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ABSTRACT

We propose to use segment graph convolutional and recurrent neural networks (Seg-GCRNs), which use only

word embedding and sentence syntactic dependencies, to classify relations from clinical notes without manual

feature engineering. In this study, the relations between 2 medical concepts are classified by simultaneously

learning representations of text segments in the context of sentence syntactic dependency: preceding, concept1,

middle, concept2, and succeeding segments. Seg-GCRN was systematically evaluated on the i2b2/VA relation

classification challenge datasets. Experiments show that Seg-GCRN attains state-of-the-art micro-averaged

F-measure for all 3 relation categories: 0.692 for classifying medical treatment–problem relations, 0.827 for medi-

cal test–problem relations, and 0.741 for medical problem–medical problem relations. Comparison with the previ-

ous state-of-the-art segment convolutional neural network (Seg-CNN) suggests that adding syntactic dependency

information helps refine medical word embedding and improves concept relation classification without manual

feature engineering. Seg-GCRN can be trained efficiently for the i2b2/VA dataset on a GPU platform.

Key words: graph convolutional networks, bidirectional long short-term memory networks, medical relation classification, natural

language processing

INTRODUCTION AND RELATED WORK

Relation extraction in biomedical literature and clinical narratives is

an important step for downstream tasks, including computational

phenotyping, clinical decision making, and trial screening, which

has drawn extensive research efforts in recent years.1–5 Participants

in the 2010 i2b2/VA challenge and follow-up publications have

showcased part of recent progress of classifying relations among

medical concepts.6–16 One of the major tasks of the challenge work-

shop focuses on classifying relations of concept pairs, such as medi-

cal treatments–problems, medical tests–problems, and medical

problems–problems. The classifiers developed by challenge partici-

pants are all equipped with many engineered features, either from

customarily constructed regular expressions, from knowledge-based

annotations produced by natural language processing (NLP) pipe-

lines including MetaMap17 and cTakes,18 or from annotated

and unannotated external data to improve the classification

performance.

One significant drawback of the abovementioned participating

systems is that they all rely on extensive feature engineering, which

does not generalize well to different datasets.19 To reduce the bur-

den of feature engineering and improve the system generalizability,

recent studies tackled clinical text modeling using convolutional or

recurrent neural networks.15,20–27 These models can navigate the

large parameter space to automatically learn feature representa-

tions.28 For medical relation classification, Sahu et al.15 applied the

convolutional neural networks (CNNs) on the i2b2/VA dataset to
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learn a sentence-level representation, but their method did not out-

perform the top challenge participants. Luo et al. proposed segment

long short-term memory (Seg-LSTM)21 and Segment CNN (Seg-

CNN)26 by observing the need to distinguish the segments that form

the relations14,29 (ie, preceding, concept1, middle, concept2, and suc-

ceeding), as they play different roles in determining the relation

class. Both systems used only word embedding for medical relation

classification and modeled segments’ sequences of words using the

same order as they appeared in the original sentence. Moreover,

Seg-CNN outperformed all i2b2/VA challenge participants, and was

comparable to the follow-up study by Zhu et al.30 in overall micro

F-measure. However, both Seg-LSTMs and Seg-CNNs are syntax-

agnostic, which was suggested as a potential deficiency in NLP tasks

such as semantic role labeling.31 Thus, we are motivated to design

neural network models that integrate both natural order word se-

quence and syntactic dependency information, and test whether

such models can improve relation classification. Our proposed sys-

tem achieved state-of-the-art micro F-measure in relation classifica-

tion on the i2b2/VA dataset.

METHODS AND MATERIALS

Dataset
The 2010 i2b2/VA relation dataset contains clinical corpus and con-

cept relations and is available at https://www.i2b2.org/NLP/Rela-

tions/.14 There are 3 relation categories: medical treatment–problem

(TrP) category, medical test–problem (TeP) category, and medical

problem–problem (PP) category. There are various possible relations

in each category. For example, the PP relation category includes: 2

medical problems are related to each other (PIP) and 2 medical

problems have no relation. Furthermore, the named entities for

i2b2/VA relation classification are given, so the named entity recog-

nition is not necessary. Segments were also provided by the i2b2/VA

dataset, so no detection is necessary. Detailed relation classes, their

descriptions, and class distributions in the i2b2/VA datasets are in-

cluded in the Supplementary Material. We perform preprocessing

steps on the data, including tokenization, syntactic dependency pars-

ing, and segment detection on the sentences. More detailed descrip-

tions on preprocessing steps are included in the Supplementary

Materials as well.

