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ABSTRACT

Objective: We describe a stratified sampling design that combines electronic health records (EHRs) and United

States Census (USC) data to construct the sampling frame and an algorithm to enrich the sample with individu-

als belonging to rarer strata.

Materials and Methods: This design was developed for a multi-site survey that sought to examine patient con-

cerns about and barriers to participating in research studies, especially among under-studied populations (eg,

minorities, low educational attainment). We defined sampling strata by cross-tabulating several socio-

demographic variables obtained from EHR and augmented with census-block-level USC data. We oversampled

rarer and historically underrepresented subpopulations.

Results: The sampling strategy, which included USC-supplemented EHR data, led to a far more diverse sample than

would have been expected under random sampling (eg, 3-, 8-, 7-, and 12-fold increase in African Americans, Asians,

Hispanics and those with less than a high school degree, respectively). We observed that our EHR data tended to mis-

classify minority races more often than majority races, and that non-majority races, Latino ethnicity, younger adult age,

lower education, and urban/suburban living were each associated with lower response rates to the mailed surveys.

Discussion: We observed substantial enrichment from rarer subpopulations. The magnitude of the enrichment
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depends on the accuracy of the variables that define the sampling strata and the overall response rate.

Conclusion: EHR and USC data may be used to define sampling strata that in turn may be used to enrich the fi-

nal study sample. This design may be of particular interest for studies of rarer and understudied populations.

Key words: enrichment sampling, electronic health records, census data

OBJECTIVE

We describe an enrichment-motivated stratified sampling design.

We combine electronic health records (EHRs) and United States

Census (USC) data to construct sampling strata, and we detail a

sampling algorithm that identifies a sample enriched with rarer and

underrepresented subpopulations.

BACKGROUND AND SIGNIFICANCE

The United States healthcare system has become more reliant on

health information technology and active data collection due in part

to the Health Information Technology for Economic and Clinical

Health Act of 2009 (HITECH). This Act provides financial incentives

to institutions that are implementing and promoting the “meaningful

use” of EHR data. As the amount of EHR data proliferates, nation-

wide efforts (eg, Project HealthDesign) have been initiated to generate

novel secondary uses of EHR data to improve public health.1,2 These

data are used to reevaluate prior research findings; to develop, assess,

and refine predictive models; to aid in the planning of epidemiological

and survey studies; and, combined with biorepositories, to understand

complex genotype and phenotype relationships.3

To date, research derived from biorepositories is primarily based

on individuals of northern European ancestry. To engage more diverse

populations in genomic research, surveying under-studied populations

is needed to better understand concerns about and barriers to partici-

pating in research studies. Such surveys are typically extremely re-

source intensive, unless one can create a sampling frame with

well-defined sampling strata based on demographics and other data.4

Defining such a sampling frame from EHRs is possible since recipients

of HITECH funds are required to collect standardized demographic

data that may be associated with health disparities.5 The quality of

the resulting sampling frame and specifically the variables comprising

the sampling strata are dependent on the accuracy and completeness

of each institution’s EHR system and may not be sufficient for certain

research questions (eg, coarseness of racial/ethnic groups).5–8

In this paper, we describe the study design that we used for the

Electronic Medical Records and Genomic (eMERGE) Network’s

survey of perspectives on broad consent and data sharing in biomed-

ical research.9 An aim of this multi-site survey was to ensure that

under-studied populations were adequately represented (eg, minori-

ties and those from rural areas). Towards this end, we describe how

we combined EHR data and USC data to construct sampling strata

and the algorithm we used to sample from these strata to maximize

diversity of the sample. We also report response rates and the agree-

ment between EHR/USC-defined variables and survey responses.

MATERIALS AND METHODS

Population and data sources
The eMERGE Network was initiated by the National Human Ge-

nome Research Institute to develop, disseminate, and apply

approaches to research that combines DNA biorepositories with

EHR systems for large-scale, high-throughput genetic research.10

The Consent, Education, Regulation and Consultation (CERC)

Working Group was commissioned to conduct a broad-based survey

on the acceptability of and barriers to broad consent and data shar-

ing for genomics research, especially among those with low socio-

economic status, low education, and rural residence, and younger

adults and ethnic and racial minorities.11 Among the eMERGE Net-

work’s 11 U.S. clinical centers, this survey was administered to 7

sites that sampled from their adult patient population, 3 sites that

sampled from their pediatric patient population only, and 1 site that

sampled from both its adult and pediatric populations. Patients who

had an inpatient or outpatient encounter between October 1, 2013,

and September 30, 2014, and were not known to be deceased,

whose address was geocodable (see “Linking EHR and USC data”),

and whose age and gender were available in the EHR were eligible

for sampling. Overall, the sampling frame consisted of approxi-

mately 2.4 million individuals. Additional details regarding the or-

ganizational challenges, including the meeting of human subject

guidelines (ie, institution-specific IRB approval), of developing and

implementing a national survey have been published previously.9

The completeness of the sociodemographic variables used to define

sampling strata within each site’s EHR varied greatly. When EHR

data were not available, USC based estimates were used. The follow-

ing subsections describe the EHR and USC data sources and the pro-

cess of merging the datasets to create the variables needed to define

sampling strata.

