (17R1, 

32R1, 32R2, 33R1 and 37R1) (Supplemental Data set S1). The class II pilE gene encoded 

near katA was intact in all mutants. Multiple repeated sequence motifs and slipped strand 

mispairing (SSM) events were detected, but none of these were in loci with known roles in 

AMP resistance. Overall, point mutations in pilM or pilQ were identified in seven of the 

eight heteroresistant mutants; while pilM is disrupted by an IS element in the remaining 

mutant (Table 1).

Frameshift mutations were identified in pilQ in the 3R4, 32R1, 32R2 and 33R1 mutants. 

3R4 had a deletion (T) at position 167 that resulted in a premature stop at residue 57. Five 

additional colonies recovered from CNM3 (3R4–3R7) in independent experiments had the 

same deletion. 32R1 and 32R2 were isolated from CNM32 and both had a 1-bp insertion (G) 

at position 2229 that extended the PilQ coding region (815 aa vs. 769 aa). 33R1 had a 1-bp 

deletion (A) at position 1947 that truncated PilQ from 769 to 655 residues. The insertion in 

32R1 changed a G3 to a G4 track and the deletion in 33R1 resulted in an A6-to-A5 transition. 

Whether these two short homopolymeric tracks have an increased sequence instability 

associated with the slipped strand mispairing phase variation events is not clear (Saunders et 
al., 2000, Snyder et al., 2001). The 14R2 and 17R1 mutants had C-A conversions at 
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positions 2266 and 1465 that resulted in T to P residue changes at residue 756 and 489, 

respectively. Since the pilQ frameshift and these missense mutations yielded high levels of 

PmB resistance (MIC 1,024 μg/ml), these observations suggest that the missense mutations 

in 14R2 and 17R1 likely disrupt PilQ’s function as a multimeric protein complex. Two 

mutants had mutations in pilM, the first gene in the pilMNOPQ operon (Carbonnelle et al., 
2005). 45R2 had a C-T conversion that resulted in a stop codon at residue 44; while pilM in 

37R1 was disrupted by an IS1655 insertion at position 16. The pilM mutants had lower PmB 

MICs (256–512 μg/ml) than the pilQ mutants.

To further evaluate the effects of various pilQ and pilM mutations, we performed PilQ 

Western blots on total cellular extracts of the heteroresistant mutants and the wild type 

strain. As shown in Figure 3, a high molecular weight multimer band, a monomer band and 

several smaller bands, presumably degraded products, were detected by the PilQ monoclonal 

antibodies, like the previously reported pattern (Nandi et al., 2015). The pilQ frameshift 

mutants (3R4 and 33R1) resulting in premature truncation eliminated both of multimer and 

monomer bands (lanes 2 and 8). A weak and larger monomer band was detected for 32R1 

(lane 7), in which the frameshift mutation resulting in a predicted larger protein; however, no 

multimer band was detected in this mutant. Two mutants with pilQ T to P residue changes 

(14R2 and 17R1) yielded no multimer bands, while maintaining monomer bands at 

comparable intensities as the wild type strain (lanes 5 and 6). Finally, the pilM::IS1655 
mutant (37R1) and the pilM frameshift mutant (45R2) showed reduced levels of PilQ in both 

multimer and monomer forms (lanes 3 and 4), indicating a probable polar effect on PilQ 

protein expression, a phenomenon also observed in gonococci (Nandi et al., 2015).

Independent pilM and pilQ mutations conferred enhanced PmB resistance

We previously showed that separate mariner transposon mutants in pilM and pilP caused 

increased PmB resistance (Tzeng et al., 2005). Transferring the pilM::aphA3 mutation into 

CNM3 was sufficient to increase the PmB MIC and the introduction of pilQ::aphA3 into 

CNM3 also conferred the higher PmB MICs observed in pilQ frame shift mutants. To 

independently confirm the effects of pilQ T→P point mutations, constructs with the 

aphA3(KnR) cassette inserted immediately downstream of the pilQ stop codon and carrying 

14R2 or 17R1 point mutations in pilQ were generated. Five transformants were sequenced. 

All five CNM3–14R2 transformants carried the expected mutation via homologous 

recombination, whereas 2 of 5 CNM3–17R1 transformants contained the desired mutation. 

E-tests confirmed that the transformants carrying the T→P mutation have enhanced PmB 

resistance (Supplemental Figure 1), while PmB MICs of the transformants with a wild type 

pilQ sequence were identical to that of CNM3. Introducing these mutations in the respective 

parental isolate (CNM14 and CNM17) also produced the same PmB resistance results as the 

original mutants.

The pilM and pilQ mutations reduced transformation efficiency

Disruption of type IV pilin biogenesis apparatus is known to cause competence deficiency 

(Georgiadou et al., 2012). Thus, we expected the PmB heteroresistant mutants to have 

defects in transformation efficiency. Transformation efficiencies of the mutants were 

examined using chromosomal DNA carrying a tonB::Ω(Sp) mutation. As show in Table 1, 
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all parental isolates showed transformation efficiency in the range of 10−4 – 10−5 per μg 

DNA. Significant reductions (>3 logs) were observed in all PmB resistant mutants. Most of 

the mutants were not transformable. The 17R1 (PilQ/T489P) mutant and the 33R1 mutant 

with a truncated PilQ remained transformable but with a 2-order of magnitude reduction in 

efficiency. Despite the differences in transformation efficiency, all pilQ mutations yielded 

similar higher levels of PmB resistance than the pilM mutants, both mutants were 

incompetent in transformation. There was no correlation between PmB resistance and 

transformation phenotypes.

