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Introduction

Endodontic treatment is a treatment modality that involves 
removal of contaminated tissue from teeth with necrotic 
pulp and replacement of the removed tissue with an inert 
material. This treatment has been known for many years as 
predictable and reliable. However, immature teeth with a 
necrotic pulp and apical periodontitis present multiple 
challenges to a successful outcome.1 They present large 
open apices along with divergent and thin root walls that 
are susceptible to fractures. Filling the root canal is a chal-
lenging task because the open apex does not provide a bar-
rier which is able to stop the filling material. Apexification 
is a conventional treatment, specially indicated for the 
treatment of necrotic, immature permanent teeth, with 
demonstrated efficacy in achieving closure of the apex.2 
However, it does not promote root development which is 
vital for preventing root fractures.

In 2004, Banchs and Trope3 published a case report, 
suggestive of a new treatment procedure for immature per-
manent teeth with apical periodontitis called “revasculari-
zation,” also referred to as regenerative endodontic therapy. 

Regenerative endodontic procedures (REPs) are defined as 
“biologically based procedures designed to replace dam-
aged structures, including dentin and root structures, as 
well as cells of the pulp-dentin complex.”4 It is a new para-
digm advocating the complete replacement of compro-
mised tissue, based on tissue engineering rather than 
traditional restoration.

Since the first case report, a large volume of clinical 
studies and case reports have been published describing 
favorable clinical outcomes.5–9 Recently, however, it has 
been suggested that outcomes of REPs should be evaluated 
from a science-based aspect as well as from a patient-based 
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or clinical aspect, and that these have indicated unfavorable 
and/or unexpected outcomes.10–13 Obviously, there is a gap 
between the clinical outcomes of the current protocol and 
the expected outcomes predicted by the research concept. 
This review presents the clinical protocol that is currently 
in use, its challenges and limitations, and details current 
research attempting to translate biological concepts into 
clinical practice.

Clinical procedure for pulp-dentin 
regeneration

The approach of regenerating dental pulp tissue by induc-
ing blood into the root canal was first proposed by Ostby 
in the 1960s14 and then abandoned for over 20 years with 
no obvious outcome. In the 1970s, the understanding that 
revascularization, or reestablishment of a vascular net-
work within the root canal, is essential for the completion 
of root development, came to the fore, having originated 
from traumatology.15,16 The term, revascularization, was 
then used in initial case reports on regenerative endodontic 
therapies.3,17 During the period of more than a decade that 
followed the first case report, various protocols for pulp-
dentin regeneration were introduced. This new treatment 
modality was adopted by the American Dental Association 
in 2011. However, evidence-based guidelines that provide 
the most favorable results have not yet been fully estab-
lished, but are being gradually developed, based on many 
clinical and basic research studies.

Differences from conventional endodontic 
treatment

Similar to conventional root canal therapy, the primary 
goal of REPs as an endodontic treatment is the resolution 
of apical periodontitis. However, there are certain differ-
ences in the basic concept and related procedures. First, 
REPs are originally applied to immature permanent teeth, 
with thin walls and wide-opened apices. Aggressive filing 
is performed for infection control in endodontic treatment. 
However, in REPs, mechanical debridement using endo-
dontic files is contraindicated to avoid further weakening 
of the thin root canal wall and to protect the vitality of api-
cal tissue stem cells.17,18 Instead, sufficient chemical disin-
fection using an irrigant and intracanal medicaments is 
proposed.

Second, disinfection in REPs should be performed with 
thorough consideration to cell cytotoxicity. Even though 
sterile environment may be achieved by sufficient disinfec-
tion, pulp tissue regeneration requires a balance between 
disinfection and the microenvironment necessary for cell 
viability, in order to induce stem cell survival and differen-
tiation. Various concentrations of sodium hypochlorite 
(NaOCl), ranging from 0.5% to 6 %, have been used for 
disinfection.19 Recently, several studies have reported that 

concentrations of NaOCl higher than 3% may exhibit cyto-
toxicity toward stem cells of apical papilla (SCAP) and 
interfere with cell adhesion on the dentin surface.20–22 For 
these reasons, recent studies including clinical considera-
tions of the American Association of Endodontists (AAE) 
recommend the use of lower concentration of NaOCl in 
REPs. In the same vein, the use of lower concentrations of 
triple antibiotic paste (TAP) or calcium hydroxide were 
recommended as intracanal medicaments.23

