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Abstract

More than 15 years have elapsed since the identification of PLCzeta 1 (PLCζ) from a genomic 

search for mouse testis/sperm specific PLCs. This molecule was proposed to represent the sperm 

factor responsible for the initiation of calcium (Ca2+) oscillations required for egg activation and 

embryo development in mammals. Supporting evidence for this role emerged from studies 

documenting its expression in all mammals and other vertebrate species, the physiological Ca2+ 

rises induced by injection of its mRNA into mammalian and non-mammalian oocytes, and the lack 

of expression in infertile males that fail ICSI. In the last year, genetic animal models have added 

support to its role as the long sought-after sperm factor. In this review, we highlight the findings 

that demonstrated the role of Ca2+ as the universal signal of egg activation and the experimental 

buildup that culminated with the identification of PLCζ as the soluble sperm factor. We also 

discuss the structural-functional properties that make PLCζ especially suited to evoke oscillations 

in eggs. Lastly, we examine unresolved aspects of the function and regulation of PLCζ and 

whether or not it is the only sperm factor in mammalian sperm.
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Introduction:

The question of how “animals come into being” has puzzled humans for thousands of years. 

While many alternative ideas were put forth, it was not until the identification of the 

gametes, during a two-hundred year stretch between the 17th and 19th centuries, that 

experimental evidence led to the discovery that the spermatozoon, the male gamete, enters 

the egg, the female gamete, to generate an embryo. Fertilization was first observed in species 

with external fertilization in which the process can be replicated under natural conditions, 
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such as frogs, by Newport (Newport, 1853), and later in sea urchin and starfish, by Hertwig 

(Hertwig, 1876) and Fol (Fol, 1877). In contrast, in mammals the first direct observation of 

fertilization had to wait for nearly 80 years until M.C. Chang (Chang, 1959) developed the 

conditions that allowed successful in vitro fertilization (IVF), which was first accomplished 

in the rabbit model. These and subsequent studies documented the process of fertilization in 

a wide range of species and highlighted the complementary roles of gametes in the 

formation of a new organism. Nevertheless, these studies did not address the mechanism by 

which fertilization induces egg activation and initiation of development.

Jacques Loeb performed extensive studies in invertebrate species to address the question of 

how the sperm activates development during fertilization (1913) (Loeb, 1913). He 

recognized early on the dual function of the male gamete: “The spermatozoon has two kinds 
of effects upon the egg: in the first place, it induces development by promoting cell 
divisions, and secondly it transmits the paternal characters to the developing embryo.” As 

initially defined by Hertwig, fertilization represented the union of sperm and egg nuclei 

(Hertwig, 1876). This definition did not take into account the first premise of Loeb’s dictum, 

and it was quickly proven wrong by Boveri who found that embryo development was still 

possible if eggs deprived of their nuclear contents were fertilized (Boveri, 1889). Boveri’s 

proposed hypothesis, a crucial role for centrosomes as the initiators of development was also 

inaccurate, although it highlighted the two separate functions of the sperm (Loeb, 1913). 

After a long series of studies it was Loeb himself who conceived the notion that “ions” are 

responsible for the activation of development. While this observation highlighted the pivotal 

role of ions as the “signal” that drives the activation program, it ignored the mechanism(s) 

engaged by the sperm to promote their intracellular increase in eggs, which can be as simple 

as promoting plasma membrane voltage changes to allow activation of voltage-dependent 

channels (Jaffe, 1979) to co-opting the egg’s signaling machinery to induce repeated and 

sustained responses (Saunders et al., 2002). Continuing in this vein, Loeb noted, “nothing 
would more clearly demonstrate the sovereign role that electrolytes play in the phenomena 
of life than by causing, if possible, with this help unfertilized eggs to develop into larvae”. 

He experimented with a variety of ions and stimuli, and concluded that “The spermatozoon 
causes membrane formation [vitelline membrane elevation, for his work was on sea urchin 
eggs] by a substance which is comparatively soluble in the egg; in addition to this 
membrane-forming substance the spermatozoon carries a second substance into the egg 
which prevents the disintegration, which follows after mere membrane formation”. These 

hypotheses offered an ample framework for future research, and proved to be correct 

regarding the role of ions in egg activation as well as initiating the long search for the sperm 

substance responsible for embryo development in mammals, the so-called “sperm factor”.

