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Stress dynamically regulates co-expression
networks of glucocorticoid receptor-
dependent MDD and SCZ risk genes
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Dietmar Spengler1 and Elisabeth B. Binder1,3

Abstract
Early-life adversity is an important risk factor for major depressive disorder (MDD) and schizophrenia (SCZ) that
interacts with genetic factors to confer disease risk through mechanisms that are still insufficiently understood. One
downstream effect of early-life adversity is the activation of glucocorticoid receptor (GR)-dependent gene networks
that drive acute and long-term adaptive behavioral and cellular responses to stress. We have previously shown that
genetic variants that moderate GR-induced gene transcription (GR-response eSNPs) are significantly enriched among
risk variants from genome-wide association studies (GWASs) for MDD and SCZ. Here, we show that the 63 transcripts
regulated by these disease-associated functional genetic variants form a tight glucocorticoid-responsive co-expression
network (termed GCN). We hypothesized that changes in the correlation structure of this GCN may contribute to early-
life adversity-associated disease risk. Therefore, we analyzed the effects of different qualities of social support and stress
throughout life on GCN formation across distinct brain regions using a translational mouse model. We observed that
different qualities of social experience substantially affect GCN structure in a highly brain region-specific manner. GCN
changes were predominantly found in two functionally interconnected regions, the ventral hippocampus and the
hypothalamus, two brain regions previously shown to be of relevance for the stress response, as well as psychiatric
disorders. Overall, our results support the hypothesis that a subset of genetic variants may contribute to risk for MDD
and SCZ by altering circuit-level effects of early and adult social experiences on GCN formation and structure.

Introduction
Social experiences shape brain structure and function by

inducing plastic changes from the early prenatal period
until the end of life1,2. Above all, early-life experiences, such
as maternal stress during pregnancy and child abuse but
also supportive parenting, can cause long-lasting changes in
neural circuit function and stress hormone regulation that
may moderate risk for major depressive disorder (MDD)

and schizophrenia (SCZ)3,4. Importantly though, the impact
of early-life adversity on disease risk is moderated by genetic
variation5 and later life experiences through biological
mechanisms, which are insufficiently understood at present.
Adverse early experiences typically activate the stress

hormone system leading to increased glucocorticoid
secretion and the activation of glucocorticoid receptors
(GRs) by cortisol6. GRs reside in the cytoplasm and
translocate into the nucleus upon cortisol binding to
regulate gene expression through sequence-specific DNA
binding or protein interactions with other DNA-bound
transcriptional regulators7. GR-regulated gene networks
coordinate acute and long-term adaptive responses to
stress, as well as timely termination of the stress response
once the threat has been mastered. Failure to turn-on and
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-off GR responses efficiently has been proposed to result
in “wear and tear” of the body and the brain and facilitates
the development of associated pathologies8.
Studies on the genetics of gene expression provide a

unique opportunity to link DNA sequence variation to
phenotypes and disease9. We previously hypothesized that
genetic variation in GR-regulated gene networks could
contribute to the risk for psychiatric diseases10. Therefore,
we measured glucocorticoid-induced changes in gene
expression in genetically diverse individuals to infer GR
expression quantitative trait loci (eQTLs). Genetic var-
iants significantly associated with differential GR-induced
expression preferentially mapped to long-range enhancer
elements consistent with GR’s major mode of transcrip-
tional regulation11. Furthermore, these GR-response
eQTLs were significantly enriched in brain-specific
enhancers and among genetic variants identified in
genome-wide association studies (GWASs) for MDD and
SCZ10. In additional independent samples, these variants
also predicted major depression and amygdala (AMY)
reactivity to threat in a cumulative manner.
Focusing on MDD risk genes in our initial analyses, we

showed that the transcripts moderated by these variants
are expressed in the brain, are regulated by stress, and
form a tight co-expression network that comprised basic
biological processes such as ubiquitination, proteasome
degradation, and inflammation. We hypothesized that the
cumulative genetic scores for these functional disease
variants could change the response of the whole co-
expression network to different qualities of social
experience and by this influence disease risk. A first step
towards testing this hypothesis would be to assess whe-
ther indeed exposure to different qualities of social
experience can alter the co-expression network structure
of these transcripts. This can be tested in animal models
exposed to different qualities of social support and stress
throughout development and beyond for which the
expression levels of the transcripts within these gene
networks is measured in different brain regions.
The main intent of our experiment was to explore the

dynamics of this glucocorticoid-responsive co-expression
network (GCN) (capturing the information from GWAS
risk variants) in response to extreme differences in social
experiences during early and or adult life, modeling epi-
demiological risk and protective factors for MDD/SCZ.
We have chosen an animal model that contrasts different
qualities of social support and stress during different
developmental stages to explicitly capture the complexity
of social life trajectories12.

Materials and methods
Genes of interest and network analysis
For this study, 63 genes (see supplementary table 1) that

were previously identified as GR-response eQTL and

colocalize a risk variant for MDD and/or SCZ as an eSNP
were analyzed10. A co-expression network of those genes
was predicted by GeneMANIA13 without the addition of
related genes and attributes. To estimate the null distribu-
tion, we calculated the gene network for 10 same size sets of
randomly chosen GR-response transcripts (n= 4383 iden-
tified in Arloth et al.10). Hub genes were detected by cal-
culating the node degree distribution using the Network
Analyzer tool within Cytoscape 3.5.114. The functional
annotation was performed using Enrichr (http://amp.
pharm.mssm.edu/Enrichr/enrich)15,16 focusing on KEGG
201617 and Wikipathways 201618 for pathway enrichment
and the gene ontology (GO) terms molecular function,
biological processes, and cellular component, all in the
version 2017b. The significance tests for these analyses are
described in detail in16. Briefly, Enrichr implements three
approaches to compute an enrichment: (1) Fisher’s exact
test, (2) permutation-based Fisher's exact test (generates
multiple random gene lists and computes a z-score for
deviation from the expected rank), and (3) a combined test
((p-value of 1) × (z-score of 2)). We report the permutation-
based p-value (referred to as Enrichr p-value).