Heteroresistance requires the Mtr efflux pump and the LptA transferase

N. meningitidis intrinsic PmB resistance is mediated by LptA-mediated lipid A modification 

with phosphoethanolamine, the Mtr efflux pump and the capsule (Tzeng et al., 2005, 

Spinosa et al., 2007, Jones et al., 2009). To test if heteroresistance required these 

mechanisms, we introduced mtrD or lptA mutations in CNM3. Inactivation of mtrD and 

lptA reduced the PmB MIC levels to 24–32 μg/ml and 0.1 μg/ml, respectively (E-test data 

shown in supplemental figure 1). Neither mutants formed heteroresistant colonies in E-test 

and disc diffusion assays. In addition, PAP assays showed no heteroresistance toward PmB 

or colistin in the mtrD mutant (CNM3D) (Figure 4). Thus, development of heteroresistance 

in these strains is dependent upon intrinsic determinants of PmB resistance (Tzeng et al., 
2005).

The US_NmUC isolates did not have higher spontaneous mutation or slipped strand 
mispairing frequencies

The number of point mutations and changes in monomeric tracks we observed suggested 

that the heteroresistant isolates might have higher mutation rates. We examined the 

spontaneous mutation rate in CNM3 using rifampin plating assays. The spontaneous 

rifampin resistance rate of CNM3 was low (median 2.2×10−10) and comparable to a low 

switcher strain IR2781 (median 1.7×10−9) (Richardson & Stojiljkovic, 2001). For 

comparison, IR2855, a mutL mutator strain that has a ~1000-fold higher mutation rate 

(median 3.7×10−7) than CNM3, exhibited a PAP profile similar to CNM3 (Figure 4A). The 

DNA mismatch repair (MMR) pathway is an important determinant of overall mutability 

and phase variation frequency in Nm (Richardson & Stojiljkovic, 2001). We generated a 

mutL mutation in CNM3 (CNM3L) to test if heteroresistance was influenced by the MMR 

pathway. The spontaneous rifampin resistance rate in CNM3L was more than 100-fold 

higher compared to CNM3 but these strains had similar PAP profile (Figure 4A). Thus, the 

MMR system did not appear to have a major role in the PmB heteroresistance phenotype.

Interestingly, it has been reported that cationic antimicrobial peptides, LL-37 and colistin, 

increased iron-induced mutagenesis in P. aeruginosa (Limoli et al., 2014, Rodriguez-Rojas et 
al., 2015). As we have performed experiments using iron-rich GC media, it was plausible 

that the heteroresistant mutations were enhanced in the presence of PmB and possibly other 

AMPs in N. meningitidis. We examined whether the antimicrobial peptide affected 

mutagenic phenotype in the clade isolate by comparing spontaneous rifampin mutation rates 

of meningococci grown on standard GC plates (Fe+3 is supplemented at 12 μg/ml) with or 

without colistin at 128 or 256 μg/ml (MIC50 as determined by the PAP assay is ~128 μg/ml). 
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When compared to meningococci grown in the absence of colistin, no significant increases 

in spontaneous rifampin mutation rates upon exposure to colistin under the iron-replete 

condition were observed (data not shown).

We also measured the frequency of slipped-strand mispairing using the universal rate of 

switching cassette (UROS) assay (Alexander et al., 2004b). The UROS cassette contains a 

poly (G)8 tract within the Ω(Sp) cassette of aadA that is in the off phase. Thus, SpR colonies 

form when aadA is switched into the on phase by slipped strand mispairing. The UROS 

cassette did not show a higher slipped strand mispairing rate in CNM3, when compared to 

that of strain IR5426, (UROS cassette in the high switcher/mutator IR2855) (Alexander et 
al., 2004b).

PmB heteroresistant mutants have reduced susceptibility to multiple antibiotics

We tested if the resistance to other antimicrobial agents was altered in the PmB 

heteroresistant mutant 3R4, using E-tests (Table 2) and disc diffusion (supplemental table 2) 

on GC agar plates. CNM3 and 3R4 had similar susceptibility to levofloxacin, meropenem 

and azithromycin, which is one of the two current standards of care antibiotic treatment for 

gonorrhea. However, 3R4 has reduced susceptibility to penicillin G, ceftriaxone, cefotaxime, 

streptomycin, kanamycin, chloramphenicol and tetracycline (Table 2). The resistances of 

3R4 to ceftriaxone and cefotaxime were two-fold higher than CNM3 by E-test, although its 

MICs remained in the sensitive range (Table 2). Interestingly, CNM3 has reduced 

susceptibility to several antibiotics such as azithromycin, meropenem, penicillin, and 

cefuroxime when compared to the Ng reference strain FA19 and to a clinical isolate CNG20. 

The resistance of CNM3 to penicillin G, cefuroxime and azithromycin was like that of the 

gonococcal isolate MS11, which has elevated resistance due to the presence of the penA, 

mtrR, and penB mutations (Ropp et al., 2002, Ohneck et al., 2011). Thus, the pilQ defect in 

the PmB heteroresistant mutant indeed influenced, albeit modestly, the susceptibility to 

many unrelated antibiotics.