Fine-tune word embedding using syntactic dependency
We use word2vec to train word embedding using Medical Informa-

tion Mart for Intensive Care (MIMIC)-III clinical notes corpus26 as

input to our model. However, the embedding trained on external

corpora may not generalize well to the i2b2/VA challenge dataset.

Kim32 introduced a fine-tuning method to his CNN classifier to

learn task-specific word embedding. However, CNN is syntax-

agnostic and ignores the important information in sentences’ syntac-

tic dependencies. We instead use syntax-aware graph convolutional

networks (GCNs)33 to fine-tune word embedding based on syntactic

dependencies, as shown in Figure 1.

Concept relation classification using Seg-GCRN
We propose segment graph convolutional and recurrent neural

networks (Seg-GCRNs) to make the representation learning both

syntax-aware and sequence-aware. Seg-GCRNs use GCN layers to

integrate syntactic dependency information and recurrent neural

network layers to integrate word sequence information. Figure 2

shows the schematic of the Seg-GCRNs.

The GCN layers of Seg-GCRNs focus on fine-tuning word em-

bedding using syntactic dependencies.33 Compared with CNN,

GCN allows for bridging words that are far away in the original sen-

tence but connected through syntactic dependencies31 (see Figure 1).

We denote the syntactic dependency parse of the relation-containing

sentence as an undirected graph G. Let the embedding matrix of the

sentence be X 2 R
n�d with each row containing node (word) v’s d-

dimensional embedding. Sentences shorter than n words are padded

with zeros. Denote A 2 R
n�n as the graph G’s adjacency matrix, U

2 R
n�n as the matrix of eigenvectors from the normalized graph

Laplacian of A, and gw 2 R
n�n as a Fourier domain filter matrix

parametrized with a scalar w as its diagonal elements. We followed

the simplified gw parametrization for computational feasibility.35

The graph convolution for the 1-dimensional embedding

x 2 R
n (for n words) is

h ¼ UgwUTx ¼ Udiag w; . . . ; w½ �ð ÞUTx

¼ UUTx diagð½w; . . . ; w�Þ; (1)

where h 2 R
n is 1-dimensional convolved signal, and is essentially

the fine-tuned word embedding. In this formulation, the original

word embedding x is first transformed into the Fourier domain as

UTx, then multiplied with the filter matrix gw to become gwUTx,

and transformed back into the original domain as UgwUTx. Follow-

ing Kipf and Welling,33 we use Chebyshev polynomial approxima-

tion to simplify the graph convolution and improve the

computational efficiency, and extend the embedding and convolved

signal to d-dimensional X 2 R
n�d and H 2 R

n�d ; respectively. Let

tanhð�Þ be the hyperbolic tangent activation function, then

H ¼ tanh ~AXW
� �

; (2)

where ~A ¼ Aþ kI, I 2 R
n�n is an identity matrix, and k is the tun-

able weight factor to introduce self-connections in the graph, and W

2 R
d�d is the graph convolution matrix. A single-layer GCN with

1st-order Chebyshev polynomial approximation performs convolu-

tion only among nodes that are 1 hop away from each other.33

Stacking j layers of GCN can encode up to j-hop neighborhoods.36

To generate the syntactic dependencies and define the node adjacen-

cies, we adopted the McCCJ parser trained using a biomedical do-

main treebank.34 To zoom in on the concept pairs of the candidate

relation, we use the Dijkstra’s algorithm37 to find the shortest

path between 2 concepts in the graph. Then, only edges having at

least 1 end (node) on the shortest path are preserved in G for graph

convolution.

For recurrent neural network layers, Seg-GCRN integrates the

long short-term memory (LSTM) network, as Luo et al.21,26 showed

that sequence-aware modeling also recovers important information

in clinical texts for relation classification. Marcheggiani et al.31 also

validated the complementarity of GCNs (syntax-aware) and

bi-directional LSTMs (BiLSTMs) (sequence-aware) in semantic role

labeling. Therefore, we adopt BiLSTMs and define the network unit

for each word i as consisting of 2 LSTMs as

si ¼ BiLSTM h1:n; ið Þ ¼ LSTMf h1:ið Þ; LSTMb hn:ið Þ
� �

; 8i ¼ 1 : n;

(3)

where si 2 R
d , LSTMf , and LSTMb are the forward and backward

passing LSTMs, each with a hidden state of dimension d=2.