Finally, REPs utilize tissue engineering to form a pulp-
dentin structure in the canal. Intracanal bleeding has a posi-
tive impact on the three requirements for tissue engineering: 
stem/progenitor cells, scaffolds, and growth factors.10,24,25 
It is proposed that inducing bleeding into the canal results 
in the delivery of mesenchymal stem cells (MSCs) to the 
site.25 The blood clot that forms acts as the scaffold, as well 
as a rich source of growth factors that may play an impor-
tant role in the regeneration process.10,26 Since a recent 
study reported that ethylenediaminetetraacetic acid (EDTA) 
solution may release various growth factors entrapped in 
dentin, thereby promoting differentiation of dental pulp 
stem cells (DPSCs) into odontoblast-like cells, EDTA has 
been recommended as the final irrigation.27

Clinical protocol: revascularization

REP is performed within the principles of conventional 
endodontic treatments, but with some major changes, such 
as a disinfection process which totally relies on chemical 
irrigation (while taking into consideration cytotoxicity 
toward cells to be recruited for the canal), as well as the 
stimulation of pulp-dentin regeneration via bleeding 
induction. The currently recommended procedures are as 
follows (Figure 1).24,28

First visit.  All visits, except for the final visit, are designed 
with a focus on disinfection of the root canal. After local 
anesthesia, rubber dam isolation, and access, gentle irriga-
tion which is limited to the coronal part of the pulp cham-
ber is performed. It is recommended that the canal be 
inspected using a dental microscope to confirm the pres-
ence of residual vital tissue and the level to which it is 
present.24 A K-file, or alternatively a gutta-percha cone, 
should be introduced into the canal to establish a working 
length.11,29 In case when inserting a file into the canal, a 
little resistance caused by viable tissue or pain sensation is 
reported, a file should not progress deeper. A file could be 
fixed with wax or cotton pellet during radiographs taken 
(Figure 1(c)).

Removal of necrotic tissue and the disinfection of the 
canal were accomplished by gently irrigating the canal 
with a minimum 20 mL NaOCl (Figure 1(d)). Lower con-
centrations of NaOCl are recommended (1.5 or under 3%, 
20 mL/canal, 5 min).20,30 The canal is then irrigated with 
saline or 17% EDTA (20 mL/canal, 5 min). The needle 
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should be positioned at a point 2 mm short of the apical 
foramen in order to minimize cytotoxicity to apical tissues. 
Negative pressure irrigation procedures such as EndoVac 
(Discus Dental, Culver city, CA) may be considered.31 
Mechanical debridement is contraindicated so as not to 
weaken the root wall.

After the canal is disinfected with copious irrigation 
and dried with paper points (Figure 1(e)), it is recom-
mended to place intracanal medicaments, either calcium 
hydroxide (Ca(OH)2) or TAP using a lentulo spiral or 
syringe. Treatment with TAP (a 1:1:1 volume combination 
of ciprofloxacin, metronidazole, and minocycline) at a low 
concentration (0.1–1.0 mg/mL) is recommended to lower 
cytotoxicity toward stem/progenitor cells. Double antibi-
otic paste (DAP) without minocycline may be considered 
if avoidance of tooth discoloration is desired. In order to 
prevent coronal leakage of bacteria, a sterile cotton pellet 
may be placed over the medicaments and the pellet 

covered with 3–4 mm of temporary filling material, such 
as Cavit (3M ESPE, St Paul, MN), IRM, and glass 
ionomer.

Interim visit.  The patients could be recalled within a time 
interval of 1–4 weeks. If clinical signs and symptoms per-
sist, the disinfection procedures implemented during the 
first visit should be repeated.