Altered resistances to penicillin G, chloramphenicol and tetracycline between CNM3 and 

3R4 were also compared in the mtrD and the lptA mutant backgrounds and no differences 

were observed in these backgrounds (Table 3). These data suggest that the higher 

intracellular antibiotic levels caused by either efflux pump inactivation (mtrD) or 

compromised membrane integrity (lptA) cannot be effectively reduced by blocking 

antibiotic entry through a pilQ mutation.

Discussion

The US_NmUC has emerged as urogenital pathogen. Historically, Nm is not recognized as a 

significant cause of urogenital infection and the occasional meningococci recovered from 

such isolated cases have been from diverse serogroups and lineages (Harrison et al., 2017, 

Ma et al., 2017). The recent urethritis outbreaks and clusters caused by US_NmUC suggest 

that with novel genetic and phenotypic changes, this meningococcal clade is being 

transmitted efficiently between sexual partners and can successfully resist local innate 

immune responses (Bazan et al., 2016, Tzeng et al., 2017, Bazan et al., 2017, Toh et al., 
2017, Retchless et al., 2018).
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Like N. gonorrhoeae, the US_NmUC isolates trigger a potent local inflammatory response 

characterized by urethral discharge and presence of many polymorphonuclear leukocytes 

(PMNs) in the inflammatory exudates (Johnson & Criss, 2011). These US_NmUC isolates 

exhibited bacterial resistance to host killing. In this report, we investigate the basis of high-

level resistance to AMPs of these US_NmUC isolates. Resistance to host-derived AMPs is 

an important pathogenic trait for both Ng and Nm (Johnson & Criss, 2011). Recent studies 

have indicated that PMNs primarily direct non-oxidative antimicrobial activities against Ng 

(Johnson & Criss, 2011). Non-encapsulated Nm and Ng are generally more sensitive to the 

action of AMPs than encapsulated meningococci (Tzeng et al., 2005). The ability of US 

NmUC isolates to resist killing by human AMPs, either produced locally by the mucosal 

epithelia where they serve as a primary defense mechanism or to resist AMP-mediated non-

oxidative killing by PMNs at this site, may have important advantages. Survival in PMN’s 

may also serve as vehicles for dissemination in urethral exudates. Many of the non-

encapsulated US_NmUC isolates displayed greater PmB resistance (MICs 96–256 μg/ml) 

than Ng and considerable higher resistance (MICs 384–1,024 μg/ml) was observed for the 

heteroresistant subpopulations.

Heteroresistance to PmB or colistin has been described in Acinetobacter baumannii (Li et 
al., 2006), Enterobacter cloacae (Lo-Ten-Foe et al., 2007), P. aeruginosa (Hermes et al., 
2013), Salmonella typhimurium (Hjort et al., 2016), Klebsiella pneumonia (Jayol et al., 
2015, Band et al., 2018) and Burkholderia cenocepacia (El-Halfawy & Valvano, 2013) and 

can lead to treatment failure in clinical settings and in experimental models (Band et al., 
2016, Band et al., 2018). Interestingly, the PmB heteroresistant subpopulation of B. 
cenocepacia can protect the more sensitive B. cenocepacia population as well as sensitive P. 
aeruginosa and Escherichia coli from killing by PmB and various bactericidal antibiotics 

(El-Halfawy & Valvano, 2013). However, heteroresistance to AMPs has not been previously 

reported for Neisseria. Further, we found that meningococcal heteroresistance was not 

transiently induced upon exposure to AMPs (Napier et al., 2014), but was instead stable in 

the absence of PmB, and we have identified the genetic alteration(s) aiding PmB resistance.

Mutations in the pilin biogenesis apparatus appear to restrict the entry of PmB and other 

antimicrobial agents, and responsible for heteroresistance in Nm. PilQ secretin, in addition 

to promoting pilin biogenesis and DNA transformation, facilitates the entry of small 

molecules into the bacterial cell. High-level heteroresistance to PmB can produce cross-

resistance to several other important antimicrobial agents [Table 2 and (Napier et al., 2014)]. 

The increase in MICs of PmB and to a variety of antibiotics in the heteroresistant mutants 

compared to the wild type strain are consistent with those observed in gonococcal pilQ 
mutants (Chen et al., 2004, Zhao et al., 2005, Johnson et al., 2014), highlighting the 

importance of a functional PilQ in the entry of antibiotics.

PilQ facilitates the entry of a variety of antibiotics in the gonococci, including penicillin, 

ceftriaxone, vancomycin, tetracycline, rifampin, and ciprofloxacin (Ropp et al., 2002, Zhao 

et al., 2005, Nandi et al., 2015). An in vitro spontaneous mutation screen of two gonococcal 

isolates containing mosaic penA sequence with MICs to ceftriaxone ranging from 0.03 to 

0.06 μg/ml identified mutants with increased MICs to ceftriaxone almost 10-fold (0.5 μg/

ml). Genetic analysis showed an identical 2-bp insertion in pilQ in each of the mutants 
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(Johnson et al., 2014). Further, spontaneous penicillin resistant gonococcal clones were 

selected at a frequency of ~10−6 and all had a non-piliated morphology (Nandi et al., 2015). 