Ca2+ is the common signal of egg activation

Despite extensive studies with a variety of salts and conditions, it was unclear what 

intracellular ionic change was responsible for the initiation of embryo development. Loeb 

was aware of Ringer’s studies on muscle cells and the effect of Ca2+ salts on inducing 

rhythmic contractions, as he had performed several studies on the topic. However, it was left 

to Lewis V. Heilbrunn to surmise that the activation of eggs of the marine worm Nereis sp 
that occurred following exposure to different physical and chemical conditions was due to 
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increases in the levels of Ca2+ in the egg (Heilbrunn, 1937). The role of Ca2+ was further 

supported by Dan Mazia’s observation that an increase in the total intracellular 

concentration of Ca2+ was evident soon after fertilization in ultrafiltrates of egg 

homogenates of the sea urchin Arbacia sp (Mazia, 1937). Subsequently, several researchers 

showed that eggs could be activated in the absence of sperm simply by exposing them to 

Ca2+-containing solutions, or by inducing membrane disturbances but only in the presence 

of media containing Ca2+ (Yamamoto, 1954). These results were followed by the 

demonstration that divalent cation-transporting antibiotic ionophores induced all events of 

egg activation in echinoderm eggs (Steinhardt and Epel, 1974). It was shown that Ca2+ 

ionophores were capable of inducing egg activation independently of the divalent cation 

concentration of the extracellular media, which confirmed that increases in the intracellular 

concentration of Ca2+, but not of Mg2+, were responsible for inducing activation (Steinhardt 

and Epel, 1974). Exposure to these Ca2+ ionophores also activated eggs of other species 

including mammals (Steinhardt et al., 1974). Concomitant with the realization that changes 

in Ca2+ were an important cell signal, fluorescent probes were being developed to precisely 

measure changes in the intracellular concentration of ions. One of the first applications of 

this technology using the Ca2+-specific bioluminescent protein aequorin was the 

documentation of Ca2+ increases during fertilization in eggs of the medaka Oryzias latipes 
(Ridgway et al., 1977). A similar approach was used to demonstrate Ca2+ responses in sea 

urchin eggs (Steinhardt et al., 1977) and a few years later in mammals (Cuthbertson et al., 

1981). Contemporary studies in mammals using electrophysiology confirmed the increases 

in intracellular Ca2+, and provided additional evidence regarding the oscillatory nature of the 

responses in this animal group (Igusa et al., 1983; Miyazaki and Igusa, 1981). The 

development of fluorescent Ca2+-sensitive dyes to measure intracellular Ca2+ changes 

facilitated and expanded the study of Ca2+ homeostasis in all cell types and in response to a 

variety of stimuli (Miyazaki and Ito, 2006). In mammalian eggs, those studies confirmed 

that sperm entry causes initiation of persistent Ca2+ oscillations, which last for at least 4 

hours in rodents, the mammalian sub-group with the shortest cell-cycle duration, and more 

than 8 hours in larger mammals (Miyazaki and Ito, 2006) (Figure 1). Human eggs are not an 

exception, and the first demonstration of Ca2+ oscillations following fertilization in this 

species was reported using discarded IVF eggs (Taylor et al., 1993). Subsequent studies also 

showed that fertilization by intracytoplasmic sperm injection (ICSI), a technique used in the 

clinic to overcome certain types of male infertility, induced persistent Ca2+ oscillations with 

an overall pattern similar to that of natural fertilization, although with some differences such 

as delayed time to initiation of the first rise, which also unfolded with an altered 

spatiotemporal pattern (Nakano et al., 1997; Tesarik and Sousa, 1994). In summary, as a 

corollary to these studies a consensus emerged that Ca2+ oscillations induced by fertilization 

represent the egg-activating signal in mammals. This review will analyze the studies that 

conceptualized the mechanisms whereby the sperm induce Ca2+ oscillations, the molecules 

that emerged from these studies as candidate “sperm factors”, their active domains and their 

possible mechanism of action. We will also discuss recent findings that emerged from 

analysis of infertile human males that fail ICSI as well as from more recent genetic studies 

in the mouse. Finally, we will discuss some of the unanswered questions and the clinical 

applications that have surfaced from the discoveries in this field.
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Hypotheses for how Ca2+ responses are initiated during fertilization