Final visit.  After confirming that signs of persistent infec-
tion are absent, the tooth is anesthetized with 3% mepiv-
acaine without vasoconstrictor, and the temporary 
restoration removed following rubber dam isolation. Copi-
ous and gentle irrigation with sterile saline or 17% EDTA 
should be repeated until no medicament is evident in the 
canal (Figure 1(g)). After the canal is dried with paper 
points, bleeding is induced by over-instrumenting with 
K-file. A pre-curved K-file is introduced 2 mm past the 

Figure 1.  Schematic illustration of revascularization procedure. Revascularization is considered for immature teeth with open 
apices, pulp necrosis, and apical periodontitis (a). After accessing the opening (b), gentle irrigation limited to coronal part of the 
chamber is performed. A radiograph with K-file insertion (c) provides the approximate tooth length, which helps to determine 
a working length. Low concentration of NaOCl (1.5 or less than 3%, 20 mL/canal, 5 min) is used for disinfection (d), following 
which saline or 17% EDTA is used. After copious irrigation and canal drying with paper point (e), intracanal medicaments, such as 
Ca(OH)2 or TAP were placed, and covered with temporary filling material (f). After confirming the absence of any signs of infection, 
the final step is initiated. Final irrigation is performed with sterile saline and 17% EDTA (g). After the canal has dried  
(h), a pre-curved K-file is introduced 2 mm past the apical foramen and rotated to induce bleeding (i). Blood fills the canal from 
the bottom and the blood clot can be identified after 15 min (j). After the blood clot is confirmed, capping materials such as MTA 
are placed over the blood clot (k). Regeneration of pulp-dentin leads to root development with thickening, lengthening, and apical 
closure, as well as maintenance of tooth vitality (l).
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apical foramen and rotated to induce bleeding below a 
point approximately 3 mm apical to the cemento-enamel 
junction (CEJ; Figure 1(i) and (j)). The time estimated for 
blood clot formation is 15 min.3,29,32 The stability of the 
blood clot could be confirmed using the reverse side of a 
paper point. An alternative method of inducing a blood 
clot is the use of platelet-rich plasma (PRP) or platelet-rich 
fibrin (PRF). After stability of the blood clot is confirmed, 
mineral trioxide aggregate (MTA) cement is placed over 
the clot as capping material. A 3–4 mm layer of MTA is 
recommended. In order to minimize apical displacement 
of MTA, resorbable matrix, such as collagen matrix, may 
be placed over the blood clot. In case MTA with a long set-
ting time is used, final restoration is performed during the 
next visit.

Clinical issues and limitation

Most studies analyzing revascularization have reported 
favorable outcomes with apical healing, mineralized tissue 
apposition, and continued root development of varying 
degrees (Figure 1(l)).5–7,26,33 However, some recent studies 
have reported drawbacks and unfavorable outcomes resulting 
from recurrence of periapical lesions, absence of continued 
root formation, and partial or complete intracanal oblitera-
tion.10,12,34,35 There are three issues relating to the current 
clinical protocol with regard to unfavorable outcome and 
those reasons are as follows: (1) insufficient bleeding,7,12,36 
(2) incomplete disinfection,34,37,38 and (3) ectopic tissue for-
mation instead of pulp-dentin regeneration.39–41

Because mesenchymal stem/progenitor cells are deliv-
ered into the root canal space only after bleeding is 
induced, bleeding induction may play a critical role in suc-
cessful pulp-dentin regeneration.25 Therefore, utilization 
of anesthesia without vasoconstrictors is recommended to 
facilitate bleeding. However, some reports point to diffi-
culties encountered in bleeding induction, such as insuffi-
cient bleeding despite following protocol. Such difficulties 
could be related to the absence of root development or 
poor root development due to a lack of recruited cells.7,8,36 
Therefore, it may not be prudent to rely on bleeding induc-
tion to produce the predicted outcome.

Unlike conventional root canal therapy, current REPs 
suggest low concentrations of irrigation and intracanal 
medication for disinfection (e.g. 1.5% of NaOCl and 0.1–
1 mg/mL of TAP). In addition, mechanical debridement is 
contraindicated to avoid weakening the root wall and pro-
tect viable tissue in the canal. However, once a microbial 
infection is well established in the root canal system, it is 
well known that complete elimination is difficult, even 
with mechanical instrumentation and stronger concentra-
tions of irrigation.42–44 Complete disinfection is a major 
factor required for successful endodontic treatment. 
Therefore, a protocol which relies on thorough chemical 
disinfection using low concentrations of irrigants and 

medicaments may be questionable. Several studies have 
indicated that failed revascularization, with the presence of 
apical periodontitis and absence of root development, may 
be due to insufficiency of the disinfection levels, recom-
mended by the current protocol.34,38,40 Lin et  al.45 and 
Zizka et  al.46 reported that deposition of hard tissue or 
maturation of roots continued to occur despite persistent 
apical periodontitis in failed REPs. It appears that root 
development is dependent on the condition of the Hertwig 
epithelial sheath rather than pulp regeneration or the bacte-
rial load in the root canal system.47 Current REPs mainly 
focus on achieving root maturation by protecting the via-
bility and adherence of stem cells, which may lead to the 
failure of achieving even the primary objective of REPs, 
which is the resolution of apical periodontitis. Therefore, 
the disinfection protocol of REPs should be carefully re-
evaluated, in order to achieve a proper balance between 
disinfection of the root canal system and survival of the 
stem/progenitor cells, which may lead to a successful out-
come in the long term.