EHR data

Table 1 summarizes the EHR data, including percentage of missing

data, summarized by population (adult, pediatric) and by site.

Within adult sites, the median patient age was 52 years. Fifty-eight

percent were female, 87% were white, and 4% were Hispanic/

Latino. At pediatric sites, the median age was 8 years, and a major-

ity was male (52%), white (66%), and not Hispanic/Latino (93%).

Race and ethnicity were missing from 14% and 16% of adult EHR

records, respectively, and from 13% and 12% of pediatric EHR

records. We observed substantial site-to-site variability in the avail-

ability of race and ethnicity data with values ranging from 67%

to 99%.

USC data

Populations with low educational attainment and with rural residen-

ces have been understudied in prior research, and data fields that

capture these characteristics were not available in any of the EHR

systems. For these 2 fields, and for missing values in EHR records,

we exploited U.S. Census Bureau data to provide proxy values. For

instance, rural residence as determined by the 2010 Census urban

areas criteria can be accurately assigned (assuming patients’

addresses in the EHR are accurate), and educational attainment can

be estimated by assigning the most-frequent (mode) value from the

patients’ census block group. The U.S. Census Bureau administers

several surveys each year, in addition to the Decennial Census. This
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includes the American Community Survey (ACS), an ongoing na-

tionwide program that collects sociodemographic and economic in-

formation about the U.S. population.12,13 Table 2 describes the USC

sources, variable definitions, and transformations used to complete

race and ethnicity when missing from the EHR, and for education

and rural/(sub)urban living. Household-level USC data were not

used (not publicly available), and no attempt was made to individu-

ally re-identify USC respondents using patient data.

Linking EHR and USC data

To use USC data, we linked home addresses to USC geographical

identifiers. Address processing involved cleaning address fields, such

as the primary street address, city, state, and zip code, and applying

quality control checks. Processed addresses were geocoded using

specialized software, such as ArcGIS and R.14,15 Each of the 11

eMERGE sites participating in the study had its own IRB protocol

for the eMERGE CERC survey study, which was approved at each

site and included permission to conduct the geocoding. Seven of the

11 sites geocoded their own addresses, and thus personal health in-

formation (PHI) for the geocoding did not leave the site and no PHI

was shared with the coordinating center (CC). For the 4 centers that

required geocoding assistance, a file containing only the physical ad-

dress fields and an anonymized patient identifier was electronically

transmitted from the site to the CC using the site’s preferred secure

file transfer system. Geocoded addresses were then linked to USC

block group geographical identifiers, which are the most granular

identifiers found in USC datasets, using specialized state-specific

files and software. The CC managed and curated data obtained

from the 2008–2012 ACS summary tables and the 2010 urban areas

database and then distributed the data to all sites for merging with

the site-specific EHR data. All electronic file transfers from the CC

to each center utilized an electronic file transfer system approved by

Vanderbilt Medical Center. No PHI, including the physical

addresses, was stored at the CC.

Imputing missing EHR data with USC data

To identify the sampling frame, we “filled in” (ie, imputed) missing

EHR data (race and ethnicity) using the most-frequent (mode) value

from the patient’s census block group. We also used the mode of edu-

cational attainment in the census block group as a proxy for individu-

als’ education. Notably, we imputed data once to define sampling

strata, but did not use imputed data (beyond calculating the true sam-

pling weights) for analyses. This is in contrast to more common set-

tings in which multiple imputation serves to fill in missing data used

for analysis and to acknowledge uncertainty in the imputed values.

We recognize that defining sampling strata using EHR and USC

data may result in misclassifications, and the frequency of these mis-

classifications is dependent on the accuracy of the EHR and USC

data. Misclassification rates may be quantified by comparing the in-

formation used to define sampling strata to survey responses using di-

agnostic summaries such as sensitivity, specificity, and positive and

negative predictive values. Even with the sampling strata misclassifica-

tions caused by imperfect data sources, we show that including them

can result in a far more diverse sample compared to random sampling.