Animal model
Male Balb/c mice were exposed to either early-life

adversity (limited nesting and bedding material; LM) or a
caring environment (early handling, EH). LM was per-
formed by placing the animals from postnatal day (P) 2 to
P9 in a cage with a metal grid instead of bedding material
and reduced nesting material, as described previously19,
leading to fragmented maternal care. EH was performed
by removing the offspring from the maternal cage to a
new cage for 15min per day on P2 to P9, a procedure that
has been shown to increase maternal caregiving beha-
vior20. A group with an unmanipulated environment (i.e.,
animal facility reared mice) was explicitly omitted to test
only two opposing rearing environments. At adulthood
(12 weeks of age), animals of each group were then either
housed with an ovariectomized female (OX; supportive
social environment) or underwent chronic social defeat
stress (CD; aversive social environment) for three con-
secutive weeks giving rise to four experimental groups
exposed to different qualities of social experience (EHOX,
EHCD, LMOX, and LMCD) (Fig. 1). See Santarelli et al.19

for more detail on physiological and behavioral alterations
observed in these groups. We note that theses manip-
ulations were not followed by changes in baseline corti-
costerone nor significant changes in NR3C1 mRNA (as
measured by targeted sequencing) encoding the GR as
described in19. From each treatment group, eight mouse
brains were analyzed. The animals were sacrificed under
basal conditions at 2 h after lights on during the circadian
nadir on P100, 12 days after the end of the adult manip-
ulations. Micropunches from desired brain regions were
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collected under histological control by Cresyl Violet
staining according to the Mouse Brain Atlas21 and
immediately stored at −80 °C. Twelve different brain
regions including AMY, bed nucleus of the stria termi-
nalis, cerebellum (CER), dorsal hippocampal Cornu
Ammonis (CA) 1 region (dCA1), dorsal hippocampal CA3
region (dCA3), dorsal dentate gyrus (dDG), prefrontal
cortex, nucleus accumbens (Nac), paraventricular nucleus
(PVN), ventral hippocampal CA1 region (vCA1), ventral
hippocampal CA3 region (vCA3), and ventral dentate
gyrus were collected (see supplementary Figure 1). These
brain regions were selected for their contribution to the
regulation of the stress response, as well as their role as
targets of stress hormones.
All procedures on animals were approved by the Gov-

ernment of Upper Bavaria and were in conformity with
European Union Directive 2010/63/EU. Standard labora-
tory animal housing conditions were maintained
throughout the experiments (unless otherwise stated) and
12-h daily illumination (lights on at 06:00 a.m.).

RNA extraction
Frozen micropunches were lysed quickly in 500 µl Tri-

zol (QIAzol) reagent and homogenized by repeated

passing through an insulin syringe (29G). Subsequently,
samples were kept at room temperature for at least 3 min
before adding 100 µl chloroform. The remaining steps
were conducted according to the miRNeasy Mini Kit
(Qiagen, Hilden, Germany) protocol. Elution was per-
formed with 30 µl RNAse-free water with a second round
using the eluate from the first round.

Next-generation sequencing/TruSeq® Targeted RNA
sequencing
TruSeq® Targeted RNA sequencing (Illumina, San

Diego, USA) was carried out according to the manu-
facturer’s protocol.

Assay design
As a first step, mouse orthologous of GR-response

MDD- and/or SCZ-related eQTL genes were mapped
(mouse orthologues n= 55; see Supp. Table 1) and spe-
cific assays for the genes of interest were chosen in the
Illumina DesignStudio. Specific primers for these assays
were combined by the manufacturer in a targeted oligo
pool (TOP). The TOP was applied to the reverse tran-
scribed RNA per protocol. Gene-specific sequences of

 Limited nes�ng Material (LM)

 Early Handling (EH)

Timeline (PND)
2 9 67

Ovariectomized  female (OX)

Ovariectomized  female (OX)

88 0016928

Weaning Behavioral 
tes�ng

Sacrifice

Chronic social defeat stress (CD)

Chronic social defeat stress (CD)

physical contact un�l defeat

x21 days

EH OX

EH CD

LM OX

LM CD

Fig. 1 Experimental timeline and social stress conditions. From postnatal day (PND) 2 to PND 9 individual mice litters were randomly assigned to
two groups that were exposed to either increased maternal care (defined as early handled (EH)) or fragmented maternal care (limited nesting and
bedding material (LM)). On PND 9, all pups returned to standard rearing conditions, were weaned on PND 23, and housed in groups (4 animals/cage).
Upon reaching adulthood (PND 67) male mice (EH or LM) were further separated in two groups that were exposed either to a supportive
environment (housing with an ovariectomized female; OX) or an aversive environment (chronic social defeat; CD). Collectively, animals experienced
either successive supportive or aversive social environments (EHOX or LMCD, respectively) or contrasting social environments (EHCD and LMOX).
Theses manipulations were not followed by changes in baseline corticosterone nor significant changes in NR3C1 mRNA expression (as measured by
targeted sequencing) encoding the GR. For further details, see26
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50 bp were amplified and supplied with sample-specific
indexes to enable pooling during sequencing.