Once the role of Ca2+ as the universal ionic signal of egg activation was settled, researchers 

examined the possible mechanism(s) whereby the sperm might trigger Ca2+ release during 

fertilization. L.F. Jaffe first reviewed the available information and put forth a hypothesis 

(Jaffe, 1983). This study was largely based on the observation at the time in somatic cells 

that Ca2+ rises precede exocytosis (Rubin, 1982). The review analyzed the morphological 

changes caused by the wave of cortical granule exocytosis including the elevation of the 

vitelline membrane triggered by sperm entry as an overall proxy indicator for Ca2+ 

increases. It was proposed that in eggs of deuterostome species, which range from 

echinoderms to vertebrates, the fertilization Ca2+ signal occurred in a wave-like fashion and 

relied on Ca2+ release from internal stores, whereas in protostome eggs that did not display 

wave-like changes, the Ca2+ signal was underpinned by synchronized Ca2+ influx from the 

extracellular milieu. Although some of the conclusions of the review were inaccurate, for 

instance some protostome eggs display Ca2+ oscillations and rely both on Ca2+ influx and 

internal release of Ca2+, it highlighted two important aspects of the fertilization Ca2+ signal. 

First, it noted the regenerative nature of the Ca2+ rise, aptly called a “travelling explosion”, 

which we now know represents calcium induced-calcium release (CICR) (Bezprozvanny et 

al., 1991; Parker and Yao, 1996). During mammalian fertilization, it is also now known that 

CICR is largely dependent on the enhanced function of the inositol-1, 4, 5-trisphosphate 

receptor (IP3R1) (Miyazaki et al., 1992). Second, it pointed to the presence of specialized 

compartments of the endoplasmic reticulum (ER), deduced from previous studies in muscle 

cells (Fabiato and Fabiato, 1979), as the possible source of internal Ca2+. Subsequent studies 

confirmed the ER as the source of most of the Ca2+ release at fertilization (Gardiner and 

Grey, 1983). While this review turned out to be a classification of the source of Ca2+ 

required for the initial Ca2+ release at fertilization, it set the scene for the field to analyze the 

different theories about the mechanism(s) that triggered the release of intracellular Ca2+.

The Ca2+ bomb or conduit hypothesis

This model was based on the idea that the sperm introduces a bolus of Ca2+ during gamete 

fusion (Jaffe, 1983, 1991). This hypothesis was later modified to incorporate the suggestion 

that channels on the surface of the sperm membranes act as a conduit for Ca2+ entry from 

the extracellular media, with this Ca2+ then triggering CICR within the egg (Jaffe, 1991). 

However, a number of findings have undermined the validity of this model. For instance, 

injection of Ca2+ into sea urchin and ascidian eggs failed to induce further Ca2+ release 

(Swann and Whitaker, 1986). In mammals, a variety of methods were also used to increase 

intracellular Ca2+ levels and, without exception, this approach failed to induce oscillations 

(Ozil and Swann, 1995), although, in hamster eggs, it caused a single regenerative Ca2+ 

increase (Miyazaki et al., 1992). Further, timed imaging at the time of fertilization in the 

mouse failed to note an increase in the local cytoplasmic Ca2+ concentration at the site of 

gamete fusion, which would be expected if the sperm acted as a Ca2+ conduit (Jones et al., 

1998). It cannot be discounted however that localized Ca2+ elevations failed to be picked up 

by the imaging methodologies employed, although given their modest magnitude it is 

doubtful they could have induced oscillations and activation. Remarkably, a recent study in 

C. elegans using high-speed in vivo imaging showed that sperm induces a rapid local Ca2+ 
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rise that is followed by a Ca2+ wave. A TRP-3 channel, which is a sperm protein, is required 

for this local Ca2+ rise, which while detectable is not required for embryogenesis (Takayama 

and Onami, 2016). Collectively, research shows that in unfertilized mammalian eggs a bolus 

Ca2+ increase cannot act as a trigger of persistent oscillations, which is the hallmark of 

mammalian fertilization, although it may accelerate the initiation of the fertilization wave in 

a limited number of species.