Further, by supplementing missing EHR data with USC data, we are

able to conduct stratified sampling without removing individuals with

missing data (which may result in selection bias).

Sampling scheme
We conducted a disproportionate stratified sampling scheme to

identify the sample. Using the combined EHR and USC data, we

defined sampling strata at the adult sites based on the cross-

Table 1. Marginal distributions of age, gender, race, and ethnicity by population and by site. Age is summarized at the 5th, 25th, 50th (me-

dian), 75th, and 95th percentiles, while gender, race, and ethnicity are summarized as the percentages with complete data, along with addi-

tional columns summarizing the percentage missing. Age and gender were complete by design

Age Gender Race Ethnicity

N

Q5-Q25-Q50-

Q75-Q95 Female Missing White Black Asian

AI /

AN

NH /

PI Other Missing

Hispanic/

Latino

Population

Adult 1787 295 22-36-52-65-82 58.3 14.1 87.1 5.7 2.4 0.7 0.3 3.8 15.9* 4.1

Pediatric 601 867 1-4-8-13-17 47.6 13.1 66.0 19.3 2.9 0.2 0.1 11.6 11.8 6.7

Site

Adult

Essentia Institute for Rural Health 243 092 21-35-53-66-84 56.7 1.0 94.8 1.1 0.4 2.1 0.1 1.5 1.3 0.9

Kaiser Permanente Washington 217 959 22-35-51-63-78 58.3 30.1 78.3 5.5 9.7 2.0 1.3 3.1 3.0 5.3

Geisinger 356 488 22-36-52-66-82 58.0 3.9 96.3 2.6 0.6 0.1 0.3 <0.1 7.3 2.9

Mayo Clinic 134 212 23-41-57-69-83 53.2 3.4 93.5 2.0 1.9 0.4 0.1 2.1 10.1 2.1

Marshfield Clinic 136 391 21-35-52-66-83 54.6 8.4 97.2 0.5 1.4 0.8 0.1 <0.1 9.1 1.8

Mount Sinai School Medicine 162 927 23-39-54-67-83 59.9 30.8 60.8 11.8 4.7 0.2 0.1 22.4 32.8* 26.1

Northwestern University 206 554 23-35-47-60-77 62.6 21.1 70.9 13.2 3.6 0.2 0.1 12.0 22.8 9.9

Vanderbilt Medical Center 329 672 21-36-52-66-81 59.7 18.3 86.6 10.7 1.4 0.2 0.1 0.9 19.0 2.4

Pediatric

Boston Children’s Hospital 140 304 1-4-8-13-17 47.4 21.5 67.5 10.0 4.2 0.2 0.1 17.9 19.9 6.8

Cincinnati Children’s Medical Center 143 994 1-3-8-12-16 48.4 11.3 75.8 18.5 1.7 0.1 0.1 3.9 6.2 4.5

Children’s Hospital of Philadelphia 209 755 1-4-8-13-17 47.6 1.0 55.3 24.7 3.1 0.1 0.1 16.7 3.0 7.0

Vanderbilt Children’s Hospital 107 814 1-3-8-13-16 46.6 28.1 76.0 19.1 2.5 0.3 0.1 1.9 25.6 9.6

AI/AN ¼ American Indian/Alaska Native, NH/PI ¼ Native Hawaiian/Pacific Islander. *The original file used for sampling at Mt. Sinai contained 70.2% miss-

ing ethnicity value, which resulted in the overall adult population having 19.3% missing ethnicity. Sampling was performed using the original data file, while the

corrected results are reported in this table.
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classification age (< 35 and �35 years), gender, race (white, black

or African American, Asian, Native American/Alaska Native, Ha-

waiian/Pacific Islander, Other), ethnicity (Hispanic or not), educa-

tional attainment (less than high school, high school degree or some

college, and at least a bachelor’s degree), and rural living (suburban/

urban, rural). Patient data from pediatric sites were surrogates for

their parents. That is, we sampled the parents from strata defined by

the demographics of the child. We defined sampling strata similarly

at pediatric sites, except the age variable was categorized as <12

and �12 years. These categories were determined using results from

an extensive literature review conducted by our team that showed

the extent to which some subpopulations are underrepresented in

biorepository-derived research and based on the scientific questions

of interest.11 The cross-classification of the 6 sampling variables

resulted in 288 possible strata, although not all were observed at all

sites.