The mutations were found to be clustered within the C-terminal domain (residue 400 to 731) 

of PilQ and all pilQ mutants increased the MIC of penicillin by 2.5- to 3-fold (Nandi et al., 
2015).

Of the five gene mutations known to contribute to high-level penicillin resistance in Ng 

(Ropp et al., 2002), penB, mtrR and pilQ2, have been shown to also play a role in PmB 

susceptibility (Tzeng et al., 2005). The pilQ2 allele is an E666K point mutation in pilQ 
(Zhao et al., 2005). Interestingly, the increased resistance due to acquisition of the pilQ2 
mutation is observed only in strains containing the mtrR and penB resistance determinants 

(Zhao et al., 2005). The diffusion of antibiotics through PilQ become significant only when 

influx through porins is limited due to disruptions in the porin gene (penB) or up-regulation 

of Mtr pump efflux (mtrR), (Zhao et al., 2005). Similarly, diffusion of antibiotics through 

PilQ is likely only a small fraction of the antibiotic influx in N. meningitidis, as reflected by 

the modest changes in MIC values in the heteroresistant mutants. We observed that the pilQ 
mutations caused enhanced PmB resistance only in the wild type background. When 

resistance levels were reduced ~4–8 fold by mutations in the Mtr efflux pump, we did not 

observe any clear difference in PmB resistance with the combined pilQ/mtr mutation.

Defects in the mismatch repair (MMR) pathway responsible for removing insertion/deletion 

loops (Lahue et al., 1989) have generally been associated with meningococcal mutator 

phenotype (Richardson & Stojiljkovic, 2001, Richardson et al., 2002). Since PmB resistant 

mutants due to frameshift and point mutations in pilQ and pilM were recovered readily from 

the heteroresistant clade isolates, a possible mutator phenotype and a defect in MMR 

pathway was explored. Nevertheless, the clade isolates did not show enhanced mutation rate 

using the standard spontaneous rifampin resistance plating assay and have relatively low 

slipped strand mispairing rates. We examined the contribution of the MMR pathway by 

introducing a mutL mutation, and confirmed that no effect on heteroresistance was detected 

in the mutL mutant. However, the standard rifampin plating assay that measures the 

spontaneous mutation rate in the essential rpoB gene, encoding a subunit of RNA 

polymerase, is likely constrained to only detect the rate yielding viable mutants. Thus, it is 

possible that the mutation rates obtained with rifampin resistance do not reflect the rates of 

those mutations needed for antimicrobial peptide resistance. Antimicrobial peptides such as 

colistin and LL-37 have been reported to enhance mutation rates in P. aeruginosa (Limoli et 
al., 2014, Rodriguez-Rojas et al., 2015). However, we did not detect significant changes in 

rifampin mutation rates when meningococci were grown on iron-rich GC agar plates in the 

presence of colistin, a condition shown to influence mutagenic phenotype in P. aeruginosa 
(Rodriguez-Rojas et al., 2015).

Other repair pathways correcting DNA lesions include the base excision repair (BER) 

(MutY, Fpg/MutM, Nth), the nucleotide excision repair (NER) (UvrA/B/C), the 

recombinational repair (RecA/B/C/D), and translesion synthesis (DinB) (Davidsen et al., 
2007b). Several of these DNA repair proteins and others have been characterized to 

influence mutation rates (Alexander et al., 2004a, Martin et al., 2004, Davidsen et al., 2007b, 
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Davidsen et al., 2007a), thus additional studies are needed to have a detailed understanding 

about the contribution of other DNA repair pathways in the development of heteroresistance.

The 37R1 heteroresistant mutant had a pilM disruption by a newly inserted IS1655. IS1655 
is a 1080-bp long element that would generate a 3-bp target duplication upon insertion (Kiss 

et al., 2007), which was indeed observed in 37R1. A whole genome comparison study of 

disease and carriage strains has suggested that Nm can be separated from Neisseria 
lactamica and Ng based on the respective IS repertoires and that IS1655 is restricted to Nm 

(Schoen et al., 2008). The authors noted that none of the six Nm strains analyzed have 

IS1655 at the same chromosomal location, suggesting a high mobility of IS1655. Inspecting 

the complete genome of the US_NmUC isolate CNM10, we found 11 intact copies and one 

truncated copy of IS1655. As a comparison, the serogroup B strain MC58 has 14 copies; 

while the cc11 reference FAM18 has 9 intact and 1 truncated copies. Since the genome of 

37R1 had multiple contig breaks, it is uncertain whether 37R1 has the same copy number of 

IS1655 as CNM10.

Because the pilin biogenesis mutations disrupt normal piliation, the increases in AMP 

resistance because of such mutations might not be biologically significant, considering the 

importance of pili in colonization and infections. However, mutations in pilQ have been 

shown to result in complex phenotypes (Helm et al., 2007), it is possible that certain pilQ 
mutations allow for increased AMP resistance and retain pathogenic potential. Interestingly, 

experimental infections of male volunteers using a nonpiliated gonococcal pilE mutant 

showed that the pilus was not required for infection, although the symptoms were less severe 

in infections with the nonpiliated variant (Hobbs et al., 2011).