Compared with Seg-LSTM,21 which learns 5 individual LSTM mod-

els for 5 sentence segments, Seg-GCRN learns 1 BiLSTM model

through concatenating all 5 sentence segments (as shown in Figure 2)

but pools separately to respect segment boundaries. This greatly
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Figure 1. An example of the schematic of a multi-layer GCN. The syntactic dependencies are extracted for a sentence from the i2b2/VA challenge dataset, with 5

segments in different colors. The 2 concepts with the relation to be classified are shown in green and red on the top. GCN allows for bridging words that are far

away in the original sentence but connected through syntactic dependency [eg, “sodium bicarbonate” and “low bicarb” are bridged by 2 dependency links

(nmod and dobj) with only 1 word in between as opposed to 5 words in the sentence].
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Figure 2. Segment graph convolutional and recurrent neural networks (Seg-GCRNs). Context texts are divided into 5 segments: before the first concept (preced-

ing), the first concept (concept1), between the 2 concepts (middle), the second concept (concept2), and after the second concept (succeeding). Tanh stands for

hyperbolic tangent activation function. The dependencies are generated from the McCCJ parser trained using the GENIA treebank and PubMed abstracts.34
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saves the computational cost on the LSTM layer (as shown in

Table 2) and enables sequence-aware information encoding across

segments. The encoded feature vectors, collectively as

s1; . . . ; sn½ � 2 R
n�d , are then split into 5 segments representing pre-

ceding, concept1, middle, concept2, and succeeding segments. Each

segment of word features is pooled using max or min pooling (tuned

for different datasets using validation data) individually into

½upreceding; uconcept1
; umiddle; uconcept2

; usucceding�, which are

concatenated into a vector v 2 R
5d. We then pass v to a fully con-

nected layer, which contains weight Wfc and bias bfc, to produce a

size-k vector z ¼Wfcvþ bfc, where k is the number of relation clas-

ses. A softmax layer is finally used to compute the probability for

the lth class pl as

pl ¼ ezl=
XK

i¼1

ezi ;8l ¼ 1 : k; (4)

and argmaxlpl gives the relation class for the 2 concepts.

EXPERIMENTS AND RESULTS

To make a fair comparison, we adopted the same training and test-

ing partition as the i2b2/VA challenge. We randomly used 10% of

the training dataset as the validation dataset to guide the tuning of

model hyperparameters. The word embedding is trained using

MIMIC-III corpus with embedding dimension 300. The McCCJ

parsers are trained using (1) GENIA treebank and PubMed abstracts

(biomedical domain) and (2) Wall Street Journal (WSJ) corpus

(general domain) to test the sensitivity of the Seg-GCRN under dif-

ferent parsers. The 2-class PP dataset is particularly imbalanced,

which has approximately 8 times more None labels than PIP labels.

Following the approach adopted by de Bruijn et al.13 and Luo

et al.,26 we randomly down-sampled the PIP/None ratio to 1:4 in

the training dataset.

To regularize the Seg-GCRN and prevent it from overfitting, we

applied l2 regularization on the parameter matrix of the GCN layer

and dropout on the output of the BiLSTM layer. The relative weight

of l2 regularization33 and dropout probability was tuned using the

validation dataset. For model performance evaluation, we adopted

the same micro-averaged precision, recall, and F-measure from the

i2b2/VA challenge (see Table 1). Without manual feature engineer-

ing, Seg-GCRN with the biomedical domain McCCJ parser achieved

state-of-the-art performance for all 3 datasets on micro-averaged F-

measure compared with the past systems, most of which required

extensive feature engineering. Seg-GCRN with the general domain

McCCJ parser achieved state-of-the-art performance on micro-

averaged F-measure only for TrP and PP datasets, suggesting the

importance of using domain-specific parsers for the best modeling

performance. A more detailed comparison of the results using confu-

sion matrices is also included in the Supplementary Material, where

the class-by-class error analysis is performed. The analysis shows

that Seg-GCN effectively improved the precision and recall rates on

several classes across 3 categories, hence improving the overall clas-

sification performance. Furthermore, compared with Zhu et al.30

and Seg-CNN,26 which achieved the previously state-of-the-art

overall evaluation on precision, recall, and F-measure as

Table 1. Performance of the Seg-GCRN model with word embedding trained on the MIMIC-III corpus and sentences parsed with McCCJ

parser trained using (1) GENIA treebank and PubMed corpora, and (2) WSJ corpus.34 Please refer to the Supplementary Table S1 for de-

tailed relation classes and their definitions

Medical treatment–problem relations Medical test–problem relations Medical problem–problem relations