Despite the clinical success as evidenced by the healing 
of apical periodontitis, continued root development, and in 
certain cases, vitality responses, it has been questioned 
whether REPs result in true regeneration of pulp- 
dentin-like tissue. Several preclinical studies reported 
apposition of osteoid-/cementoid-like tissue lacking an 
organized pulp-dentin complex.32,48,49 Histology reports of 
human teeth have confirmed that canals are filled with 
ectopic bone, fibrous tissue, and cement apposition up to 
the inner wall of the root.39,40,44 If recruited cells originate 
from the periodontal ligament (PDL), cementum, or alveo-
lar bone, they would generate the same tissue that they 
originated from.50,51 However, there are a few instances 
where newly formed dentin-like and pulp-like tissue is evi-
dent in the canal.52,53 All these cases are diagnosed with 
reversible or irreversible pulpitis, where dental pulp pro-
genitor cells or stem cells derived from the remaining vital 
pulp and apical papilla remained. Similarly, several studies 
have demonstrated promising outcomes related to regen-
eration of pulp-dentin-like tissue using transplantation 
with DPSCs or SCAP in vivo.54,55 However, currently, cell 
transplantation is not feasible in a clinical environment. 
Currently, revascularization appears to be the best practice 
based on tissue engineering for pulp-dentin complex. 
However, there may yet be room for improvement and 
much basic research is in progress with the objective of 
translating biological concepts into clinical practice.

Current approaches for pulp-dentin 
regeneration

Similar to general tissue engineering, pulp tissue engineer-
ing aimed at regenerating the pulp-dentin complex also 
requires three essential factors: SCAPs, scaffolds, and sign-
aling molecules. It is speculated that the ability of the tissues 
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or organs to regenerate is dependent on the availability of 
resident SCAPs and microenvironmental cues.56–59

Stem/progenitor cells

Many studies have been conducted on stem/progenitor 
cell sources with the ability to regenerate the pulp-dentin 
complex. The issue of whether odontoblast-like cells that 
differentiate from heterogeneous stem cell populations 
have the same biological activities remains unresolved. 
Currently, MSCs of pulp origin are considered to have 
the highest potential for differentiating into odontoblast-
like cells.60–62 Seo et al.50 reported that MSCs from pulp, 
PDL, and bone marrow generate the same tissues as their 
origins, which supports the view that pulp-dentin regen-
eration would require pulpal MSCs present in the root 
canal. In addition to DPSCs, SCAPs and stem cells from 
human exfoliated deciduous teeth (SHED) are known as 
potential cell sources for regeneration of the pulp-dentin 
complex.63–66

Considering the fact that the availability and quality of 
dental pulp tissue decline sharply with age, nonodonto-
genic stem cells have been investigated as alternative 
sources. The generation of induced pluripotent stem cells 
(iPSCs) is considered a groundbreaking development 
that revolutionized regenerative medicine. This is 
achieved by reprograming adult somatic cells or termi-
nally differentiated cells, back to a pluripotent state via 
overexpression of four defined transcription factors.67–69 
Analogous, but superior, to embryonic stem cells, patient-
specific iPSCs can give rise to all cell lineages in the 
body, circumventing the clinical barrier of immunologi-
cal rejection or ethical controversy.68 An efficient induc-
tion protocol has been developed recently to facilitate the 
differentiation of murine iPSCs (miPSCs) into neural 
crest-like cells (NCLCs) in vitro.70 These NCLCs further 
demonstrated their potential to differentiate into dental 
mesenchymal cells including odontoblasts upon co-cul-
ture with mouse dental epithelium. Despite that, not all of 
the reconstituted tooth germs produced perfect tissue-
engineered tooth-like structures. These interesting find-
ings demonstrate much potential for iPSCs in future 
regenerative dentistry research.