Ng has been proposed to have originated from Nm, a pharyngeal colonizer that switched to 

primarily colonizing the urogenital tracts, resulting in lower frequency of gene flow between 

Nm and Ng due to ecological separation within the human host (Vazquez et al., 1993). The 

ability of US_NmUC isolates to withstand killing by AMPs produced either by epithelial 

cells or by PMNs is likely an important selective advantage and requirement for 

dissemination in urethral exudates. Further, the ability of the clade isolates to effectively 

colonize the urogenital tract raises the concern of horizontal gene transfer of antimicrobial 

resistance determinants, considering the wide-spread antimicrobial resistance in Ng (Unemo 

& Shafer, 2014). US_NmUC isolates are intermediate in sensitivity to penicillin, sensitive to 

azithromycin and ceftriaxone and have uniformly responded to gonococcal treatment 

regimens. However, the heteroresistance phenotype further demonstrates the propensity for 

enhanced antibiotic resistance by spontaneous mutations of the pilin biogenesis genes and/or 

IS movement in this clade. Based on emergence of antibiotic resistance in the gonococcus, 

we will continue to need to monitor the antimicrobial resistance of this novel meningococcal 

urethritis clade.

Experimental Procedures

Bacterial isolates and growth conditions

Bacterial strains used in this study are listed in Table 4. These stains included 52 N. 
meningitidis urethritis clade isolates collected from men between January 2015 and 
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September 2015 at Columbus Public Health (CPH), Columbus, Ohio (Tzeng et al., 2017) 

with the CNM3 isolate being the major representative of this collection. The initial 

demographic features of these cases and the collection protocol have been previously 

reported (Bazan et al., 2016, Bazan et al., 2017). Two additional clade isolates from Atlanta, 

Georgia, ATL#1 and ATL#2, a serogroup A isolate, IR2855, a serogroup W clinical isolate, 

GA18736, as well as genetically defined derivatives of well-characterized N. meningitidis 
strains IR2781 (NMB) (Stephens et al., 1991) and FAM18 were also used. One gonococcal 

isolate (CNG20) recovered from the same period and gonococcal reference strains, FA19, 

FA1090, MS11 and H041 were also used for comparisons. Neisseria were cultured with 5% 

CO2 at 37°C on GC base (GCB; Difco) agar containing supplements of 0.4% glucose and 

0.68 mM Fe(NO3)3, or GC broth with the same supplements and 0.043% NaHCO3. Brain 

heart infusion (BHI) medium with 1.25% fetal bovine serum was used when kanamycin 

selection was required. Escherichia coli strains were routinely grown in Luria Bertani broth 

for cloning and propagation of plasmids. N. meningitidis was transformed by the procedure 

of Janik et al. (Janik et al., 1976). E. coli strains were transformed by chemical competence 

or by electroporation with a GenePulser (Bio-Rad) according to the manufacturer’s protocol. 

When necessary, Neisseria (E. coli) were grown in the presence of antibiotic concentrations 

(μg/ml): kanamycin (Kn) 80 (50), chloramphenicol, 5 (34), tetracycline, 5 and 

spectinomycin (Sp), 60 (100).

Susceptibility assays

The minimum inhibitory concentrations of PmB and antibiotics were determined by E test. 

Cell suspensions from overnight GC plates adjusted to OD550 of 0.3 were swabbed onto GC 

agar plates. Discs soaked with 10 μl of PmB solutions (25.6 mg/ml) or discs with defined 

levels of antibiotics (BBL) were overlaid and the plates were incubated overnight at 37°C in 

5% CO2. E test strips (bioMerieux) were performed in a similar fashion. MIC values of PmB 

were reported as μg/ml. Microbroth dilution assays using 96-well microtiter plates were 

performed using GC broth with standard supplements. Two-fold serial dilutions of PmB 

concentrations starting at 1,024 μg/mL were tested. The sensitivity to LL-37 was determined 

using 96-well microtiter plate.

Population analysis profiling (PAP) assays

Overnight plate cultures of meningococcal strains were resuspended in GC broth and 

adjusted to optical density of 0.3 at 550 nm. Ten-fold serial diluted bacterial suspensions 

were prepared and duplicate aliquots of 40 μl of suspensions were spotted onto GC agar 

plates with 2-fold incremented concentrations of polymyxin B. Bacterial growth at each of 

these concentrations is quantified by CFU count after overnight incubation. An isolate would 

be considered heteroresistant when the lowest antibiotic concentration giving maximum 

growth inhibition is >8-fold higher than the highest non-inhibitory concentration (El-

Halfawy & Valvano, 2015).

Western blot

Expression of PilQ in whole-cell extracts was examined by Western blot. Briefly, strains 

grown on GC plates overnight at 37°C were collected by centrifugation. Whole cell lysates 

of equal cell densities were prepared in SDS loading buffer, resolved by 8% SDS-PAGE, and 
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transferred to nitrocellulose membranes by semi-dry transfer. The antisera against PilQ 

(Tonjum et al., 1998) were used at 1:5000 dilutions and anti-rabbit IgG-HRP conjugate 

secondary antibody (Bio-Rad) was used at 1:10,000 dilution. The blot was developed using a 

1:5 dilution of pico chemiluminescent substrate (Pierce).