Randomization
All samples were randomized for experimental group and

brain region during RNA extraction, as well as library
preparation to prevent technical batch effects. Libraries
were performed according to the manufacturer’s protocol
based on the Illumina TruSeq Targeted RNA Expression
Kits. We used eight samples per group from our four
experimental groups (EHOX, EHCD, LMOX, and LMCD)
from 12 brain regions, which summed up to a total number
of 384 samples. During RNA extraction, 24 samples were
extracted at once, whereas the library preparation was
performed in four 96-well plates. Each 96-well plate con-
tained three brain regions, which were distributed randomly
into the columns of the plate. Each plate column contained
two samples each from the four experimental groups
randomly distributed over the rows. Three columns of a
96-well plate were assigned to one RNA extraction from
each of the three brain regions on that plate.
After sequencing with the MiSeq Sequencer (V3

chemistry for 150 cycles), sequencing quality was analyzed
with FastQC22. Low-quality reads with phred scores lower
than 20 or a length smaller than 25 bp were removed
using PRINSEQ (PReprocessing and INformation of
SEQuence data) lite Version 0.20.423. Subsequently, the
reads were aligned with Burrows-Wheeler Aligner (BWA)
Version 0.7.1224 with default settings (allowing a max-
imum of three mismatches) and the manifest file provided
by Illumina as reference.
Next, the gene expression quantification was inferred

from the alignment. Genes with low overall coverage, i.e.
<2000 reads across all samples, were excluded from fur-
ther analysis (n= 5). The data were then normalized using
DESeq225. Finally, surrogate variable analysis (SVA) from
the R/Bioconductor package sva26 was applied to identify
hidden technical batches. To identify outliers, a linear
model (LM) was calculated with the normalized expres-
sion counts and the five significant SVs (according to Leek
et al.26). Subsequently, the residuals were clustered and
samples more than four standard deviations away from
the mean in either of the first two principal components
were excluded (n= 2 samples). Gene expression values of
50 genes in 382 samples passed the preprocessing.

Differential expression
The differential expression analysis of the normalized

sequencing data were performed in R version 3.2.3 (2015-
12-10)27. We first tested the distribution of the data per
gene and brain region, and—depending on the outcome—
subsequently used a generalized linear model with nega-
tive binomial distribution or a linear model. All models
included the detected significant variables as covariates.

Significance is reported after controlling for multiple
testing with a false discovery rate (FDR) lower than 10%
for all detectable transcripts within each brain region and
across the four conditions and FDR-corrected significance
is reported as q-values in the results and supplemental
table 3.
For analysis of GCN gene expression in human hippo-

campus, we used the data described in Kang et al.28 and
deposited as GSE25219. Of the 63 genes within the tested
GCN, 40 had data within GSE25219. Dimension reduc-
tion using principal component analysis (PCA) was per-
formed on the expression levels of these 40 genes and the
first principal component (PC1) was extracted. PC1 was
then associated with developmental stages using a linear
regression model.

Correlation network generation
Using the residuals of the normalized and batch cor-

rected gene expression values, the pairwise correlation
coefficients between all gene pairs were calculated and
adjusted for the expression levels of all other genes using
Gaussian Graphical Model implemented in the R package
GeneNet.
Partial correlation calculation was performed separately

for each brain region (n= 12) and condition (n= 4) and
controlled for the expression levels of all other transcripts,
resulting in 48 networks. Partial correlation coefficients
are not directly comparable to Pearson's correlation
coefficients as they control for confounding effects of all
other transcripts. The pairwise partial correlation between
transcripts A and B will be calculated correlating A – (Z1

to Zn) and B – (Z1 to Zn), so that partial correlation
coefficient will be numerically lower than Pearson's cor-
relation coefficients. Statistical significance of the partial
correlations was assessed using the empirical Bayes local
FDR statistic29 and partial correlations at an FDR < 0.2
were considered as significant according to Schäfer
et al.30. Networks were visualized with the R Bioconductor
package Rgraphviz, where each gene corresponds to a
node and edges represent the dependencies, i.e., partial
correlation coefficient, between them. The network
properties, i.e., number of edges, number of nodes,
absolute sum of partial correlation coefficients, and link
density were analyzed using iGraph and visualized in
pheatmaps. Edges were defined as pairwise partial corre-
lations with an FDR < 0.2 and node degree as the number
of such significant edges connected to a node. A node was
defined as a transcript with at least one edge.

Results
Network analysis of GR-response eQTL genes related to
MDD and SCZ
In our previous publication10, we have analyzed the

human network properties of the GR-eQTL transcripts
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related to MDD risk only (n= 24 transcripts). Given the
additional significant enrichment of GR-eQTLs among
schizophrenia risk loci and the significant SNP-based co-
heritability31 between these two disorders, we now investi-
gated if the 63 GR-response eQTL transcripts (see Sup-
plementary Table 1 for details and abbreviation of gene
names) for which the regulating SNPs are nominally asso-
ciated with MDD (n= 20) or SCZ (n= 39) or both (n= 4),
form a common transcription network structure. Gene-
MANIA was used to generate such a GR-eQTL/GWAS
gene network (GCN, see Fig. 2) using the full GeneMANIA
database including data from multiple tissues. The GCN
included 61 transcripts of the 63 transcripts (AI655567 and
RPL23AP64 were not included in the GeneMANIA data-
base and both are regulated by SNPs associated with SCZ).