Oh et al. developed a method to generate MSCs from 
primary normal human epidermal keratinocytes (NHEKs) 
by inducing epithelial–mesenchymal transition (EMT). 
They coined the term induced MSCs (iMSCs) to describe 
these cells, which are distinct from iPSCs.51 Clinically, 
these unique cell populations may represent an alternative 
source of autologous MSCs for patients who lack adequate 
availability of tissue for MSCs, since iMSCs are easily 
obtained from skin tissue. Further investigation may eluci-
date the potency of these iMSCs and assess their capacity 
for trans-differentiation into functional odontoblasts when 
transplanted in the root canal microenvironment.

Microenvironment

Some studies have suggested that the fate of transplanted 
stem/progenitor cells might be site-associated rather than 
origin-associated.59 In this respect, revascularization may 
have to consider providing bioengineered microenviron-
ments, using three-dimensional scaffold, and chemotactic 
growth factors.

Scaffolds.  Functionally, scaffolds provide a solid environ-
ment for stem cells and signaling molecules. In regenera-
tive endodontics, an ideal scaffold should be biodegradable 
and deliver cells containing growth factors. Various types 
of scaffolds such as natural, or synthetic, polymers are 
being studied and reported with varying results (Table 1).87

Collagen scaffold.  Animal-derived and recombinant col-
lagens, especially type I, are known to be the most use-
ful biomaterials available for tissue engineering, cosmetic 
surgery, and drug delivery systems.88 Collagen scaffolds 
are used either in native fibrillar forms or in denaturized 
forms such as sponges, sheets, plugs, and pellets.88 Kwon 
et  al.72 showed that cross-linking of collagen scaffolds 
has beneficial effects in the attachment, proliferation, 
and differentiation of human dental pulp cells (hDPCs). 
In an animal-based study, Nakashima71 showed that teeth-
implanted growth factors and collagen matrix scaffolds 
induced osteodentin.

PRP.  PRP, an autologous source of blood, contains 
elevated platelet concentrations, growth factors, and 
cytokines that enhance wound healing, attract pulp stem 
cells, and promote SCAP proliferation.89 Clinical stud-
ies have indicated that PRP enables a higher percentage 
of hard tissue deposition compared to blood clot scaffold, 
while other studies showed no advantage over blood clots 
regarding periapical healing, apical closure, or new tissue 
formation.74–76,83 Despite these contrasting results, it is evi-
dent that tissue regenerated using either PRP or blood clots 
as scaffolds is a bone-like tissue without continual root 
maturation.78 Martin et al.40 concluded that PRP enhanced 
wound healing only if parenchymal tissue has not been 
completely destroyed, but otherwise did not induce tissue 
regeneration. The advantages of using PRP scaffold are 
ease of application and the shorter time taken to induce 
vital tissues within the root canal. However, as special 
equipment and medications are required to prepare PRP, 
the cost of treatment may increase.33

PRF.  PRF, a second-generation platelet concentrate, 
contains a multitude of growth factors and exhibits cell 
differentiation properties, in addition to degrading quickly. 
PRF is not only a scaffold for cell adhesion and migra-
tion but also a growth factor for dental pulp cells.79 The 
intracanal transplantation of DPSCs with PRF might serve 
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as potential therapy for regenerative endodontics, pulp 
revitalization, or revascularization.79 He et al.80 introduced 
a new method, which involves adding hDPC suspension 
before centrifugation and demonstrated that PRF may 
play a synergistic role with dentin matrix in the formation 
of odontoblast cells when used as scaffold. MTA used in 
revascularization also had a synergic effect with PRF when 
compared to that with dental pulp cells cultured with MTA 
or PRF individually.81 However, a study has also indicated 
that PRP performed better than PRF and blood clot in peri-
apical wound healing when used in REPs.82

Synthetic polymers.  Synthetic polymers are easily manu-
factured from a wide range of biodegradable polymers and 
are susceptible to modification, whereas their degradation is 
easily controlled.88 Scaffold from biodegradable polymers 
serves as a temporary supporting structure for growing 
cells and tissues prior to degradation.90 Poly(d,l-lactide-co-
glycolide) (PLGA) with gelatin scaffold promoted endo-
dontic regeneration via simulation of extracellular matrix 
environments of stem cells.84 Incorporation of gelatin into 
PLGA-based scaffolds alleviated inflammatory reactions 
initiated by acidic degradation products.84 PLGA scaffold 
with simulated microgravity groups upregulated a broad 
range of integrins and may have contributed to regulating 
the proliferation, migration, and adhesion of hDPCs.91