The sperm-egg surface interaction hypothesis

This was the dominant hypothesis for many years. It proposed that egg activation is 

triggered by an interaction between a ligand associated with the sperm and a receptor on the 

egg (Evans and Kopf, 1998; Jaffe, 1990; Schultz and Kopf, 1995). One attractive feature of 

such a mechanism is that surface-mediated interactions are a normal feature of cell signaling 

in somatic cells. It also relied on demonstrations of functional expression of molecules 

associated with plasma membrane receptor signaling such as those linked to guanine 

nucleotide-binding protein (G-protein)-coupled receptors (GPCRs) or tyrosine kinase 

receptors. For example, injection of activators of heterotrimeric G-proteins as well as 

expression of exogenous GPCR receptors followed by addition of specific ligands induced 

Ca2+ responses in eggs of several species, suggesting a role for an egg phospholipase C beta 

during fertilization (PLCβ) (Miyazaki, 1988; Williams et al., 1998; Yim et al., 1994). 

Further, studies in echinoderms and other animals implicated a role for an egg PLCγ in the 

egg activation process (Shearer et al., 1999). For instance, injection of dominant negative 

PLCγ SH2 domains into ascidian and echinoderm eggs inhibited Ca2+ release at 

fertilization, suggesting that PLCγ activates the IP3 pathway in the egg of such invertebrates 

(Carroll et al., 1997; Giusti et al., 1999). There is also evidence for a role of PLCγ in frog 

eggs, as PLCγ associates with the Src family kinase (SFK) known as Xyk and becomes 

tyrosine phosphorylated shortly after fertilization (Sato et al., 2000). However what remains 

far less clear is whether the activation of PLCγ is the consequence of a surface-mediated 

interaction between a sperm ligand and an egg receptor. In addition, attempts to identify a 

role for either an egg PLCβ or PLCγ during egg activation in mammals have not been 

successful. For instance, injection of PLCγ SH2 domains into vertebrate eggs, including 

frogs and mammals, had no inhibitory effect on Ca2+ release and oscillations (Mehlmann et 

al., 1998; Runft et al., 1999), and neither did an antibody that blocked the Gq family of G-

proteins (Williams et al., 1998). It is worth noting that activation of SFKs and their 

downstream signaling cascade have been recently shown to play a role in mammalian 

fertilization, but at later stages, including the incorporation of sperm (Wang et al., 2017). 

Therefore, whereas the signaling machinery to initiate Ca2+ responses associated with 

plasma membrane receptors is expressed in mammalian eggs and can be engaged by a 

variety of approaches, the resulting oscillations in mammals do not resemble those induced 

by the sperm (Miyazaki, 1988). Further, it is hard to imagine how the brief encounter 

between the sperm and the oolema during mammalian fertilization can be leveraged to 

support Ca2+ oscillations that last for hours in this species.
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The soluble sperm factor hypothesis

Building on the original proposal of Jacques Loeb mentioned above, the ‘soluble sperm 

factor’ hypothesis proposed that the sperm contains a soluble factor that, upon gamete 

fusion, enters the egg, and triggers Ca2+ release from intracellular stores. In line with this 

notion, in 1985 Brian Dale showed that injection of a sea urchin sperm extract induced egg 

activation (Dale et al., 1985). A later study identified a similar putative egg activating factor 

in ascidian sperm (Dale, 1988). However, it was not clear from these studies whether the 

activating stimulus was a protein or a small molecular weight Ca2+-mobilizing messenger, or 

even Ca2+ itself, and the identity of the stimulus was not pursued further. Eventually these 

sperm activities were tested in mammals. The first evidence that a soluble sperm protein 

triggered the Ca2+ oscillations that induce embryo development in mammals was provided 

by Karl Swann, who injected sperm cytosolic extracts into mammalian eggs and showed that 

it triggered Ca2+ oscillations that were very similar to those seen at fertilization (Swann, 

