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Abstract

We describe a method for visualizing mRNAs in living mouse. Nascent transcripts and 

cytoplasmic mRNAs were labeled via lentiviral expression of MS2 coat protein (MCP) tagged 

with fluorescent protein (MCP-XFP) in knock-in mice whose β-actin mRNAs contained MCP 

binding stem loops (MBS). Then the mRNA molecules were imaged in the live cerebral cortex 

through an optical cranial window by intravital two-photon microscopy. By means of the 

controlled expression of MCP-XFP, single mRNA particles could be detected differentially in the 

nucleus and cytoplasm of a specific cell type. Consequently, this method is useful for investigating 

the cell-type-dependent dynamics of mRNAs underlying the structure and function of the brain.
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1. Introduction

Synthesis of mRNAs in and their subsequent transport out of the nucleus vary considerably 

across cell types as well as upon different environmental cues. The heterogeneity is thought 

to play significant roles in the development and function of the brain, which consists of 

diverse cell types within a highly ordered architecture [1–3]. However, the regulation of gene 

expression underlying the organization and plasticity in the central nervous system (CNS) is 

largely unknown. For elucidating transcriptional dynamics and intracellular localization of 

mRNAs in the course of physiology and pathology, nascent transcripts and mRNA-protein 
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complexes (mRNPs) must be observed in live animals, which has not been demonstrated to 

date.

A technique of labeling mRNAs in vivo, namely MBS-MCP, has been widely employed for 

livecell imaging [4]. By virtue of 24 repeats of bacteriophage MS2 binding stem loops 

(MBS) inserted into the 3’ untranslated region (UTR) of a gene of interest, which can bind 

up to 48 MS2 coat protein (MCP) tagged with fluorescent protein (MCP-XFP), sufficient 

fluorescence is provided for visualizing single endogenous mRNA molecules in real time. In 

particular, since the MBS-MCP method labels nascent transcripts while preserving the 

intrinsic cis-regulatory elements, it enables measuring the native transcriptional dynamics of 

the gene of interest. The MBS-MCP strategy has been implemented in various model 

organisms, such as Drosophila embryo [5,6] and zebrafish [7]. Also, murine models have 

been created for studying mammalian mRNA dynamics, e.g., a knock-in (Kl) mouse 

containing MBS in the β-actin mRNA (‘Actb-MBS’) [8] and a transgenic mouse expressing 

MCP-GFP under the control of ubiquitin C promoter (UBC) [9]. In the hybrid offspring 

(‘MBS×MCP’), every β-actin mRNAs are fluorescently labeled providing a useful resource 

for monitoring mRNAs in the native tissue environment. Using acute hippocampal slices 

from the animal, in vivo dynamics of mRNAs has been investigated. However, labeling 

mRNAs in all cells or tissues is undesirable for discovering cell-type- and tissue-dependent 

dynamics of a multi-functional (e.g., pleiotropic) gene. As a binary system, MBS-MCP 

affords combinatorial labeling, which can be exploited for targeting specific cells and tissue 

types so as to elucidate the heterogeneity of mRNA dynamics in the brain.

Here we demonstrate an advanced intravital MBS-MCP method by which mRNAs can be 

visualized in specific cell types of the living mouse brain. A construct encoding MCP-XFP 

reporter was delivered via lentiviral (LV) vectors into the brain of the Actb-MBS mouse, and 

then the labeled β-actin mRNAs in the cortex were imaged through an optical cranial 

window by intravital two-photon microscopy (TPM).

2. Material and methods

Cloning of LV transgene:

The insert (e.g., Syn-NLS-MCP-mKate2 and Syn-MCP-mKate2) was cloned and amplified 

by PCR using Pfx DNA polymerase (Thermo Fisher Scientific) and purified by gel 

electrophoresis. The LV vector (2 μg, Addgene #14883) was digested and gel purified. The 

insert and the vector were ligated by incubating a mixture containing 100-ng DNA (the 

vector to insert ratio of ~1:3) and T4 DNA ligase (NEB) at 16°C overnight. Bacterial cells 

were transformed and incubated overnight. 10 colonies were selected and grown in LB 

media overnight. The result of ligation was verified by digestion and gel electrophoresis, and 

also by sequencing.