Maximum entropy sampling algorithm

We conducted the sampling design to increase the diversity of those

observed compared to the population at each site. Shannon’s en-

tropy, which corresponds to the uncertainty of predicting an individ-

ual’s sampling stratum, was used to quantify diversity.16 It is

defined as H ¼ �
Ps

i¼1 pi log2 pið Þ; where pi denotes the probability

of randomly selecting sampling stratum i. For a fixed sample size

and for s possible sampling strata, entropy values range from 0 to

log2(s) and correspond to the extreme scenarios in which all individ-

uals belong to the same stratum (H¼0) or where individuals are di-

vided equally across all strata [ie, assuming equal numbers of

subjects were available from each stratum; H¼log2(s)]. We consider

only the situation in which the sample size is fixed (eg, due to bud-

getary constraints), but summarize the relationship between varying

sample sizes and entropy in the Supplementary Figure S1. To enrich

our final sample with individuals from strata that tended to have

small counts, we implemented a maximum entropy sampling (MES)

algorithm. The MES algorithm iteratively determines the number of

subjects to sample from each stratum so the desired sample size is

obtained and the overall entropy is maximized. That is, MES seeks

to sample as evenly as possible across strata under the constraints of

overall desired sample size and the individual stratum sizes. Once

the desired MES stratum counts were calculated, we implemented

the sampling procedure with sampling probabilities defined as the

ratio of the MES determined sample size for the stratum divided by

the stratum size. Within each stratum, sampling preference was

given to those with complete (not imputed) stratification informa-

tion. Finally, we compare this sampling approach to random sam-

pling (RS) to characterize the extent to which the proposed design

(which includes both defining the sampling strata using EHRþUSC

data, and usage of the MES algorithm) improves diversity of those

sampled.

Figure 1 describes the MES algorithm at one of the participating

sites, ie, Vanderbilt University Medical Center (VUMC), where

4500 adults were sampled from a population of 329 672. Among

the 288 total possible sampling strata, 230 were populated with at

least 1 patient. The per stratum frequency in the population is

denoted by the light-gray shaded region. Due to the severe skewness

Table 2. U.S. Census variables, sources, definitions, and transformations used for imputing missing stratification information

Stratification Variable U.S. Census Variable

Source (table, variable

names and or

numbers) Description Variable Transformation

Race/Ethnicity Hispanic or Latino

Origin by Race

ACS 2008–2012 5-

year summary file

(B03002; 001-021)

Number overall and of each race (White

alone, Black or African American alone,

American Indian / Alaska Native alone,

Asian alone, Native Hawaiian / Other Pa-

cific Islander, Some other race alone, Two

or more races, White alone not Hispanic

or Latino, Hispanic or Latino, Two races

including some other race, two races ex-

cluding some other race / three or more

races) by ethnicity (Hispanic, not His-

panic).

Marginal distributions of

race were defined as White

(003, 013), Black or Afri-

can American (004, 014),

Asian (006, 016), Ameri-

can Indian/Alaska Native

(005, 015), Native Hawai-

ian/Pacific Islander (007,

017), Other (008, 009,

018, 019). Marginal distri-

butions of ethnicity were

defined as: Not Hispanic/

Latino (002), Hispanic/La-

tino (012)

Education Sex by educational at-

tainment for the

population 25 years

and over

ACS 2008-2012 5-

year summary file

(B15002; 001-035)

Number of each educational attainment

group (no schooling, nursery to fourth

grade, 5th and 6th, 7th -8th, 9th, 10th,

11th, 12th with no diploma, HS grad/

GED/Alternative, some college less than 1

year, some college one or more years and

no degree, associate’s degree, bachelor’s

degree, master’s degree, professional

school degree, doctorate) by gender for

those who are 25 or older.

Marginal distributions of ed-

ucation were defined as:

<12 (003–010, 020–027),

12 � <16 (011–014, 028–

031), � 16 (015–018,

032–035).

Rurality LSAD10 2010 Census urban

area criteria

75¼urbanized area (50 000 or more),

76¼urban cluster (2500 to 50 000), mis-

sing¼rural.

75 or 76 (suburban/urban),

missing (rural)
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of this distribution (ie, stratum sizes ranged from 1 to over 70K with

58% of patients belonging to the top 5 sampling strata), the y-axis

of this plot is truncated at 100. When sampling 4500 patients from

230 strata, Shannon entropy is maximized if 19 (4500/230) were

sampled from each stratum (see ideal sampling frequency line).

However, only 118 strata contained more than 19 patients. To max-

imize entropy under stratum size constraints, all patients were sam-

pled from the smallest 132 strata, and 34 or 35 patients were

sampled from the 98 strata with at least 35 patients. To contrast

with MES, the black-shaded region shows the numbers sampled

from each stratum in 1 realization of a RS design. As expected, RS

results in a far more skewed distribution (ie, with lower Shannon en-

tropy), and those from small strata are unlikely to be included in the

sample. In this case, only 41% of the strata would be represented in

the sample under this RS design.