LL-37 killing assay

Overnight cultures were harvested into RPMI and adjusted to OD550 of 0.3. The 

standardized suspensions were diluted 100-fold and then 50-fold to have approximately 105 

CFU/ml. Each assay was started by the addition of 90 μl of cells into a well containing 10 μl 

of LL-37 to reach the desired final concentrations, 1.25 to 10 μg/ml. The microtiter plate was 

incubated at 37°C and 5% CO2. Two 20-μl aliquots of the sample were removed after 30 

min and the number of viable CFU were determined by plating onto GC agar plates. 

Experiments were performed in duplicate wells on several occasions. Student’s t test was 

used to determine the statistical significance of survival of the mutant with respect to that of 

the wild type strain, with P values of < 0.05 considered significant.

Whole genome sequencing (WGS) and variant analysis

WGS of all 52 CNM isolates has been performed by Illumina at CDC (Tzeng et al., 2017). 

The single contig genome of isolate CNM10 sequenced by Pacific Biosciences (PacBio) 

technology (Tzeng et al., 2017) was used as the reference genome in variant analysis. 

Polymyxin B resistant derivatives within the zone of inhibitions were recovered from seven 

CNM urethritis isolates (Table 1) were sequenced by MiSeq, yielding ~200X coverage of 

paired end 250-bp reads, assembled using SPAdes (Bankevich et al., 2012) and annotated by 

RAST(Aziz et al., 2008). The variant analysis service provided at www.patricbrc.org was 

utilized with the BWA-men (Li & Durbin, 2009) and SAMtools (Li et al., 2009) programs as 

the aligner and the SNP caller, respectively. The Illumina raw reads of the mutants were 

analyzed against a complete CNM10 genome as the reference. In addition, the assembled 

contigs were compared to the reference CNM10 genome using the genome comparator tool 

available at the PUBMLST site (www.pubmlst.org) to identify allele differences. Variants 

were further confirmed by targeted PCR amplification and sequencing.

Construction of lptA, mtrD/E, pilM, pilQ, and mutL mutants

The CNM3 isolate was transformed with pKA314 (Tzeng et al., 2004) to generate the 

lptA::Ω(Sp) mutant, CNM3A. The mtrE:: Ω(Kn) mutation was PCR amplified from the 

M7mtrE mutant with primers mrtDF2-ER and mtrE3R1-ER and the mtrD:: Ω(Sp) mutation 

from strain XZ134 (Tzeng et al., 2005) using primers mtrCF1 and mtrE3R1-ER. The 

purified PCR products were then used to transform CNM3. The lptA/mtrE double mutant, 

CNM3EA, was subsequently generated by transforming the mtrE mutant with pKA314. A 

PCR product with the mutL::Ω(Sp) mutation was obtained with primers mutL1a and mutL1b 

(Richardson & Stojiljkovic, 2001) and used to transform the CNM3 isolate.

The pilM::aphA3 mutation was created by the overlapping PCR method. Primer pairs of 

YT113 and pilM-5Ra and primer pairs of pilM-3Fa and pilMR2 were used to generate 

5,627-bp and 3,460-bp fragments, respectively. The aphA3(Kn) cassette was amplified using 

primers aphA3-SmF and aphA3-SmR. First overlapping PCR was performed with the 
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aphA3 cassette and the 3’ fragment and then the resulting product was used for the second 

overlapping with the 5’ fragment. The resulting construct deleted 756-bp pilM sequence.

To introduce the pilQ point mutations found in the PmB heteroresistant mutants 14R2 and 

17R1, a construct with aphA3 cassette inserted 25 bp downstream of the pilQ stop codon 

was created by overlapping PCR. Primers pilQ-F1 and pilQ-5RA3 were used to amplify an 

1144-bp 5’ fragment from chromosomal DNAs of isolate 14R2 and 17R1 that carries the 

respective point mutations. The first overlapping PCR combined the 5’ fragment with the 

aphA3 cassette and the resulting product was subsequently used for overlapping PCR with a 

3’ 849-bp fragment of primers pilQ-3FA3 and pilQ-3R2. The final ~2.8 kb product was used 

to transform either the CNM14 or CNM17 parental isolates as well as the CNM3 isolate and 

kanamycin resistant colonies were saved. PCR products were generated from the colonies 

and sequenced to determine whether the point mutations were recombined into the 

transformants. Transformants with the desired point mutations or with a wild type sequence 

were saved for comparison. The CNM3DQ and CNM3AQ mutants were created by 

transformation of strains CNM3D and CNM3A with the overlapping PCR products carrying 

the 14R2 pilQ mutation.

Determination of spontaneous mutation and slipped strand mispairing frequencies

Overnight GC plate cultures were resuspended in GC broth and standardized by the OD550 

readings. For spontaneous mutation rates, 40 μl of serial dilutions of cell suspensions were 

spotted onto GC plates for total CFU counts. Approximately 1010 cells were plated onto GC 

plates containing 3 μg rifampin/ml (Richardson & Stojiljkovic, 2001). Spontaneous rifampin 

mutation rates were obtained as the ratio of rifampin-resistant cells to the total number of 

cells. Serial dilutions of UROS-containing strains were plated on non-selective GC plates for 

total counts and on selective (60 μg/ml spectinomycin) plates for switch-on CFU counts. 

Frequencies of phase variation were determined as described previously (Alexander et al., 
2004b) and are represented as medians of three independent measurements.