1990). Moreover, this physiological stimulus induced all the subsequent molecular events of 

egg activation (Stice and Robl, 1990; Swann, 1990). Analysis showed that the factor was 

apparently some sort of protein (Swann, 1990; Wu et al., 1997). Meanwhile, indirect 

evidence for the soluble sperm factor hypothesis in mammals already existed in the 

literature, as studies that preceded the advent of ICSI for decades, and involving injection of 

sperm into the ooplasm without obvious activation of plasma membrane receptors, resulted 

in egg activation and embryo cleavage in experimental animals (Uehara and Yanagimachi, 

1976; Yanagida et al., 1991). This method was later perfected and extensively applied in 

fertility clinics where it has since been shown to overcome some cases of human male 

infertility (Palermo et al., 1992). Subsequent studies showed that ICSI induces Ca2+ 

oscillations in eggs with a similar pattern to those initiated by the sperm after IVF, albeit 

with differences in the timing of initiation of oscillations and the propagation of the first rise 

(Nakano et al., 1997; Tesarik and Souza, 1994). Therefore, these results were compatible 

with the idea that a soluble sperm factor was being released into the egg after fertilization. 

These findings were also hard to reconcile with the idea that an interaction between the 

oolema and the sperm could serve as the trigger of Ca2+ oscillations, since such an 

interaction is bypassed in ICSI. Despite these pieces of evidence, the soluble sperm factor 

hypothesis remained unpopular partly because it was far from clear how a protein in the 

sperm could induce Ca2+ release in an egg that is a thousand times bigger, in volume terms, 

than the sperm. In addition, the molecular identity of the sperm factor remained unclear for 

many years, with various candidates being proposed, but then failing to match the expected 

properties of the physiological agent of egg activation.

The first proposed candidate for the soluble sperm factor was a protein called 

glucosamine-6-phosphate deaminase that was identified as the primary component of a 

purified sperm extract that triggered Ca2+ oscillations in eggs (Parrington et al., 1996). This 

protein was also appropriately nicknamed “oscillin.” However, a recombinant version of this 

protein failed to trigger Ca2+ release when injected into the egg (Wolosker et al., 1998). 

Moreover, immunodepletion of glucosamine-6-phosphate deaminase from sperm extracts 

failed to abolish their ability to induce Ca2+ oscillations when injected into the egg (Wolny 

et al., 1999). It was therefore soon realized that oscillin did not meet the basic criteria to be 
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the sperm factor, and presumably, the purified sperm extract that contained this protein, must 

also have contained another protein that was not identified – the bona fide sperm factor.

Another sperm factor candidate was tr-kit, which is a truncated version of the c-kit tyrosine 

kinase receptor. tr-kit has been shown to accumulate during the late stage of mouse 

spermatogenesis and localize to the residual sperm cytoplasm with maximal accumulation in 

the midpiece of the flagellum (Sette et al., 1997). Expression of Tr-kit mRNA in mouse eggs 

was shown to induce egg activation, which required association with the egg’s SFK Fyn 

kinase and activation of PLCγ (Sette et al., 2002). In human sperm, TR-KIT localizes to the 

equatorial region of the sperm head where it persists even after the acrosome reaction; its 

expression was associated with sperm of higher quality (Muciaccia et al., 2010). 

Nevertheless, Ca2+ responses, which are a hallmark of mammalian fertilization, were not 

detected in mouse eggs after injection of Tr-kit mRNA. Therefore, the role of tr-kit in 

mammalian fertilization is presently unknown, although it cannot be discounted that it plays 

a role in other functions of the sperm and/or affects its quality.

Logically, since PLCs are directly responsible for the production of IP3, which underlies the 

Ca2+ oscillations of fertilization (Jellerette et al., 2000; Miyazaki et al., 1992), they were 

potential sperm factor candidates. In fact it was a study of the Ca2+-releasing properties of 

mammalian sperm extracts using the cell-free sea urchin egg homogenate assay, that first 

suggested that the sperm factor might be a PLC (Jones et al., 1998). A further study 

indicated that mammalian sperm contained a PLC activity that correlated with ability to 

induce Ca2+ oscillations in mouse eggs following chromatographic fractionation (Parrington 

et al., 1999). Moreover, this PLC activity was only detected in testis and sperm and not in 

other tissues (Jones et al., 2000). Multiple PLC isoforms are expressed in sperm (Fukami et 

al., 2001; Parrington et al., 2002), and in vitro PLC assays demonstrated that the PLC 

activity present in sperm extracts is sensitive to the environmental Ca2+ concentrations 

prevailing in the cell, unlike other PLCs that require higher Ca2+ concentrations (Jones et al., 