Of these, 58 transcripts formed a tight network with 423
edges. Only three transcripts were isolated nodes (see
Fig. 2). Within this network the category direct “physical
interactions” (i.e., protein–protein interactions) was the
most enriched type of interaction (fold enrichment of 1.63)
over random networks. Testing for pathway (KEGG 2016
and Wikipathways 2016) and GO term enrichment of the
58 genes within the network, we observed significant
enrichment for GO cellular components 2017b, namely the
terms cytoplasmic side of late endosome membrane,
lumenal side of late endosome membrane and multi-
vesicular body membrane, see Supplemental Table 4. For
WikiPathways, cytoplasmic ribosomal proteins and
inflammatory response pathway were found to be sig-
nificantly enriched, see Supplemental Table 5.
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Fig. 2 Human GeneMANIA gene network. The glucocorticoid receptor (GR)-dependent expression quantitative trait loci (eQTL) network comprises
risk genes for major depressive disorder (MDD; gray filled circles, n= 20), schizophrenia (SCZ; black filled circles, n= 39) and both (gray circles with
black border, n= 4). It forms a tightly interconnected gene network termed GCN. The edge colors indicate the type of interaction, as explained in the
legend on the top left. Information on individual risk genes is provided in Supplemental Table 1
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In order to identify the most connected genes, the node
degree of each gene—i.e., the number of significant edges
of this node—was calculated. RPS25 (ribosomal protein
S25) was the top connected gene with a node degree of 30.
This gene was followed by CCNDBP1 (cyclin D1 binding
protein 1) (28 nodes) and HMBS (hydroxymethylbilane
synthase) (27 nodes) (see Supplemental Table 2 for more
detail on the network).
These data provide support that GR-response eQTL

transcripts with eSNPs associated with MDD and/or SCZ
form a tightly connected network.

Developmental trajectory of GCN gene expression in
human hippocampus
Using hippocampal gene expression data from

embryonic to adult postmortem brains of the Human
Brain Transcriptome atlas28 in which 40 of our 63 risk
genes were expressed, we observed that first principal
component of the expression levels of these 40 genes is
significantly associated with developmental stage, p=
1.4e–36. The developmental trajectories of each of these
genes in depicted in Supplemental Figure 2. This supports
that the large majority of these transcripts are expressed
in human hippocampus and regulated across brain
development.

Differential expression analysis of GR-response MDD- and
SCZ-related eQTL risk genes in various brain regions
To establish whether the GCN transcripts are regulated

by different qualities of social experience, including
adverse, stressful experiences that are established risk
factors for both psychiatric disorders, we used a mouse
model19 that combined both early stress or supportive
exposures with either adult stress or supportive exposures
(see Fig. 1). We first investigated whether the orthologues
of the 61 GCN transcripts were differently regulated
across the 12 different brain regions for each of the four
experimental conditions (early and adult support: EHOX,
early support and adult stress: EHCD, early stress and
adult support: LMOX, and early and adult stress: LMCD).
Of the 61 transcripts, 55 had a mouse orthologue. Of
these 55, 50 transcripts showed expression levels that
were above detection threshold and were thus included in
the analysis.
The univariate analyses are summarized for each brain

region in Supplemental Table 3. In univariate analyses of
condition/brain region, early-life stress led to a significant
change of Snrnp70 gene expression in Nac with a q-value
of 0.016. Exposure to chronic social defeat stress in
adulthood resulted in significant changes of seven genes
in four different brain regions (dCA1: Fth1, Mrpl54,
Abcf1, Psmb3, Rbm4; dDG: Hist1h2al; Nac: AW209491;
vCA1: Adhd5; see Supplementary Table 3). The human
orthologues of the differentially expressed genes in mice

MRLP54, ABCF1, PSMB3, FTH1, and ADHD5 had rela-
tively high connectivity (degree (d)= 17–25), in the
above-described human GCN network, whereas C7orf25
(orthologue of AW209491) had a very low degree of 4 and
HIST2H2AA3, d= 0, falls on an edge (see Fig. 2). The
interaction of early-life adversity and adult chronic stress
on differential expression showed significant effects of five
genes in four different brain regions (AMY: Higd1a,
dCA1: Ccndbp1, dDG: Rsp12, Rsp25 and Nac: Adhd5;
see Supplementary Table 3). Interestingly, two of these
genes are major human GCN genes with a high node
degree including the hub genes RSP25 (d= 30),
CCNDPD1 (d= 28), as well as ADHD5 (d= 18) and
HIGD1A (d= 19).
Taking into account additional tests related to the

number of brain regions, only the effect of CD on C7orf25
(orthologue of AW209491) in the Nac would remain sig-
nificant after correction for multiple testing. Collectively,
these data thus indicate that robust differential expression
of single GCN risk genes with large effects is a rare event
in response to different social stress experiences.