Inorganic scaffolds.  Inorganic regenerative scaffold 
materials include calcium alginate, demineralized bone 
matrix (DBM), and mostly calcium phosphate.88 Calcium 
phosphate scaffolds have been widely and successfully 
used with osteoblast cells for bone tissue regeneration. 
The biological properties of this porous structure are deter-
mined by pore shape and size, porosity percentage, and 
the pore interconnection pathway.92 Microporosity under 
10 μm diameter permits body-fluid circulation, while 
macroporosity over 100 μm is prerequisite for migra-
tion and proliferation of cells and tissue formation.93 It is 
reported that a pore size of 300 μm was adequate for dental 
pulp–derived cells to align on the surface and regenerate 
dentin-like tissue.94 Biphasic calcium phosphate(BCP), 
an intimate mixture of more stable phase hydroxyapatite 
(HA) and more soluble phase beta-tricalcium phosphate 
(β-TCP), is known as an appropriate material for endo-
dontic regeneration as it resembles their inorganic part.86 
AbdulQader et  al.86 showed that BCP scaffold of 65% 
porosity can support hDPC differentiation for dentin tissue 
regeneration and concluded that a high rate of degradation 
of BCP with 65% porosity produced a localized alkaline, 
calcium-, and phosphate-rich environment that is optimal 
for odontoblast differentiation.

Biomolecules.  Combined with scaffolds, biomolecules 
(BM) that are released from demineralized dentin matrix 
or delivered exogenously have been found to play an 

important role in pulp revascularization by forming favora-
ble microenvironments.95 They are thought to recruit 
endogenous cells by chemotactic effects or induce differ-
entiation of recruited cells in order to initiate dental pulp 
regeneration. Numerous studies using BM, either singu-
larly or in combination, have reported various aspects of 
its function (Table 2).

Transforming growth factor-β superfamily and bone mor-
phogenetic protein family.  A key family of growth factors, 
which have been identified in the dentin matrix, are mem-
bers of the transforming growth factor-β (TGF-β) family 
of growth factors. The TGF-β family comprises a group 
of diverse growth factors including TGF-β, bone morpho-
genetic protein (BMP), growth and differentiation factors 
(GDFs), and anti-Mullerian hormone (AMH). TGF-β1, 
one of the three isoforms of TGF-β, is involved in primary 
odontoblastic differentiation and promoting tertiary dentin 
generation together with the regulation of dentin extracel-
lular matrix synthesis, cell growth, cell proliferation, cell 
differentiation, and cell apoptosis.111 In addition, TGF-β3 
induced ectopic mineralization in dental pulp during tooth 
germ development of fetal mouse and increased osteo-
calcin and type 1 collagen levels.97 Begue-kirn et  al.96 
reported that TGF-β-like molecules may interact with a 
component that acts as a regulator of its activity in initi-
ating functional differentiation of odontoblasts. BMPs, a 
subgroup of the TGF-β superfamily, are involved in many 
biological activities including cell proliferation, differenti-
ation, and apoptosis. BMPs are known to have strong oste-
oinductive and chondrogenic effects. BMP-2 stimulates 
the differentiation of dental pulp stem/progenitor cells into 
odontoblasts in vivo and in vitro, and it induces dentin 
sialophosphoprotein (DSPP) expressions to enhance the 
angiogenic potential of DPSCs.106 It also increases alka-
line phosphatase activity and stimulates reparative dentin 
formation.98