An R package was written to estimate MES counts for a given

vector of stratum counts and an overall sample size. Code, installa-

tion instructions, and an example are publicly available at https://

github.com/mercaldo/mes.

RESULTS

Enrichment among those sampled
Table 3 summarizes the marginal distributions of the 6 stratifica-

tion variables using either EHR data only or the combined EHR

and USC data from a sample of 90 000 households within the en-

tire eMERGE network. Due to inclusion criteria, age and gender

were available on all patients, and so EHR and combined EHR

and USC values are identical under RS and MES sampling. At

adult sites, the marginal distributions of race and ethnicity

remained relatively unchanged after incorporating the USC data,

likely due to sampling only 4.9% and 8.9% of participants with

imputed race and ethnicity values, respectively. Most individuals

lived in census block groups where the mode of the adult educa-

tional attainment distribution was between high school and some

college (77%) followed by at least a bachelor’s degree (22%). A

total of 48% of the sample resided in rural areas. Similar patterns

were observed at pediatric sites, though fewer participants (29%)

lived in rural areas.

As can be seen from the MES columns in Table 3, the sample

identified using the USC-augmented EHR data and the maximum

entropy sampling algorithm was enriched with target subpopula-

tions as compared to the sample generated using the same data, but

under random sampling. For example, the sample was enriched with

all minority races; it was enriched 3-fold for African Americans

(18% vs. 6%), 8-fold for Asians (16% vs. 2%), and more than 4-

fold (19% vs. 4%) for other races. The sample was also enriched

more than 6-fold among those of Hispanic ethnicity (31% vs. 5%),

and 12-fold among those without a high school or equivalent degree

(12% vs. 1%). However, the survey was administered only in En-

glish and written at an 8th-grade literacy level, thus possibly reduc-

ing the enrichment of the returned sample.
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Figure 1. Truncated histograms of the sorted EHRþUSC defined sampling

strata for the entire Vanderbilt-Adult population and for samples of size 4500

using random (RS) and maximum entropy sampling (MES). The ideal sam-

pling frequency is 19 per stratum with the remaining 130 individuals being

randomly selected from available strata. The MES sample is enriched com-

pared to the random sample, especially with individuals from strata with

sparse counts (strata 1-112); all individuals belonging to strata 1-132 were in-

cluded in the final sample. The y-axis is truncated at 100 to highlight the dis-

tribution of rare sampling strata (eg, stratum counts ranged from 1 to over

70K with 58% belonging to the top 5 sampling strata).

Table 3. Marginal distributions of stratification variables under ran-

dom sampling (RS) and maximum entropy sampling (MES)

designs when using only EHR data and when using combined EHR

and USC data. For a sample on 90 000 households, percentages of

non-missing values are reported by population (pediatric, adult)

Adult Sites Pediatric Sites

EHR

Only EHR þ USC

EHR

Only EHR þ USC

RS RS MES RS RS MES

Age

Low age group 22.9 22.9 43.8 68.7 68.7 56.7

High age group ears 77.1 77.1 56.2 31.3 31.3 43.3

Gender

Female 58.3 58.3 52.9 47.6 47.6 49.7

Male 41.7 41.7 47.1 52.4 52.4 50.3

Race

White 87.1 87.6 34.3 66.0 69.3 33.0

African American 5.7 5.6 18.3 19.3 17.7 22.5

Asian 2.4 2.3 16.1 2.9 2.6 14.7

AI/AN 0.7 0.6 7.1 0.2 0.1 2.5

NH/PI 0.3 0.2 4.9 0.1 0.1 1.8

Other 3.8 3.6 19.2 11.6 10.2 25.5

Missing 14.1 – – 13.1 – –

Ethnicity

Non-Hispanic/Latino 95.9 95.6 69.3 93.3 93.9 69.5

Hispanic /Latino 4.1 4.4 30.7 6.7 6.1 30.5

Missing 19.3 – – 11.8 – –

Education

< HS – 1.0 11.9 – 1.2 13.6

HS þ some college – 76.8 54.9 – 72.4 48.9

� Bachelor’s – 22.2 33.2 – 26.4 37.6

Rurality

Suburban/Urban 52.0 62.5 70.7 63.9

Rural – 48.0 37.5 – 29.3 36.1

Low age group (< 12 in pediatric sites, < 35 in adult sites), high age group

(� 12 in pediatric sites, � 35 in adult sites), AI/AN ¼ American Indian/Alaska

Native, NH/PI ¼ Native Hawaiian/Pacific Islander, HS ¼ high school.
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To further characterize enrichment due to using both EHRþUSC

derived sampling strata and the MES sampling strategy, entropy val-

ues are shown in Table 4. At adult sites, 262 of the 288 possible

strata were observed corresponding to a maximum possible entropy

of 8.03. The entropy values under random and maximum entropy

sampling were 4.39 and 7.35, respectively. Overall, 81% and 72%

of the maximum entropy were obtained by merging EHR and USC

data and using the MES strategy compared to random sampling in

the adult and pediatric sites, respectively.