Production of LV:

High titer LVs were produced in a BSL-2 class facility, as described previously [10]. 

Approximately ~300 μg of transfer vector was necessary for high-titer LVs, which was 

obtained by growing bacteria in 500-mL LB media overnight and maxi-prep. 293T cells 
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were seeded in twelve 15-cm dish (~5×106 cells per dish) approximately 8 hours prior to 

transfection. Medium (IMDM + 10% FBS + 0.25% PS + 1% glutamine, 20 mL final volume 

per dish) was changed 2 hours prior to transfection. The plasmid mixture was prepared for 

transfection containing (per dish): 25 pg of transfer vector, 12.5 μg of pMDLg/pRRE and 

6.25 μg of pREV, and 8 pg of pVSV-G. Then 50 μL of 2.5M CaCI2, 1.2 mL of double 

distilled H20, and 1.25 mL of 2xHBSS were added, mixed by inversion, and incubated at 

room temperature for 10 minutes to allow DNA-CaP04 precipitate to form. The precipitate 

was added dropwise to the 293T cells. After incubation for 12–16 hours, the precipitate was 

removed and media was changed (15 mL final volume per dish). After incubation overnight, 

the supernatant was collected for the first harvest (15 mL×12 dishes=180 mL). Fresh 15-mL 

media was added and incubated overnight. The supernatant was collected for the second 

harvest. The supernatants were pooled (a total of 360 mL) and cleaned up with 0.45-pm 

filter. At this point the titer was >106 viral particles/mL.

Concentration of LV:

The range and efficiency of transduction can be poor when the titer of LV is too low; for the 

reference, injecting 1- μL LV solution containing ~106 viral particles would yield the 

maximum transduction volume of ~1 mm3 (containing ~106 cells), assuming the multiplicity 

of infection (MOI, the number of viral particles per cell) of 1. In order to concentrate LVs, 

twelve ultracentrifuge tubes (6 tubes/ rounds × 2 rounds) were loaded with 30-mL solution 

each and ultracentrifuged at 20,000 rpm for 2 hours at 18 °C. Supernatants was discarded 

into 10% bleach and tubes were dried by inverting on paper towel. The pellet was re-

suspended in 200 μL of 1 × HBSS. The titer of LV was measured by qRT-PCR with Lenti-

X™ titration kit (Takara Bio Co.). The titer increased ~150-fold after concentration, yielding 

>109 viral particles/mL. LV can be aliquoted and stored at −80 °C for a long term (~1 year). 

The biological titer cannot be measured for a cell-type-specific promoter inactive in the 

standard cell lines (e.g., Syn), so the actual transducing units may be smaller than the 

number of viral particles.

Stereotaxic injection:

Animals were handled in accordance with the procedures approved by the Institute Animal 

Care and Use Committee (IACUC) at Hunter College. LV was injected using a stereotaxic 

frame, as described previously [11]. An Actb-MBS mouse at a postnatal age of P21-P48 was 

anesthetized with 1.5% isoflurane at 0.5 liter/min oxygen delivery. The mouse was placed in 

a stereotaxic frame and the head was firmly secured with ear bars. A small flap of skin was 

removed with a scalpel from the dorsal skull of the visual cortex. A hole of 300 μm in 

diameter was drilled above the target area (2.5 mm lateral and 0.6 mm anterior to the 

Lambdoid suture for the primary visual cortex). The tip of 32-gauge needle was lowered to a 

depth of 300 pm below the pia mater. Then a 1- μL solution of LV particles was injected 

slowly over 10 min. After 2 minutes, the needle was withdrawn slowly and the wound was 

closed by clipping the skin. The animal was recovered and MCP-mKate2 expression 

matured in 2 weeks after LV injection.
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Installing cranial optical window:

An optical cranial window was placed, as described in the literature [12]. A mouse was 

anaesthetized with 1.5% isoflurane, the head immobilized, and placed on a heating blanket 

to maintain the body temperature at 37°C. An eye ointment was applied to prevent drying. 