Blood-derived growth factors.  Blood-derived growth fac-
tors such as platelet-derived growth factor (PDGF), TGF-
β, fibroblast growth factor (FGF), vascular endothelial 
growth factor (VEGF), and insulin growth factor (IGF) 
are found in blood clots produced by bleeding induc-
tion. VEGF is regarded as a dominant signaling protein 
involved in lymphangiogenesis, vasculogenesis (de novo 
formation of the embryonic circulatory system), and 
angiogenesis (growth of blood vessels from pre-existing 
vasculature).112 It has been shown to promote blood vessel 
formation enhancing neovascularization in vivo.107 PDGF, 
a potent mitogen for cells of mesenchymal origin, consists 
of a family of polypeptides (A, B, C, and D) that are pla-
centa growth factors.113 It promotes angiogenesis and reg-
ulates the process of odontoblastic differentiation, acting 
synergistically with other growth factors.114 Kim et al.104 
delivered combinatory cytokines of VEGF, bFGF, or 
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PDGF with basal nerve growth factor (NGF) and BMP-7 
into the root canal and suggested that chemotaxis-induced 
cell homing is sufficient for the regeneration of pulp-den-
tin regeneration leading to a complete fill of dental-pulp-
like tissue.

General growth factors.  IGF-I is a multifunctional pep-
tide, which promotes osteogenic proliferation and dif-
ferentiation of DPSCs108 and SCAPs into a mineralizing 
phenotype,109 and plays a role in the promotion of cell 
proliferation and the inhibition of cell death (apoptosis).115 
It is required for achieving maximal growth during devel-
opment. IGF-I is a key regulator of bone formation and 

mineralization,116 where it stimulates osteoblastic cells in 
culture to proliferate and synthesize bone matrix proteins 
and also stimulates mRNA expression for alkaline phos-
phatase.117

Neurotrophic factors.  Although its exact role is yet to 
be clarified, brain-derived neurotrophic factor (BDNF) 
is expressed in the vascular wall and changes vascu-
lar function and biology.118 It is related to angiogenesis, 
nitric oxide production, and capillary density. De Almeida 
et al. performed human SCAPs co-culturing of rat-derived 
trigeminal neurons and confirmed that NGF, glial-derived 
neurotrophic factor (GDNF), and BDNF show potency in 

Table 2.  Summary of the studies on the function of bioactive molecules. It was organized according to the experimental design, for 
example, in vitro or in vivo using cell-based or cell-homing approaches.

Category Bioactive molecule Authors Methods Conclusion

TGF TGF-β1 and BMP-2 Begue-Kirn 
et al.96

In vivo (animal)
Cell homing

TGF-β1 and BMP-2 stimulated odontoblast differentiation.

TGF-β3 Huojia et al.97 In vitro TGF-β3 promoted mRNA expression, and increased protein 
levels of osteocalcin and type I collagen in dental pulp cells.

TGF-β superfamily Liu et al.98 In vitro TGF-β-related gene profiles are reported to be associated 
with odontoblast-like differentiation and mineralization.

BMP BMP-2 Iohara et al.99 In vivo (animal)
Cell homing

BMP-2 can direct pulp progenitor/stem cell differentiation 
into odontoblasts and result in dentin formation.

BMP-4 About 
et al.100

In vitro BMP-4 is involved in nestin up-regulation which promotes 
odontoblast differentiation during normal and pathological 
conditions.

Blood derived PDGF alpha Morrison-
Graham 
et al.101

In vitro Functional PDGFR alpha can affect crest development both 
directly and indirectly.

PDGF, IGF-1, 
aFGF, and IGF-2

Nakashima102 In vitro Proliferation of pulp cells may be stimulated mainly by PDGF 
and IGF-1.
Production of extracellular matrix proteoglycan may be 
enhanced by aFGF, IGF-1, IGF-2, TGF-β, and PDGF.

PDGF Yokose 
et al.103

In vitro PDGF exerts diverse effects on odontoblastic differentiation 
and acts in dentinogenesis during the repair process of 
damaged dental pulp.

FGF, VEGF, PDGF, 
and NGF

Kim et al.104 In vivo (animal)
Cell homing

Delivery of bFGF, VEGF, or PDGF with NGF and BMP-
7 has potent cell-homing effects for recellularization and 
revascularization.

SDF-1, bFGF, and 
PDGF

Yang et al.105 In vitro SDF-1alpha, bFGF, PDGF, SCF, and G-CSF could achieve 
pulp-like tissue formation via a cell-homing strategy.

VEGF and BMP-2 Aksel and 
Huang106

In vitro Both VEGF and BMP-2 enhances odonto/osteogenic 
differentiation of DPSCs.

VEGF and FGF-2 Mullane 
et al.107

In vitro VEGF and FGF-2 enhanced neovascularization of severed 
human dental pulps.