Survey response rates
The CERC survey sampled 90 000 individuals, and 7761 were ex-

cluded due to invalid addresses (n¼7, 504), death/incapacity

(n¼168), or previous involvement in the pilot (n¼89). A total of

13 000 surveys were returned, resulting in an overall response rate

of 16.7% (N¼9185) at adult sites and 13.9% (N¼3815) at pediat-

ric sites. These response rates, as well as those calculated for each

stratification variable, are defined as the number of responses di-

vided by the total number of subjects belonging to the sampling stra-

tum that was defined using EHRþUSC data (Table 5). Summarizing

the adult sites, participants were less likely to respond if they were

young (10.3% if < 35 years and 21.6% if � 35 years), male (16% if

male and 17.4% if female), non-white (eg, 13.2% if African Ameri-

can and 20.1% if white), Hispanic or Latino (14.2% if Hispanic

and 17.9% if not), reside in low-education census blocks groups

(13.6% if education level was <HS and 18.9% if education level

was � bachelor’s degree), or residing in non-rural areas (15.5% if

urban or suburban and 18.7% if rural). At pediatric sites, re-

sponse rates corresponded to the parent/guardian of children with

the associated demographic characteristic. Like respondents from

adult sites, parents or guardians were less likely to respond if their

children were young, Hispanic or Latino, and resided in low-

education census block groups or non-rural areas. Unlike adult

sites, parents or guardians of children that were Asian were more

likely to respond than whites (18.5% if Asian and 16.0% if

white).

Accuracy of EHR and USC data among respondents
Sensitivity (Se), specificity (Sp), and positive and negative predictive

values (PPV, NPV) were used to quantify the accuracy of sampling

strata when using data from the EHR only, USC only, and

EHRþUSC data while using survey response values as the gold stan-

dard. Results are summarized in Table 6 for the adult sites because

at pediatric sites, the EHR data reflected characteristics of the child

while survey responses reflected those of the parent or guardian.

EHR age and gender were at least 97% sensitive and specific for the

“true” value based on the survey response, and PPV and NPV were

also reasonably high even though overall PPV for age < 35 years

was only 91%. The low PPV value for age group was largely caused

by the following: 1) 73 of the misclassified ages had a self-reported

age of 35, which implies that the misclassification was due to aging

between the time we sent the survey out and the time the participant

sent it back, and 2) 64 of the misclassifications had differences in the

EHR and self-reported gender, which may imply that the survey was

not completed by the individual to whom the survey was addressed

(eg, spouse or caregiver). If these individuals are omitted, then the

PPV associated with age group was 96%.

EHRþUSC data showed variable sensitivity for race, ranging

from 33% for Other race to 93% for African American race, and

the PPV for the smaller minority races was alarmingly low (�20–

40%). Even though EHRþUSC data were reasonably sensitive for

Hispanic ethnicity (89%), the PPV was only 65%. To gain further

insight into the relative contributions to the misclassifications, we

provide accuracy estimates for respondents whose stratification data

were defined using only EHR data and only USC data, separately.

Only 3% (267/8941) and 7% (579/8870) of patients had race and

ethnicity values imputed with USC data; however, it is clear that

USC data were less accurate than EHR data. This is not surprising,

as USC data are based on aggregated, block groups. Utilizing only

USC data to determine an individual’s educational attainment

resulted in low discriminative and predictive values (eg, <HS:

Se¼21%, PPV¼17%).