Brain region-specific GCN formation in different stress
condition
Given the absence of strong single gene effects, we next

performed a comprehensive co-expression analysis of the
50 orthologue GCN genes across the 12 different brain
regions and the four conditions. All pairwise correlations
were adjusted for the expression levels of all other genes
in the GCN, by calculating partial correlation. Figure 3
summarizes all investigated network parameters (number
of edges, number of nodes, the partial correlation coeffi-
cient, and link density). We detected major differences in
network strength dependent both on the previous stress
history and the specific brain region. Mainly, in the PVN,
a central driver of the stress response, we observed a
strong (number of nodes n= 30 vs. mean= 5.9), well-
structured (number of edges n= 38 vs. mean= 5.3), and
dense (link density n= 2.53 vs. mean= 0.8) GCN in the
absence of any stress history (EHOX). The co-expression
network in this brain region was completely absent in
mice exposed to both, early and late social stress (LMCD,
all measures= 0) and to a lesser degree in mice exposed
to early adversity only (LMOX, nodes n= 17 vs. mean=
6.7, edges n= 15 vs. mean= 4.6, link density n= 1.76 vs.
mean= 0.8). On the other hand, chronic adult stress
without a history of early-life adversity (EHCD, nodes n=
27 vs. mean= 6.6, edges n= 40 vs. mean= 8.6, link
density n= 2.96 vs. mean= 0.9) did not alter para-
ventricular network formation when compared with
stress-free mice (EHOX). This suggests stronger effects of
early adversity on the GCN in PVN than adult chronic
stress, as well as a cumulative effect of stress exposure on
the strength of this network.
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The brain region with the second largest dynamic net-
work changes across the four conditions was the vCA1. In
contrast to the PVN, the vCA1 region, sharing a major
role in stress regulation32 did not express the GCN (all
network parameters 0) in the absence of any stress history
(EHOX), but GCN network strength emerged with
exposure to adult stress (EHCD, nodes n= 14, edges n=
8, link density n= 1.14) and was further strengthened by
combined exposure to early and adults stress (LMCD,
nodes n= 30, edges n= 31, link density n= 2.07).

However, exposure to early-life adversity alone (LMOX)
was not associated with network formation.
It is important to note that changes in GCN formation

were not confined to the PVN and hippocampal vCA1
region, but observed also in other brain regions although
to a much lower degree (see Fig. 3). These findings sug-
gest that GCN formation is moderated by different qua-
lities of social environment in a brain region-specific
manner in circuits central to stress regulation such as
those including the PVN and the vCA1.
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Brain region-specific GCN formation in different stress
condition
Brain region-specific social environment-responsivity

raises the question whether the network properties of the
underlying risk genes are preserved across brain regions
and conditions. Therefore, we next investigated the
number of edges per GCN gene in the PVN and the vCA1
in those conditions exhibiting GCN formation (PVN:
EHOX, EHCD, LMOX and vCA1: EHCD, LMCD), and
also included data from the dCA1 (EHOX, EHCD,
LMCD), the third most connected region (although with
quite a distance (see Fig. 3b)) for comparison. Hierarchical
clustering analysis (see Fig. 3d) revealed that the two
GCNs in the PVN under the low early stress conditions
cluster closely together, suggesting that adult chronic
stress does not strongly impact the edge structure of the
PVN network (i.e., similar connectedness of the network
genes), whereas it is disrupted with early stress exposure.
A different picture emerged in the vCA1, were the two
conditions with the highest overall connectedness of the
GCN (EHCD and LMCD) showed dissimilar edge prop-
erties and were not the next neighbors in the clustering
analysis.
We then explored the exact topology of the stress-

dependent GCNs in the PVN and the vCA1 (see Fig. 4).
We first noted that both, MDD and SCZ-associated
transcripts contributed proportionally (38% MDD genes
in original selection, range of MDD genes in networks
29–35%) to each of the networks, indicating the absence
of disease-specific involvement in any of the regulated
GCN networks. When focusing on the PVN, we noted
that the network under conditions of social support
(EHOX) contained 30 of the 50 orthologue transcripts
and that eight of the network genes had more than four
connections. In the adult stress only condition (EHCD), a
network of similar strength was observed (27 transcripts)
sharing more than half (n= 16) transcripts with the
EHOX network. Interestingly, six of the eight genes with
more than four connections in the EHOX network were
also included in the EHCD network, namely Slc7a7,
Rbm4, Zap70, St6galnac4, Zfp641, and Ociad2 and the
majority of them (n= 4), again had four or more con-
nections. This suggests that while these two PVN net-
works are not identical, they share a number of key
features, supporting that adult stress also does not have a
major impact on the network topology. However, one has
to note that the centrality and connectivity pattern of
some transcripts were affected by the additional stress
condition. For example, Psd5a with two edges in the
EHOX condition, moved to a more central position in the
EHCD condition, with nine edges. As described above,
this paraventricular co-expression network is disrupted
with exposure to early adversity, especially when followed
by adult chronic stress.

Contrary to the PVN, the vCA1 GCN was mainly
apparent in the combined stress condition (LMCD). Here
30 of the 50 transcripts formed a correlated expression
network, with 16 genes shared with low stress PVN net-
work (EHOX) and an additional six, which were only
present in the adult only stress (EHLM) PVN network. Of
the eight more highly connected genes in the PVN EHOX
condition, four were also included in the vCA1 LMCD
network, however, only two of them still showed a high
connectivity (Ociad2 and Zfp641). This suggests that
while a substantial number of transcripts are shared
between the low early stress PVN network and the com-
bined stress vCA1 network, the topology of this network
differed more than between the two PVN networks.
Interestingly, Psd5—the most connected gene in the PVN
adult stress network (eight edges) was also part of the
vCA1 combined stress network and showed four con-
nections, suggesting that connectivity of this gene may
more specifically relate to chronic adult stress.