System P R F P R F P R F

Seg-GCRN (GENIAþPubMed) 0.703 0.682 0.692 0.833 0.821 0.827 0.762 0.722 0.741

Seg-GCRN (WSJ) 0.684 0.683 0.683 0.842 0.802 0.821 0.787 0.702 0.742

Seg-GCN 0.673 0.684 0.679 0.818 0.795 0.807 0.641 0.717 0.677

Seg-SAGCN 0.663 0.676 0.670 0.845 0.777 0.809 0.635 0.702 0.667

Seg-CNN26 0.687 0.685 0.686 0.836 0.804 0.820 0.700 0.704 0.702

Seg-LSTM21 0.641 0.683 0.661 0.766 0.838 0.800 0.728 0.681 0.704

Rink et al.38 0.672 0.686 0.679 0.798 0.833 0.815 0.664 0.726 0.694

de Bruijn et al.13 0.750 0.583 0.656 0.843 0.789 0.815 0.691 0.712 0.701

Grouin et al.12 0.647 0.646 0.647 0.792 0.801 0.797 0.670 0.645 0.657

Patrick et al.11 0.671 0.599 0.633 0.813 0.774 0.793 0.677 0.627 0.651

Jonnalagadda et al.10 0.581 0.679 0.626 0.765 0.828 0.795 0.586 0.730 0.650

Divita et al.9 0.704 0.582 0.637 0.794 0.782 0.788 0.710 0.534 0.610

Solt et al.16 0.621 0.629 0.625 0.801 0.779 0.790 0.469 0.711 0.565

Demner-Fushman et al.8 0.642 0.612 0.626 0.835 0.677 0.748 0.662 0.533 0.591

Anick et al.7 0.596 0.619 0.608 0.744 0.787 0.765 0.631 0.502 0.559

Cohen et al.6 0.606 0.578 0.591 0.750 0.781 0.765 0.627 0.492 0.552

Testing performance of all i2b2/VA challenge participating systems and some recent studies are shown for comparison as gray. The Seg-GCRN’s best perfor-

mance is attained with 1-layer GCN stacked with 1-layer BiLSTM and using 300 as embedding dimension. The best hyperparameter combinations are [2 as the

l2-norm penalty coefficient, 0.5 as dropout possibility, and 30 as self-connection weight k] for TeP relations with min-pooling for each segment, [0.2, 0.5, 30] for

TrP relations with min-pooling, and [1, 0.1, 30] for PP relations with max-pooling. The Seg-GCN’s best performance is attained with 1-layer GCN and using 300

as embedding dimension. The best hyperparameter combinations are [0.3 as the l2-norm coefficient of the GCN layer, 0.1 as the l2-norm coefficient of the fully

connected layer, and 20 as self-connection weight k] for TeP relations with max-pooling, [0.2, 0.1, 30] for TrP relations with max-pooling, and [0.1, 0.1, 15] for

PP relations with max-pooling. No dropout is used for the best Seg-GCN performance. The Seg-SAGCN’s best performance is attained with 1-layer GCN and us-

ing 300 as embedding dimension. The best window size is selected as 3, and the same hyperparameter combinations from Seg-GCN on l2-norm coefficients and

self-connection weight k adopted as the tuning paths for the 2 models are basically identical. No dropout is used for the best Seg-SAGCN performance. The best

micro-averaged F-measures across different systems are displayed in bold.
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[0.755, 0.726, 0.742] (in30) and [0.748, 0.736, 0.742] (in26), Seg-