Table 5. Response rates at adult and pediatric sites. Demographic

characteristics are based on sampling strata defined by the com-

bined EHR and USC data

Adult Sites Pediatric Sitesa

N Response Rate N Response Rate

Eligible 54 850 16.7 27 389 13.9

Age

Low age group 23 613 10.3 15 115 13.2

High age group 31 237 21.6 12 274 14.8

Gender

Female 29 169 17.4 13 581 13.9

Male 25 681 16.0 13 808 14.0

Race

White 19 099 20.1 9319 16.0

African American 9703 13.2 5877 10.0

Asian 8944 17.1 4171 18.5

AI/AN 3981 17.4 699 13.9

NH/PI 2711 13.4 496 9.7

Other 10 502 14.2 6827 12.0

Ethnicity

Not Hispanic /Latino 38 119 17.9 19 022 15.3

Hispanic /Latino 16 731 14.2 8367 10.8

Education

< HS 6457 13.6 3414 9.0

HS þ some college 30 007 16.1 13 378 12.9

� Bachelor’s 18 386 18.9 10 597 16.8

Rurality

Rural 20 980 18.7 10 099 15.6

Suburban/Urban 33 870 15.5 17 290 13.0

Low age group (< 12 in pediatric sites, < 35 in adult sites), high age group

(� 12 in pediatric sites, � 35 in adult sites), AI/AN ¼ American Indian/Alaska

Native, NH/PI ¼ Native Hawaiian/Pacific Islander, HS ¼ high school.
aResponse rates from pediatric sites correspond to the parent/guardian of

children with the associated demographic characteristic.

Table 4. Sampling frequencies and entropy estimates by sampling

method and by population using EHRþUSC data. Observed sam-

ple (Nsample) and strata frequencies (nstrata) are provided along with

maximum entropy (Hmax), entropy under random sampling (RS,

HRS), maximum entropy sampling (MES, HMES), and the percent-

age of maximum entropy accounted for by the MES sample above

and beyond that of random sampling

Nsample nstrata Hmax HRS HMES

(HMES- HRS) /

(Hmax- HRS)

Population

Adult 58 500 262 8.03 4.39 7.35 0.81

Pediatric 31 500 251 7.97 5.16 7.18 0.72
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Overall, the degree of sample enrichment is dependent on the ac-

curacy of the auxiliary data sources (eg, EHR and/or USC data). We

observed that using EHR and possibly USC data to identify demo-

graphic subgroups may be a reasonable approach for common sub-

groups (African American race, gender, non-Hispanic ethnicity);

however, the smaller subgroups with very low prevalences (Ameri-

can Indian/Alaska Native race, Hispanic ethnicity) are often misclas-

sified, and caution should be taken when using either EHR or USC

data for their identification.

The use of USC data to impute missing race and ethnicity repre-

sents a tradeoff between sampling frame coverage and enrichment

of the observed sample. Creating a sampling frame based only on

EHR data yields relatively high accuracy (and therefore higher en-

richment) at the cost of a sampling frame that does not cover those

with missing EHR data. In contrast, imputing missing EHR data

with USC data permits greater sampling frame coverage at the cost

of lower accuracy/enrichment. We highlight again that to be in-

cluded in the sampling frame, we required non-missing age and gen-

der in the EHR data but permitted missing values for race and

ethnicity that were imputed with USC data.

DISCUSSION

This paper outlines a complex survey design that utilized both EHR

and USC data to define the sampling strata and introduced an algo-

rithm that sought to enrich the final sample with individuals from

rare subpopulations. In our sample, we observed substantial enrich-

ment from subpopulations that would not have been observed had a

standard random sampling scheme been used. There were several

challenges with implementing such a design in this setting, which in-

clude: incomplete and inaccurate EHR data, misclassification due to

imputing missing EHR data with USC data, the targeting sampling

to sparse sampling strata, and, ultimately, induced complexities-

associated design-based analyses.

Limitations
The drawbacks of using EHR data for secondary research have been

well documented.17,18 As these data are not primarily collected for

research purposes, their content and quality may vary by institution.

The lack of universally accepted EHR criteria, except for the

minimal criteria set by HITECH, may result in these data being

Table 6. Accuracy measures among CERC survey respondents from the adult sites (N¼ 9, 185). Frequencies (Nc) and prevalence estimates

(P) were computed using self-reported data, and accuracy measures (Se, Sp, PPV, NPV)a were computed by comparing self-reported data

(ie, gold-standard) to the EHR and/or USC-derived data. These summaries are also presented by the data source used to define the sam-

pling strata (EHR, USC, or combined)b

Data Source Used to Define Sampling Strata (Adult Respondents, N¼ 9185)

EHR data Only USC data Only EHR and USC data (combined)