2000; Rice et al., 2000). Importantly, given the mentioned disparity in size between eggs and 

sperm, and the demonstration that expression in eggs of PLCs found in sperm failed to 

induce oscillations or caused it at non-physiological concentrations (Jones et al., 2000; 

Mehlmann et al., 1998), it became apparent that if the sperm factor was a PLC, it would 

have to be sperm-specific PLC(s) whose activity is differentially regulated under the 

prevailing condition of the ooplasm. In line with this, a survey of known PLCβ, γ, and δ 
isoforms failed to find evidence that any of these possessed the ability to induce the 

characteristic Ca2+ oscillations seen at fertilization in eggs (Parrington et al., 2002).

Subsequently, a genomic search for testis/sperm specific PLCs led to the discovery of a 

novel sperm-specific PLC, PLCζ, first reported in the mouse and then in other mammals 

(Cox et al., 2002; Saunders et al., 2002). As expected for a member of the PLC family, 

PLCζ shared many of its structural organization with other PLC isozymes except that it 

lacked the N-terminal pleckstrin homology (PH) domain (Cox et al., 2002; Saunders et al., 

2002). Besides its specific expression in the sperm, PLCζ showed a series of unique features 

that made it an attractive candidate to be the sperm factor. First, injection of PLCζ mRNA 

into mouse eggs triggered fertilization-like Ca2+ oscillations, whereas injection of PLCδ1 
mRNA at the same pipette concentrations failed to do so (Cox et al., 2002; Saunders et al., 
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2002). Second, depletion of PLCζ from hamster and porcine sperm extracts with specific 

antibodies largely removed their PLC activity and the ability of these extracts to initiate 

Ca2+ oscillations in eggs (Kurokawa et al., 2005; Saunders et al., 2002). Third, the ~70kDa 

molecular weight of PLCζ is within the 30–70 kDa range originally associated with the 

active fractions following chromatographic fractionation of the sperm extracts (Wu et al., 

1997). Finally, immunofluorescence studies revealed that the protein was mostly located in 

the equatorial/post-acrosomal region of the human sperm head (Grasa et al., 2008; Yoon et 

al., 2012; Yoon et al., 2008; Young et al., 2009), which is the area that first undergoes fusion 

with the egg, consistent with a role in triggering Ca2+ release following sperm fusion with 

the egg (Figure 2). In support of this, EM experiments showed that PLCζ is located on the 

perinuclear theca facing the acrosome and likely associated with the inner acrosomal 

membrane (Escoffier et al., 2015). Remarkably, the distal part of the acrosome remains 

relatively unaltered during the acrosome reaction in humans (Zanetti and Mayorga, 2009), a 

location that preserves PLCζ from the acrosome reaction (Figure 2). Therefore, PLCζ has 

emerged as the strongest candidate to date for the sperm factor and extensive structural-

functional studies ensued.

Structural and functional studies of PLCζ

An important way of studying the mechanism of action of a protein is to investigate how its 

structure relates to its function. Extensive structure-function analysis of PLCζ has been 

carried out on this protein since its discovery in 2002. Like other PLCs (β, γ, δ, ε, η), PLCζ 
has a basic domain structure consisting of four EF hands, an X and Y catalytic domain, and 

a C2 domain (Figure 3). A key feature of PLCζ that allows it to be enzymatically highly 

active in mammalian eggs relative to other PLCs is its uniquely enhanced Ca2+ sensitivity 

(Rice et al., 2000); PLCζ is ~100-fold more sensitive to Ca2+ compared to PLδ1, possessing 

a half-maximal PLC activity (EC50) of ~80 nM, very close to the reported resting Ca2+ 

concentration in mammalian eggs of ~120 nM (Kouchi et al., 2004). This Ca2+ sensitivity of 

PLCζ appears to be largely due to its EF hand region. Thus, deletion of the four EF-hand 

domains dramatically increases the EC50 from 80 nM to 30 mM (Kouchi et al., 2005; 