The hair was shaved from the back of the neck up to the eyes using a rodent trimmer. The 

mouse was placed in a stereotaxic frame and the head was firmly secured with ear bars. The 

area of operation was sterilized by wiping twice with betadine and then 70% ethanol. The 

skin over the head was cut using scissors. The exposed area was scraped with a scalpel for 

better adhesion. A 2-mm guide circle was drawn with a pencil and drilled around the circle 

until a thin layer of skull is left. A drop of PBS was put on the area and the thinned skull was 

removed using the tip of a thin forceps. In case of bleeding, cotton soaked in PBS was 

applied until it stopped. After the dura was dry, a sterile 3-mm glass coverslip was placed on 

top of the dura mater and glue was applied around the coverslip. Dental acrylic mix was 

applied around the edges of the cover slip to cover the entire skull surface. A titanium head 

bar or razor blade was placed on the acrylic resin and allowed 10 mins to harden.

Intravital imaging by TPM:

Before imaging, a mouse was anaesthetized with 1.5% isoflurane and the head was 

immobilized. For two-photon excitation of mKate2, a beam of ~100-fs pulses at 1140-nm 

wavelength from an optical parametric amplifier (Coherent, Chameleon Ultra) was 

employed. For two-color imaging of GFP and mKate2, the 1140-nm beam was combined 

with another at 850-nm wavelength from an independent mode-locked Ti:Sapphire laser 

(Spectra-Physics, Tsunami). The beam was focused with an objective lens (Nikon, CFI75 16 

× 0.8NA) and the average power was approximately 10 to 50 mW at the sample. The signal 

was detected with photomultiplier tubes (Hamamatsu, H7422–40). For image acquisition, 

the pixel dwell time was set to approximately 1 μs/ μm2. In order to distinguish mKate2 

signal from autofluorescence, a separate channel was monitored where the mKate2 emission 

was blocked. Time-lapse images were acquired to measure the elongation of mRNAs for 

>200 seconds, which was approximately three times longer for RNA polymerase II to 

transcribe the entire MBS sequence (~1.3 kbp) at the typical rate of ~1 kbp/min [13].

Single-particle tracking of mRNAs:

Single-particle tracking was performed. For precise quantification of transcriptional 

dynamics, the magnitude of motion artifacts (i.e., non-biological fluctuations of MCP-XFP 

intensity) was determined, which arise from axial drift of the brain relative to the laser focus 

due to breathing and heartbeats. The correlated variations of the characteristics of single 

particles, e.g., the coordinates of centroid, the brightness, the radius of gyration, and the 

eccentricity [14,15], were evaluated to determine the motion-induced defocus (Fig. 3c) as 

well as spherical aberration and astigmatism.
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3. Results

Validating LV transduction of MCP-XFP.

The relatively large packaging capacity (~9 Kb) of LV vector allows adding sequences to 

manipulate the expression of transgene. We tested the human synapsin 1 (Syn) promoter for 

neuron-specific expression [18]. A cell-type-specific promoter can drive the expression of 

the MCP-XFP reporter such that β-actin mRNAs are visualized only in a certain population 

of cells. The MBS-containing mRNAs of the housekeeping gene are otherwise present in all 

cells of Actb-MBS mouse. It also limits the labeling of mRNAs to a specific cortical area 

where the promoter is activated [16,17]. In addition, a small sequence can be included 

encoding an amino acid signal to instruct the translocation of the reporter protein, which is 

useful for unraveling mRNA dynamics that depends on the intracellular location. We 

examined the effect of the SV40 nuclear localization signal (NLS) [19], which has been 

employed to remove free MCP-XFPs and thus lower non-specific background in the 

cytoplasm [20]. A karyophilic signal can also increase the nuclear background while 

compromising the efficiency of labeling cytoplasmic mRNAs. Finally, an appropriate 

reporter to tag MCP can be selected from a palette of fluorescent proteins developed 

specifically for enhanced tissue imaging, e.g., far-red (RFP) and near-infrared fluorescent 

proteins (NIRFP). We employed a monomeric RFP, mKate2 [21], for intravital TPM 

imaging. The designed MCP-XFP transgene was verified by comparing to the expression of 