Nc p Se/Sp PPV/NPV Nc p Se/Sp PPV/NPV Nc p Se/Sp PPV/NPV

Age

< 35 years 2211 24.8 99/97 91/100 – – – – 2211 24.8 99/97 91/100

� 35 years 6690 75.2 97/99 100/91 – – – – 6690 75.2 97/99 100/91

Gender

Female 5042 56.0 97/98 99/97 – – – – 5042 56.0 97/98 99/97

Male 3969 44.0 98/97 97/99 – – – – 3969 44.0 98/97 97/99

Race

White 4210 48.5 78/92 90/82 142 53.2 62/51 59/54 4352 48.7 77/91 89/81

African American 989 11.4 94/97 79/99 15 5.6 60/82 17/97 1004 11.2 93/96 76/99

Asian 1440 16.6 85/96 83/97 10 3.7 70/93 28/99 1450 16.2 85/96 82/97

AI/AN 240 2.8 82/94 30/100 2 0.7 50/100 100/100 242 2.7 82/95 30/100

NH/PI 103 1.2 71/97 21/100 0 0 �/100 �/� 103 1.2 71/97 21/100

Other 1692 19.5 35/88 42/85 98 36.7 10/83 26/62 1790 20.0 33/88 42/84

Ethnicity

Not Hispanic /Latino 6697 80.8 90/89 97/69 495 85.5 64/73 93/26 7192 81.1 89/88 97/65

Hispanic /Latino 1594 19.2 89/90 69/97 84 14.5 73/64 26/93 1678 18.9 88/89 65/97

Education

< HS – – – – 670 7.6 21/91 17/93 670 7.6 21/91 17/93

HS þ some college – – – – 3415 38.9 66/57 49/72 3415 38.9 66/57 49/72

� Bachelor’s – – – – 4684 53.4 52/78 73/59 4684 53.4 52/78 73/59

Ruralityc

Rural – – – – 3919 42.7 – – 3919 42.7 – –

Suburban/Urban – – – – 5266 57.3 – – 5266 57.3 – –

Nc ¼ number who completed the survey item, Se ¼ sensitivity, Sp ¼ specificity, PPV ¼ positive predicted value, NPV ¼ negative predictive value, AI/AN ¼
American Indian/Alaska Native, NH/PI ¼ Native Hawaiian/Pacific Islander, HS ¼ high school.

a

Accuracy measures are based on the subset of respondents who provided self-reported data (ie, those who complete the demographic questionnaire item of in-

terest). For example, 284¼ 9185—2211—6690 respondents did not complete the survey item related to age.
b

To define sampling strata, age and gender were based on EHR data for all, as availability of both in the EHR was an inclusion criterion, and education and ru-

rality were based on USC data for all. For race and ethnicity, data presented in the USC Only column correspond to the subset of survey respondents who did not

have race and/or ethnicity data recorded in the EHR. For this subset, USC data were used to define their sampling strata.
c

Accuracy estimates were not calculated for rural living, as the true value is based on the address and not on a participant response.
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insufficient to address certain research questions. In the primary

results paper for our study, EHR data were used to define the sam-

pling frame but were not used for primary study analyses.19 Further

research is needed to quantify effects of measurement error (or mis-

classification) on stratification variables, especially because EHR

data are seldom complete and are often mismeasured (eg, EHR race,

Table 5).20–22

Usage of USC data to impute missing EHR data introduces an

additional level of complexity regarding the safeguarding of partici-

pants’ personal health information. Census identifiers are not typi-

cally stored within an institution’s EHR, and thus physical addresses

need to be geocoded to link EHR and USC data. Among the 11

eMERGE sites, 7 geocoded their own addresses, indicating that the

infrastructure (eg, software, expertise) to generate these identifiers is

available at most academic medical centers.

The overall response rate in this study may have been influenced

by the oversampling of subgroups that are less inclined to participate

in biomedical research. If sampling strata frequencies are related to

willingness to respond, then this enrichment approach may result in

a lower than expected response rate (eg, �17% in the eMERGE sur-

vey). An alternative study design would decrease the number of sub-

jects sampled while increasing resources towards ensuring that those

who were sampled answered the survey. However, at the onset of

the study, we determined that such a design was impractical across

the 11 participating institutions.

Finally, the accuracy of the stratification variables, especially

those based solely on USC data (eg, education), may have been af-

fected by the content of the survey and one’s willingness to partici-

pate in biomedical research. For example, those individuals who

were misclassified as having low education, such as those with hav-

ing at least a bachelor’s degree, may be more likely to respond

resulting in biased accuracy estimates.

CONCLUSION

We have outlined an approach that increases the diversity of a sam-

ple by oversampling those subjects who belong to rarer sampling

strata. The magnitude of sample enrichment depends on the accu-

racy of the data used to define the sampling strata as well as the

overall response rate. Thus, additional resources may be required to

ensure that these variables are correctly enumerated and that sam-

pled subjects complete the questionnaire. This approach may be es-

pecially well suited for health disparities research or other endeavors

in which it is of interest to elicit information from vulnerable or

understudied populations.
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