General IGF-1 Feng et al.108 In vitro IGF-1 could promote proliferation and osteogenic 
differentiation of DPSCs.

IGF-1 Wang et al.109 In vitro IGF-1 plays an important role in the regulation of tooth root 
development.

Neurotrophic BDNF De Almeida 
et al.110

In vitro SCAP release BDNF in a concentration-dependent manner 
and trigger directed axonal targeting.

aFGF: acidic fibroblast growth factor; BDNF: brain-derived neurotrophic factor; bFGF: basic fibroblast growth factor; BMP: bone morphogenetic 
protein; DPSC: dental pulp stem cell; FGF: fibroblast growth factor; G-CSF: granulocyte colony-stimulating factor; IGF: insulin growth factor; NGF: 
nerve growth factor; PDGF: platelet-derived growth factor; SCAP: stem cells from apical papilla; SCF: stem cell factor; SDF: stromal cell-derived 
factor; TGF: transforming growth factor; VEGF: vascular endothelial growth factor.
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SCAP-mediated neurite outgrowth. BDNF, especially, was 
the critical factor among the neutrophins.110

Direction and strategy of research

The AAE recognized the tremendous future potential in 
regenerative endodontics and invested US$2.5 million in a 
multi-year grant to support clinical research in regenera-
tion. In addition to this trend, a large volume of basic 
research has also been carried out at a global level. Various 
research studies have been conducted on scaffolds and BM 
as well as on stem/progenitor cells to elucidate the right 
microenvironment. These findings may suggest directions 
to be followed in order to obtain ideal pulp-dentin regen-
eration. Despite such accomplishments, many hurdles have 
to be overcome in the translation of research results into 
clinical practice. Many basic studies have produced out-
standing data using cell-based approaches. However, cell-
based approaches are still faced with practical challenges in 
a clinical environment such as time constraints, cost, and 
safety issues, and therefore using such findings in clinical 
practice has not been feasible as of yet. Like in other fields 
of tissue engineering, there is also a consideration that 
advanced technologies such as three-dimensional cell cul-
tures, three-dimensional cell printing, and gene therapy 
could be applied for pulp-dentin regeneration.4 These 
advanced technologies could lead to more ideal pulp-dentin 
regeneration. However, more active research is required to 
generate predictable outcomes with these technologies.

In the short term, it would be most helpful to promote 
research studies that may be applied practically in the cur-
rent clinical environment, such as the study supporting cell-
homing approach with delivery of BM and scaffolds and the 
study using minced pulp as a source of pulpal MSCs.119 In 
addition, even with positive research findings, ideal meth-
ods that are difficult to apply in a clinic situation should only 
be considered as a research for research’s sake. Over the 
past 20 years, there has been a lot of research conducted; 
however, recently, most of the revisions to the revasculari-
zation protocol have been concerned with the concentration 
of intracanal medication. This might be because there is a 
limited connection between the basic research and the actual 
clinic. We hope that this review will serve as an opportunity 
to introduce researchers to the clinical environment and 
limitations and hope that more research will be conducted 
that can be applied within the clinic.

Conclusion

Pulp-dentin regeneration based on tissue engineering was 
performed under clinical conditions, using the revasculari-
zation protocol. This protocol is recognized as a paradigm 
shift from the formerly used method of restoration with 
materials. Lately, it has been considered as a treatment 
option for mature teeth as well as immature teeth.120 

However, there is a broad consent that the final tissue 
acquired by REPs is more likely to bone-like tissue mixed 
with connective tissue rather than the pulp-dentin com-
plex. A controversy has surfaced over the terms “pulp-den-
tin regeneration,” “pulpal repair,” and “wound healing.” 
The current protocol, revascularization, based on the cell-
homing approach is considered as one possibility for gen-
erating ectopic mineralized tissue formation. It also 
revealed the limitations such as unpredictability in bleed-
ing induction and imbalance between complete disinfec-
tion and stem/progenitor cell viability. Nevertheless, it is 
evident that pulp-dentin regeneration has biological advan-
tages such as tooth homeostasis, an enhanced immune 
defense system, and a functional pulp-dentin complex, in 
addition to the clinical advantages of promoting root 
development. Understanding current clinical approach and 
challenges and encouraging applicable research studies 
may help develop regenerative procedures with more pre-
dictable and ideal outcomes.
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