GCRN improved the result to [0.772, 0.743, 0.758]. Additionally,

as the generalized convolution, GCN can perform sequential convo-

lution as CNN does, by setting the off-diagonal elements of the adja-

cency matrix A 2 R
n�n as non-zeros.31 We report the testing result

of the revised Seg-GCN, which can also perform the sequence-aware

(SA) encoding, as “Seg-SAGCN” in Table 1. Compared with Seg-

GCRN, however, the performance is slightly worse on TrP and PP

datasets, and almost the same on the TeP dataset. This reveals that

performing sequence-aware and syntax-aware encoding all through

convolution might not be as effective as separately performing them

through BiLSTMs and GCNs. Similar observations have also been

made by Bastings et al.39 In summary, we can see that Seg-GCRN

achieved state-of-the-art performance for the i2b2/VA challenge

datasets with only word embedding features and automatically gen-

erated syntactic dependencies. We also include an additional perfor-

mance report based on 10-fold cross-validation (CV) using the

training dataset in order to quantify the modeling performance vari-

ation (see the Supplementary Material). Specifically, the standard

deviation of the micro-averaged F-measures for TeP, TrP, and PP

datasets over 10-fold CV are 0.005, 0.004, and 0.008, respectively,

which are all smaller than the improvement made by Seg-GCRN

over the previous state-of-the-art (0.006, 0.007, and 0.038 for TeP,

TrP, and PP datasets). Therefore, we believe that the improvement

made by Seg-GCRN is notable. Additionally, we include some

examples showing how Seg-GCRN can help to correct misclassified

samples by the previous state-of-the-art Seg-CNN,26 based on syn-

tactic dependency information (see the Supplementary Material). In

the examples, we can see that syntactic dependencies combined with

1-layer GCN can quickly bridge the medical concepts within 2 hops

and enable efficient fine-tuning of word embedding.

Seg-GCRN is implemented in Tensorflow,40 and NVidia K40

GPU is adopted for model training and testing. We have released

our code at https://github.com/yuanluo/seg_gcn. Table 2 shows that

Seg-GCRN trains on all 3 datasets for under 4 minutes and is effi-

cient for practical usage.

DISCUSSION

To evaluate the effectiveness of combining sequence-aware and

syntax-aware models, we report the results of segment modeling with

only LSTM layers21 and only GCN layers in Table 1 for comparison.

We see significant performance increase using Seg-GCRN, which

shows the complementarity of syntax-aware and sequence-aware

models. Furthermore, Seg-GCRN achieved state-of-the-art perform-

ances across all 3 datasets, suggesting that Seg-GCRN is a robust tool

for relation classification in clinical notes. The improvements achieved

by Seg-GCRN are modest over the past studies for TeP and TrP data-

sets, but more significant for the PP dataset. This is not surprising, as

the PP dataset’s training and testing sizes are approximately more

than twice that of TeP’s and TrP’s. Such imbalanced improvements

are more conspicuous than those in Seg-CNN and Seg-LSTM (see

Table 1), suggesting that Seg-GCRN training can be more sensitive to

sample size while training the graph convolution. Furthermore, this

result shows that Seg-GCRN can effectively capture context variations

in large clinical records better than sequence-aware, or traditional fea-

ture engineering-based approaches. The model tuning result shows

that the 1-layer GCN performs the best for Seg-GCRN and Seg-GCN.

This can indicate that most important information can be encoded

among nodes’ immediate syntactic neighborhood. However, this may

also suggest that multi-layer GCNs demand more training data for pa-

rameter estimation. We will systematically explore the impact of num-

ber of GCN layers in Seg-GCRN using larger training datasets in the

future. Additionally, we focused mainly on using syntactic dependen-

cies as the linguistic features in Seg-GCRN, but plan to investigate the

usefulness of other linguistic and semantic features to further improve

Seg-GCRN. Lastly, only the text information from a single sentence

was used to classify the relation between 2 medical concepts, and such

information can be limited for classification. In the future, we plan to

integrate knowledge source in the learning process of Seg-GCRN. For

example, knowledge source on possible adverse events of drugs can be

useful in classifying the TrCP (treatment cause medical problem) rela-

tion. We will combine the knowledge-graph encoding41 with

Seg-GCRN and aim at learning effective knowledge-guided features

automatically, in order to further improve the relation classification

accuracy to a higher level that is of more practical utility.

CONCLUSION

In this work, we addressed an unmet need of a medical relation clas-

sification system that requires no manual feature engineering and

learns relation representation jointly from lexical and syntactic in-

formation. We built Seg-GCRN to learn relation representations us-

ing word sequence and dependency syntax of 5 segments within a

sentence (preceding, concept1, middle, concept2, and succeeding) for

classification. Seg-GCRN achieved state-of-the-art performance for

the i2b2/VA challenge datasets with only word embedding features

and syntactic dependencies. We demonstrate the advantage of using

deep neural networks to integrate lexical and syntactic information,

compared to using either information alone. Our results encourage

further research on deep neural networks to better utilize syntactic

structures and linguistic features for relation classification and other

NLP tasks.
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Table 2. Running time of the Seg-GCRN on 3 datasets

System

Medical treatment–

problem relations
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Seg-GCRN 55s 108s 220s

Seg-GCN 31s 67s 100s

Seg-CNN 120s 217s 413s

Seg-LSTM 1901s 2175s 1550s

The time is measured by number of seconds.
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