Transformation efficiency

Plate-grown meningococcal strains were suspended in GC broth supplemented with 5 mM 

MgCl2. One μg of chromosomal DNA (tonB::ΩSp) from Nm strain NMB was added to 

aliquots (100 μl) of cell suspension at an OD550 of 1 and then incubated for 1 hr at 37oC. 

Pre-warmed GC broth with complete supplements (500 μl) and DNase I (2 units) was added 

and the incubation continued for another 30 minutes. Serial dilutions were made and 

aliquots of 50 μl were spotted onto non-selective GC plates and the colony forming units 

(cfu) determined after overnight growth. 500-μl of the transformation mixtures and 100-μl 

aliquots of 10−1 and 10−2 dilutions of the mutants and the parental strains, respectively, were 

plated onto selective (Sp) plates. The efficiencies were calculated as the ratio of cfu/ml from 

the selection plate to the cfu/ml of non-selective plates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) E-test pictures of two US_NmUC isolates (CNM3 and CNM8), two non-encapsulated 

Nm reference strains (M7 and FM7) and Ng reference strains GA1090. The arrow points to 

a heteroresistant colony in the zone of growth inhibition. (B) Population analysis profiling 

(PAP) assays of PmB with strains M7 (□), CNM3 (■), CNM8 (○), FM7 (◆) and FA1090 

(●). The CFU counts of plates without PmB were set as 100% for normalization. The dotted 

line indicates the limit of detection. Each PmB concentration was assayed in triplicate and 

the experiments were repeated at least three times. (C) PAP assays of colistin performed 
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similarly to PmB PAP assays with strains CNM3 (■), PmB heteroresistant mutant 3R4 (○), 

FM7 (◆), M7 (□) and FA1090 (●). Each concentration was tested in duplicates and the 

assays repeated twice.
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Figure 2. 
Sensitivity to LL-37 of the CNM3 clade isolate (gray) and its heteroresistant mutant 3R4 

(black). Bacterial cells were incubated with LL-37 in RPMI at the indicated concentrations 

for 30 min and the number of viable CFU were determined by plating onto GC agar plates. 

Each conditions were assayed in duplicate at least twice. The averages and standard 

deviations of two independent assays are presented. Student’s t test was used to determine 

the statistical significance of survival of the mutant with respect to that of the wild type 

strain (**, P < 0.01).

Tzeng et al. Page 21

Mol Microbiol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
PilQ expression determined by Western blots. Equal amounts of whole cell lysates were 

resolved on 8% SDS-PAGE gels and transferred to PVDF membranes. The membrane was 

probed with PilQ antisera (Tonjum et al., 1998). Lanes: 1, WT; 2, 3R4 (pilQ-frameshift); 3, 

37R1 (pilM::IS1655); 4, 45R2 (pilM-frameshift); 5, 14R2 (pilQ/T756P); 6, 17R1 (pilQ/

T489P); 7, 32R1 (pilQ-frameshift); 8, 33R1 (pilQ-frameshift); 9, WT. The locations of PilQ 

multimer and monomer were marked on the right. Protein MW ladders were labeled on the 

left.
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Figure 4. 
(A) Population analysis profiling (PAP) assays of PmB resistance. Strains CNM3 (■), its 

mutL (CNM3L, ◆) and mtrD (CNM3D, ●) mutants and the mutator strain IR2855 (○) 

were compared. The CFU counts of plates without PmB were set as 100% for normalization. 

Each PmB concentration was assayed in triplicate and the experiments were repeated at least 

three times. The dotted line indicates the limit of detection. (B) PAP assays of colistin 
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resistance. Strains CNM3 (■), its mutL (CNM3L, ◆), mtrD (CNM3D, ●) and 

heteroresistant mutant 3R4 (○) were examined analogously to the PmB PAP assays.
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Table 1.

Polymyxin resistant mutants derived from the US_NmUC isolates

Mutant PmB MIC (parental) Gene Position Changes
a
 Parent/mutant Outcome

b
Transformation frequency

c
 (parental)

3R3, 3R4, 
3R5, 3R6, 
3R7

1,024
(128)

pilQ T167 ctTcg/ctcg fs F56S* <1.3×10−8

(3.4×10−4)

14R2 1,024
(192)

pilQ A2266 acc/Ccc T756P <4.9×10−9

(1.9×10−5)

17R1 1,024
(128)

pilQ A1465 acc/Ccc T489P 3.2×10−7

(2.1×10−5)

32R1, 32R2 1,024
(128)

pilQ G2229 ggg/gggG fs G743 → 815 aa <1.4×10−8

(4.1×10−5)

33R1 1,024
(96)

pilQ A1947 Aaaaaa/aaaaa fs AVLG/PSWG 655* 1.3×10−7

(2.2×10−5)

37R1 384
(96)

pilM A16 IS1655 insertion Disruption <3.9×10−8

(3.6×10−5)

45R2 384
(128)

pilM C126 caa/Taa fs Q43* <7.2×10−9

(7.9×10−5)

a:
For point mutation, the wildtype sequence is shown on the left and the mutant on the right. The changed nucleotide was in capital letter.

b:
Amino acid changes from the wild type to the mutant and the residue number are indicated. An asterisk indicates a stop codon immediately 

following the residue. The frameshift in 32R1 and 32R2 removed the original stop codon and yielded a larger PilQ protein. The lengths of PilQ and 
PilM proteins are 769 and 371, respectively.

c:
Transformation was performed using 1 μg chromosomal DNA carrying a tonB::Ω(Sp) mutation. Frequencies (n=3) were calculated as the ratio of 

SpR cfu/ml to total cfu/ml per 1 μg DNA. The mutants with numbers in bold were transformable at low frequencies; while no transformants were 
recovered from the others.
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Table 2.