Discussion
In this article, we report that 63 transcripts for which

GR-induced gene expression was modulated by MDD/
SCZ-associated SNPs form a tightly interconnected gene
expression network (GCN). This raises the question
whether this GCN could respond to differences in social
experiences, especially early-life stress, an important risk
factor for MDD and SCZ. When analyzing the effects of
different qualities of social stress in contrast to different
qualities of social support on GCN formation across dis-
tinct brain regions during distinct developmental phases in
mice, we observed that these different social experiences
substantially affect GCN formation and structure. These
changes were highly brain region-specific and apparent
mainly in two functionally interconnected regions, the
ventral hippocampus and the hypothalamus (see below).
The fact that the transcripts within this network are highly
regulated across human hippocampal development sug-
gests a role in neuronal development and their develop-
mental trajectory may serve as a substrate for early-life
experiences to influence differential GCN formation.
When annotating the 58 transcripts connected within

this GCN, we found enrichment of the GO cellular
components “late endosome membrane” and “multi-
vesicular membrane”, both contributing to endocytosis.
Regulation of endosomal traffic is a critical component of
synaptic growth and development. Many of the synaptic
growth mutants identified in Drosophila alter endocytic
trafficking: mutations disrupting the formation of signal-
ing endosomes cause reduced synaptic growth, while
mutations altering traffic to the recycling endosome or
lysosome cause synaptic overgrowth due to enhanced
signaling33. Endosomal regulation of signaling pathways
in synaptic growth and development appears critical for
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activity-dependent circuit refinement and are proposed to
contribute to risk for MDD and SCZ34,35. In support of
this hypothesis, postmortem brain studies showed these
pathways to be altered in both SCZ and MDD36. This
suggests that alterations in stress-induced changes of
endocytosis could contribute to disease risk by altering
neuronal activity. For example, glutamate receptor turn-
over has been shown to be altered by glucocorticoid-
induced enhancement of ubiquitin/proteasome-mediated
degradation of receptor subunits37, a process localized to
late endosomes and multivesicular membranes38,39.
Pathway analyses revealed enrichment for cytoplasmic
ribosomal proteins; ribosomal protein have been shown to
be altered both in postmortem gene expression studies for
MDD and SCZ36, as well as in pluripotent stem cell-
derived neural progenitor cells40 or olfactory-derived
neuroepithelial cells41 from patients with SCZ.
The second enriched pathway was inflammation, a

system not only strongly implicated in both disorders by a
large body of experimental evidence42,43 but also from

recent cross-disorder annotations of GWASs including
both disorders44.
Furthermore, proteins relevant to the pathways enri-

ched in the total network described above are also enco-
ded by transcripts that are part of the dynamically
regulated networks in both the PNV and the ventral CA1.
These include Snrnp70, Rps2, Rps12, Mrpl54, Rbm4 for
ribosomal processes; Zap70 and Rfx5 for immune-related
functions, and Anx2 for endocytosis (Fig. 4), suggesting
the experience-specific co-regulation of these pathways.
Finally, transcripts with eSNPs associated with either

MDD or SCZ contributed to a similar degree to these
dynamically regulated networks in the animal model. This
suggests that genes associated with either disorder may
impact networks sensitive to different qualities of social
experiences. For the development of human pathology, it
raises the question whether one would observe disease-
specific changes in GCN with exposure to adversity. One
possibility could be that disease-specific genetic variation
would impact distinct hubs in the same network leading

Fig. 4 Paraventricular and hippocampal GCN topology in stress-treated mice. Paraventricular (a) and ventral CA1 (b) GCNs of mice that
successively experienced different kinds of supportive or aversive environments in early (EH vs LM) or adult (OX vs CD) life are shown. Negative or
positive partial correlations are marked in red or green, respectively, with partial correlation strengths represented by the edge style
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to similar GCN alterations. For example, in the network
emerging with combined stress in the ventral hippo-
campus, the four “hub” transcripts are influenced by both
SCZ-associated variants (PSD5 and ZFP641) and MDD-
associated variants (OCIAD2 and ATP5F1) (see Fig. 4).
However, additional experiments in human tissue are
necessary to test this hypothesis.
By comparing GCNs in the combined support vs. the

combined stress condition, we observed opposite GCN
formation within the vCA1 region and the PVN, with
other regions showing little or no co-expression structure
(see Figs. 3a-c). These two functionally highly inter-
connected regions are critical for a well-organized stress
response and stress-related psychiatric disorders32,45.
Thus, intercorrelated changes in GCN formation could
reflect changes in region-specific molecular signatures that
evolve in response to social experiences and additionally
integrate reciprocal feedback mechanisms between inter-
dependent domains. While we can conclude that different
qualities of social experiences alter GCN formation and
structure in a brain region specific, and possibly func-
tionally interdependent manner, we cannot as easily
extrapolate whether these processes associate with risk or
resilience to stress-related phenotypes. In any case, our
results are compatible with the hypothesis that MDD and
SCZ manifest circuit-level disorders in which several
functionally interconnected brain regions are affected46,47

and point to a possible role of altered, or even disrupted,
GCN formation as potential risk factor for disease.
In fact, recent data from postmortem brain gene

expression studies support a role for changes in co-
expression network strength in both MDD and SCZ48,49.
Labonté et al.49, for example, observed not only differen-
tially expressed genes with MDD in multiple brain regions,
but also significant changes in network strength of specific
co-expression modules. The authors reported mainly gain
of connectivity in a series of MDD-associated co-expression
modules in a sex-specific but most importantly also brain
region-specific manner49. The changes in postmortem
MDD brain were overlapping with changes observed in an
animal model of depression, the chronic social defeat
paradigm (CD) also used here. The same group had pre-
viously reported differential changes of co-expression net-
works and changes in network strength, suggesting that
changes in co-expression strength has the potential to
impact cellular function in animals susceptible or resilient
to this stress paradigm in a coordinated manner across
brain regions, including the ventral hippocampus50. In fact,
among the 30 genes constituting the network emerging in
the ventral CA1 in the combined early and late stress group
in our experiments, five genes (Lnc2, Impdh2, Anxa2, Rps2,
and Psmb3) also showed significant changes in gene
expression in the ventral hippocampus between resilient
and susceptible animals and control animals.