Syn-H2B-GFP. Fig. 2 depicts a representative region of the visual cortex, where LV-Syn-

H2B-GFP and LV-Syn-NLS-MCP-mKate2 were co-injected as a cocktail at 1:1 

stoichiometry at a depth of approximately 300 μm. H2B-GFP and MCP-mKate2 

fluorescence were observed across ~1 mm3 and co-localized in the same cortical depth (the 

layer 2/3) and cell type (Syn+ cells), confirming the titer of LV and the desired expression of 

MCP-mKate2. Given the MOI of approximately 1, the process of LV transduction is 

intrinsically stochastic, causing variations in the intermediate steps including the entry to the 

host cells and the formation of pre-integration complex. However, the variability of MCP 

expression, which appears not only across the cells within the same animal but also in 

different animals, does not translate proportionally to the measurement of mRNAs due to the 

high affinity binding between MBS and MCP (Kd~1 nM).

Observing nuclear mRNAs.

LV delivery of Syn-NLS-MCP-mKate2 preferentially labeled mRNAs in the nucleus, 

allowing transcriptional dynamics to be probed in situ (Fig. 3). Labeled mRNAs appeared as 

bright, punctate particles with a size close to the optical resolution. The emission in the far-

red wavelength range allowed the background to be negligible. The 3D spatial distribution of 

mRNAs was measured, illustrating the state of transcriptional activation of the gene under 

the physiological condition of the brain (Fig. 3a). For β-actin, they were uniform across the 

layer 2/3 enriched with Syn+ neuronal cells. In addition to isolated single particles, which 

were presumably single transcription sites or cytoplasmic mRNA granules, many were 

present as doublets suggesting sites of biallelic transcription (Fig. 3b, dashed circles). The 

strength of transcriptional activities at the individual sites was reported by the brightness. 

For precise quantification of transcriptional activity, the degree of defocus at the 

transcription sites was determined from the variations of the single-particle properties (Fig. 
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3c). Examining alleles that were in focus with negligible motion artifacts (arrow and 

arrowhead in Fig. 3b), we found that the dynamics even in the same cell were not 

necessarily synchronized (Fig. 3d), indicating allele-specific transcription.

Observing cytoplasmic mRNAs.

LV delivery of Syn-MCP-mKate2 (without NLS) preferentially labeled cytoplasmic 

mRNAs, ideal for measuring the motion of mRNAs dependent on the cellular context. The 

pattern of labeled mRNAs was remarkably different from that of NLS-containing transgene, 

with more mRNAs visualized in the cytoplasm and neurites. There was also low, diffuse 

fluorescence background in these regions. A variety of motion types could be observed, 

including directed (Fig. 4 and Movie 1) and Brownian-like movements (Movie 2). An 

example of directed motion is depicted in Fig 4. Mobile and stationary mRNA particles were 

distinguished by their coefficients of variation (Fig. 4c). Typically only a small fraction 

(<5%) of mRNA particles were mobile in live brains, fewer than in cultured cells [22]. 

Directed motions included temporary pause and/or reversal of directions (Fig. 4d). The 

velocity of mRNAs was approximately 0.02 – 0.11 μm/sec, which was apparently slower 

than the values previously measured in cultured cells [23,24].