Comparison of antibiotic resistance levels of the PmB heteroresistant mutant
#

Antibiotics
CNM3 CNM3R4 MS11 CNG20 FA19

E test (μg/ml)

Colistin 53.3 ± 9.2 256** 256 48 32

Penicillin G 0.22 ± 0.08 0.46 ± 0.10** 0.25 0.064 0.012

ceftriaxone 0.002 ± 0.000 0.004 ± 0.001** 0.002 0.002 0.002

Cefotaxime 0.01 ± 0.003 0.021 ± 0.004** 0.012 0.004 0.002

Azithromycin 0.70 ± 011 0.85 ± 0.14 0.19 0.032 0.064

Streptomycin 7.8 ± 0.7 10.9 ± 2.0** 1024 4 6

Kanamycin 10.9 ± 2.0 14.3 ± 2.1** 8 8 4

Chloramphenicol 0.63 ± 0.13 0.81 ± 0.18* 2 0.125 0.25

Meropenem 0.3 ± 0.1 0.3 ± 0.1 0.064 0.094 0.064

Tetracycline 0.19 ± 0.0 0.26 ± 0.1* 0.5 0.25 0.094

Levofloxacin 0.008 ± 0.0 0.007 ± 0.0 0.004 0.002 0.003

#.
Data are presented as the mean ± standard deviation (N=3–8). The MIC values of antibiotics in bold are statistically different between CNM3 and 

3R4 by student’s t test (**, p < 0.01; *, p < 0.05). A single data point is shown for each gonococcal strain as comparison.
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Table 3.

Comparison of antibiotic resistance levels of the PmB heteroresistant derivative in the mtrD or lptA mutant 

background

Antibiotics
CNM3D CNM3DQ CNM3A CNM3AQ

E test (μg/ml)

Penicillin G 0.053 ± 0.01 0.058 ± 0.01 0.079 ± 0.021 0.115 ± 0.018

Chloramphenicol 0.38 ± 0.0 0.38 ± 0.0 0.38 ± 0.0 0.38 ± 0.0

Tetracycline 0.182 ± 0.151 0.115 ± 0.018 0.094 ± 0.0 0.084 ± 0.017

#.
Data are presented as the mean ± standard deviation (n=3).
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Table 4.

Bacterial strains used in this study.

Strains Description Source

IR2781 N. meningitidis serogroup B strain NMB (Richardson & Stojiljkovic, 2001)

FM7 Non-encapsulated N. meningitidis serogroup C strain FAM18 This study

M7 Non-encapsulated serogroup B strain IR2781 (Swartley & Stephens, 1994)

GA18736 N. meningitidis serogroup W 2002 clinical isolate Laboratory collection

IR2855 N. meningitidis serogroup A clinical isolate (Richardson & Stojiljkovic, 2001)

IR5426 hpuB::UROS derivative of IR2855 (Alexander et al., 2004b)

CNM3 N. meningitidis US_NmUC isolate (Tzeng et al., 2017)

CNM8 N. meningitidis US_NmUC isolate (Tzeng et al., 2017)

CNM3uros hpuB::UROS derivative of CNM3 This study

3R4 N. meningitidis PmB heteroresistant derivative of CNM3 This study

14R2 N. meningitidis PmB heteroresistant derivative of CNM14 This study

17R1 N. meningitidis PmB heteroresistant derivative of CNM17 This study

32R1 N. meningitidis PmB heteroresistant derivative of CNM32 This study

32R2 N. meningitidis PmB heteroresistant derivative of CNM32 This study

33R1 N. meningitidis PmB heteroresistant derivative of CNM33 This study

37R1 N. meningitidis PmB heteroresistant derivative of CNM37 This study

45R2 N. meningitidis PmB heteroresistant derivative of CNM45 This study

CNM3–14R2 N. meningitidis pilQ mutation of 14R2 incorporated into CNM3 This study

CNM3–17R1 N. meningitidis pilQ mutation of 17R1 incorporated into CNM3 This study

CNM3L N. meningitidis CNM3/mutL::aphA3 This study

CNM3E N. meningitidis CNM3 with mtrE:: Ω(Kn) mutation This study

CNM3D N. meningitidis CNM3 with mtrD::Ω(Sp) mutation This study

CNM3A N. meningitidis CNM3 with lptA:: Ω(Sp) mutation This study

CNM3EM N. meningitidis CNM3E with pilM:: aphA3 mutation This study

CNM3DQ N. meningitidis with the pilQ mutation of 14R2 incorporated into CNM3D This study

CNM3AQ N. meningitidis with the pilQ mutation of 14R2 incorporated into CNM3A This study

FA1090 N. gonorrhoeae reference strain Laboratory collection

FA19 N. gonorrhoeae reference strain Laboratory collection

CNG20 N. gonorrhoeae urethritis isolate (Tzeng et al., 2017)

H041 MDR N. gonorrhoeae clinical isolate (Ohnishi et al., 2011)
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