Overall, our data support the hypothesis that genetic
risk variants for MDD and SCZ could influence coordi-
nated gene network properties across brain regions in
response to different qualities of social experiences. In
human studies, differences in social experiences ranging
from early adversity to supportive social networks have
been associated with differences in risk or resilience to
MDD and SCZ. Targeting multifaceted dysregulation of
risk gene co-expression networks within interconnected
brain regions in MDD and SCZ may offer an interesting
entry point for therapy and may lead to more effective
treatments than simply modulating single differentially
expressed risk genes51.

Acknowledgements
We thank Simone Röh for valuable discussions. This study was supported by an
ERC starting grant to EB (#281338, GxEmolmech).

Author details
1Department of Translational Research in Psychiatry, Max Planck Institute of
Psychiatry, Munich, Germany. 2Department of Stress Neurobiology and
Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.
3Department of Psychiatry and Behavioral Sciences, Emory University School of
Medicine, Atlanta, Georgia

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary information accompanies this paper at (https://doi.org/
10.1038/s41398-019-0373-1).

Received: 27 April 2018 Revised: 16 November 2018 Accepted: 1 January
2019

References
1. Davidson, R. J. & McEwen, B. S. Social influences on neuroplasticity: stress

and interventions to promote well-being. Nat. Neurosci. 15, 689–695
(2012).

2. Shonkoff, J. P. & Phillips, D. A. (eds). From Neurons to Neighborhoods: The
Science of Early Childhood Development. (National Academies Press,
Washington (DC), 2000).

3. van Os, J., Kenis, G. & Rutten, B. P. The environment and schizophrenia. Nature
468, 203–212 (2010).

4. Heim, C., Newport, D. J., Mletzko, T., Miller, A. H. & Nemeroff, C. B. The link
between childhood trauma and depression: insights from HPA axis studies in
humans. Psychoneuroendocrinology 33, 693–710 (2008).

5. Halldorsdottir, T. & Binder, E. B. Gene x environment interactions: from
molecular mechanisms to behavior. Annu. Rev. Psychol. 68, 215–241
(2017).

6. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress
throughout the lifespan on the brain, behaviour and cognition. Nat. Rev.
Neurosci. 10, 434–445 (2009).

7. Meijsing, S. H. Mechanisms of glucocorticoid-regulated gene transcription.
Adv. Exp. Med. Biol. 872, 59–81 (2015).

8. McEwen, B. S. et al. Mechanisms of stress in the brain. Nat. Neurosci. 18,
1353–1363 (2015).

9. Albert, F. W. & Kruglyak, L. The role of regulatory variation in complex traits and
disease. Nat. Rev. Genet. 16, 197–212 (2015).

Zimmermann et al. Translational Psychiatry            (2019) 9:41 Page 10 of 11

https://doi.org/10.1038/s41398-019-0373-1
https://doi.org/10.1038/s41398-019-0373-1


10. Arloth, J. et al. Genetic differences in the immediate transcriptome response to
stress predict risk-related brain function and psychiatric disorders. Neuron 86,
1189–1202 (2015).

11. John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor
binding patterns. Nat. Genet. 43, 264–268 (2011).

12. Nederhof, E. & Schmidt, M. V. Mismatch or cumulative stress: toward an
integrated hypothesis of programming effects. Physiol. Behav. 106, 691–700
(2012).

13. Warde-Farley, D. et al. The GeneMANIA prediction server: biological network
integration for gene prioritization and predicting gene function. Nucleic Acids
Res. 38, W214–W220 (2010). (Web Server issue).

14. Assenov, Y., Ramirez, F., Schelhorn, S. E., Lengauer, T. & Albrecht, M. Computing
topological parameters of biological networks. Bioinformatics 24, 282–284
(2008).

15. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis
web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

16. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list
enrichment analysis tool. BMC Bioinform. 14, 128 (2013).

17. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a
reference resource for gene and protein annotation. Nucleic Acids Res. 44,
D457–D462 (2016).

18. Kutmon, M. et al. WikiPathways: capturing the full diversity of pathway
knowledge. Nucleic Acids Res. 44, D488–D494 (2016).

19. Santarelli, S. et al. An adverse early life environment can enhance stress resi-
lience in adulthood. Psychoneuroendocrinology 78, 213–221 (2017).

20. Denenberg, V. H. Commentary: is maternal stimulation the mediator of the
handling effect in infancy? Dev. Psychobiol. 34, 1–3 (1999).

21. Paxinos, G. & Franklin, K. B. J. The Mouse Brain Atlas in Sterotaxis Coordinates.
(Academic Press, San Diego, 2001).

22. Andrews S. FastQC a quality control tool for high throughput sequence data
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2016).

23. Schmieder, R. & Edwards, R. Quality control and preprocessing of metage-
nomic datasets. Bioinformatics (Oxf., Engl.) 27, 863–864 (2011).

24. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics (Oxf., Engl.) 25, 1754–1760 (2009).

25. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

26. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package
for removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics (Oxf., Engl.) 28, 882–883 (2012).

27. R Core Team. A Language and Environment for Statistical Computing. Com-
puting RFfS, editor. (R Foundation for Statistical Computing, Vienna, Austria,
2018).

28. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature
478, 483–489 (2011).

29. Efron B. Local false discovery rates. Dept of Statistics, Stanford University.
Preprint at http://statweb.stanford.edu/~ckirby/brad/papers/2005LocalFDR.pdf
(2005).

30. Schäfer, J., Opgen-Rhein, R. & Strimmer, K. Reverse engineering genetic net-
works using the GeneNet Package. R. News 6/5, 50–53 (2006).

31. Consortium C-DGotPG. Identification of risk loci with shared effects on five
major psychiatric disorders: a genome-wide analysis. Lancet (Lond., Engl.) 381,
1371–1379 (2013).

32. Fanselow, M. S. & Dong, H. W. Are the dorsal and ventral hippocampus
functionally distinct structures? Neuron 65, 7–19 (2010).

33. Dickman, D. K., Lu, Z., Meinertzhagen, I. A. & Schwarz, T. L. Altered synaptic
development and active zone spacing in endocytosis mutants. Curr. Biol. 16,
1975 (2006).

34. Kahn, R. S. et al. Schizophrenia. Nat. Rev. Dis. Prim. 1, 15067 (2015).
35. Birnbaum, R. & Weinberger, D. R. Genetic insights into the neurodevelop-

mental origins of schizophrenia. Nat. Rev. Neurosci. 18, 727–740 (2017).
36. Darby, M. M., Yolken, R. H. & Sabunciyan, S. Consistently altered expression of

gene sets in postmortem brains of individuals with major psychiatric disorders.
Transl. Psychiatry 6, e890 (2016).

37. Zai, G. et al. Rapporteur summaries of plenary, symposia, and oral sessions
from the XXIIIrd World Congress of Psychiatric Genetics Meeting in Toronto,
Canada, 16-20 October 2015. Psychiatr. Genet. 2, 229–257 (2016).

38. Tai, H. C. & Schuman, E. M. Ubiquitin, the proteasome and protein
degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9,
826–838 (2008).

39. Urbe, S. Ubiquitin and endocytic protein sorting. Essays Biochem. 41, 81–98
(2005).

40. Topol, A. et al. Increased abundance of translation machinery in stem cell-
derived neural progenitor cells from four schizophrenia patients. Transl. Psy-
chiatry 5, e662 (2015).

41. English, J. A. et al. Reduced protein synthesis in schizophrenia patient-derived
olfactory cells. Transl. Psychiatry 5, e663 (2015).

42. Khandaker, G. M. et al. Inflammation and immunity in schizophrenia: impli-
cations for pathophysiology and treatment. Lancet Psychiatry 2, 258–270
(2015).

43. Miller, A. H. & Raison, C. L. The role of inflammation in depression: from
evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16,
22–34 (2016).

44. Network, Pathway Analysis Subgroup of Psychiatric Genomics C. Psychiatric
genome-wide association study analyses implicate neuronal, immune and
histone pathways. Nat. Neurosci. 18, 199–209 (2015).

45. Dong, H. W. & Swanson, L. W. Projections from bed nuclei of the stria ter-
minalis, anteromedial area: cerebral hemisphere integration of neuroendo-
crine, autonomic, and behavioral aspects of energy balance. J. Comp. Neurol.
494, 142–178 (2006).

46. Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and
anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 10,
1116–1124 (2007).

47. Meyer-Lindenberg, A. From maps to mechanisms through neuroimaging of
schizophrenia. Nature 468, 194–202 (2010).

48. Hess, J. L. et al. Transcriptome-wide mega-analyses reveal joint dysregulation
of immunologic genes and transcription regulators in brain and blood in
schizophrenia. Schizophr. Res. 176, 114–124 (2016).

49. Labonte, B. et al. Sex-specific transcriptional signatures in human depression.
Nat. Med. 23, 1102–1111 (2017).

50. Bagot, R. C. et al. Circuit-wide transcriptional profiling reveals brain region-
specific gene networks regulating depression susceptibility. Neuron 90,
969–983 (2016).

51. Schrattenholz, A., Groebe, K. & Soskic, V. Systems biology approaches and tools
for analysis of interactomes and multi-target drugs. Methods Mol. Biol. 662,
29–58 (2010).

Zimmermann et al. Translational Psychiatry            (2019) 9:41 Page 11 of 11

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://statweb.stanford.edu/~ckirby/brad/papers/2005LocalFDR.pdf

	Stress dynamically regulates co-expression networks of glucocorticoid receptor-dependent MDD and SCZ risk genes
	Introduction
	Materials and methods
	Genes of interest and network analysis
	Animal model
	RNA extraction
	Next-generation sequencing/TruSeq&#x000AE; Targeted RNA sequencing
	Assay design
	Randomization

	Differential expression
	Correlation network generation

	Results
	Network analysis of GR-response eQTL genes related to MDD and SCZ
	Developmental trajectory of GCN gene expression in human hippocampus
	Differential expression analysis of GR-response MDD- and SCZ-related eQTL risk genes in various brain regions
	Brain region-specific GCN formation in different stress condition
	Brain region-specific GCN formation in different stress condition

	Discussion
	ACKNOWLEDGMENTS