4. Discussion

We have presented LV-mediated intravital MBS-MCP for imaging neuronal ß-actin mRNAs 

in the living mouse brain. The generation of additional transgenic animals expressing the 

MCP is no longer necessary. Furthermore, due to significantly less cost and time LV 

transduction requires compared to creating transgenic animals, a number of candidate MCP 

reporters can be tested in rapid turnaround times. The versatility of the new intravital method 

has been demonstrated for preferential labeling of the molecules either in the nucleus for 

real-time transcriptional dynamics or in the cytoplasm for distinct intracellular trafficking, 

which is ideal for discovering any cell-type-specific dynamics of mRNA throughout its 

lifetime, e.g., release of nascent transcripts, assembly and nuclear export of mRNPs, and 

intracellular localization. Also, remarkable improvements over the previous MBS-MCP such 

as the MBS×MCP models [9] include the negligible non-specific background fluorescence 

in the nucleus. Arising from free MCP-XFPs, it has been considered as a major drawback of 

MBS-MCP although in principle the high affinity binding between MBS and MCP (Kd ~1 

nM) should provide a low background sufficient for detecting single nascent transcripts. It is 

plausible that LV-mediated intravital MBS-MCP prevents the overexpression of MCP 

reporter unlike infecting cultured cells or transgenesis of embryos.

The ability to resolve transcriptional dynamics at individual alleles of single cells is key for 

characterizing the variability on distinct levels, e.g., transient bursting, allelic and cell-to-cell 

variations [25–30], which may play important roles in brain function. The relevance of 

heterogeneous mRNA dynamics for health and disease can be better elucidated by 

interrogating mRNAs in live animals, where cellular identities are undisturbed, than using 

fixed or live cultured cells. The intravital MBS-MCP demonstrated here can be a powerful 

tool for investigating this important aspect of gene expression.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• The brain is characterized by the diversity of cell types

• Variability (i.e., noise) in the synthesis and intracellular movement of mRNAs 

is thought to play a crucial role in regulating the structure and function of the 

brain

• The dynamics of mRNA is observed in the brain of living mouse, where 

cellular identities are undisturbed, by intravital two-photon microscopy

• Context-dependent mRNA dynamics can be resolved by engineering viral 

construct for MBS-MCP
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Figure 1. 
Schematic of LV-mediated intravital MBS-MCP.
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Figure 2. 
The biological titer of LV and the range of promoter confirmed by co-injection of LV-Syn-

H2B-GFP and LV-Syn-NLS-MCP-mKate2. Scale bars, 30 μm.
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Figure 3. 
Nascent transcripts in the live brain visualized with LV-Syn-NLS-MCP-mKate2. (a) The 

cerebral cortex injected with LV-Syn-NLS-MCP-mKate2 at a depth of 300 μm; axial (left) 

and lateral cross sections at three different depths (right). Scale bar, 50 μm. (b) Lateral 

section showing cells with biallelic transcription (doublets in circles). Scale bar, 20 μm. (c) 

The radius of gyration and the eccentricity versus the brightness of the transcription sites, 

recorded for a period of 200 seconds, for 8 cells in (b). Each scatter plot displays two alleles 

(red and black) within the same cell. Green and magenta dashed boxes denote 4 cells each 

with in- and out-offocus transcription sites, respectively. The brightness of a transcription 

site varied with the axial position relative to the focal plane, but the effect of motion artifacts 

could be discriminated by correlated increases in the radius and eccentricity. (d) The time-

resolved brightness of transcription sites in two neighboring cells (arrow and arrowhead in 

(b) and (c)) with negligible motion artifacts and differential defocus.
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Figure 4. 
Cytoplasmic mRNAs in the live brain visualized with LV-Syn-MCP-mKate2 (without NLS). 

(a) Lateral section showing mobile mRNA particles (red dashed box). Scale bar, 15 μm. (b) 

Axial cross section where the approximate depth of (a) is denoted with an arrowhead. (c) 

The coefficient of variation of the region distinguishes mobile and stationary mRNA species 

(black and white, respectively). Inset: A magnified view of the red dashed box revealing 

hotspots where mRNAs pause. (d) Kymographs of mRNA particles showing reversal of 

directions (asterisks, see Movie 1).
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