Nomikos et al., 2005). In addition, replacement of PLCζ’s EF-hands with those from PLCδ1 

results in a 10-fold decrease in the Ca2+ sensitivity of PLCζ without affecting its enzymatic 

activity. Deletion of EF1 and EF2 has limited impact on the EC50 of PLCζ (EC50~100 nM) 

but it negatively affects the ability of the modified enzyme to induce Ca2+ oscillations in 

eggs (Kouchi et al., 2005), suggesting that EF hand domains also modulate PLCζ’s 

interaction with its lipidic substrates. The 3D structure of PLCζ indicates (see Figure 3) that 

EF-hands are in close contact with the C2 domain, suggesting that their association is crucial 

for the ability of PLCζ to interact/process PIP2 (Nomikos et al., 2015).

The X and Y domains are the catalytic domains of PLCζ and, as expected, mutagenesis of 

conserved active site residues within them leads to loss of enzymatic activity and inability of 

the protein to induce Ca2+ release in mammalian eggs (Nomikos et al., 2011b). In all PLC 

isoforms, a discrete region known as the XY linker separates the X and Y domains, and the 

XY linker of PLCζ contains a distinctive cluster of basic amino acid residues that are not 

found in the XY-linker regions of other PLCs. Interestingly, the XY linker sequence is the 

least conserved region of PLCζ between different species (Nomikos et al., 2013). The 
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diversity of this sequence may account for some of the species-specific differences in the 

pattern of Ca2+ oscillations triggered by PLCζ proteins of different mammalian species as 

well as for the varying relative potencies of these proteins in triggering cytosolic Ca2+ 

oscillations in eggs.

The C2 domain comprises ~120 amino acid residues that form an eight-stranded antiparallel 

β-sandwich common to all C2 domains already described (Essen et al., 1996; Sutton et al., 

1995). The C2 domain plays an important role in Ca2+-dependent subcellular membrane 

targeting in a variety of lipid-metabolizing enzymes (Clark et al., 1991). Consistent with 

this, in vitro studies have shown that the C2 domain of PLCζ binds to membrane 

phospholipids such as phosphatidylinositol 3-phosphate (PI3P) and phosphatidylinositol 5-

phosphate (PI5P) (Kouchi et al., 2005). Further, deletion of the C2 domain or its substitution 

with the corresponding domain of PLCδ1 abolishes the ability of PLCζ to induce Ca2+ 

oscillations in intact eggs without affecting its ability to hydrolyze PIP2 (Nomikos et al., 

2005). A cationic patch in the concave face of the β-sandwich that corresponds to strands 

β3- and β4 and the highly variable loops between β-strands have already been characterized 

to be important for lipid binding in other C2-domain bearing proteins (Corbalan-Garcia and 

Gomez-Fernandez, 2014). However, the sequence conservation among C2 domains is low 

and a significant number of C2 domains with little to no Ca2+ affinity have been identified, 

which is the case for the C2 domain of PLCζ (Corbalan-Garcia and Gomez-Fernandez, 

2014; Guillen et al., 2013). Therefore, further studies are required to determine the binding 

sites and the physiological significance of the interactions of PLCζ with PI3P and PI5P, and 

to identify other potential molecular partners of the C2 domain that might regulate the 

function of PLCζ within the egg (Nomikos et al., 2017).

A big initial surprise when PLCζ was first identified was that it lacks a PH domain, a 

characteristic feature of other PLCs and of many other proteins. The main function of the PH 

domain is to facilitate the binding of PLCs to biological membranes to allow access to the 

membrane-bound substrate, PIP2. This raised the question of how PLCζ could bind PIP2 

without a PH domain. Subsequent studies have shown that PLCζ is able to target the 

membrane(s) where the PIP2 substrate resides by an electrostatic interaction between the 

positively charged N-terminal lobe of the EF-hand domain and the basic amino acids on the 

C-terminal end of the XY-linker region with the negatively charged PIP2 (Nomikos et al., 

2011b; Nomikos et al., 2015). Moreover, the EF hand domain of PLCζ has strong 

intramolecular interactions with the C2 domain, and disturbing them may affect the function 

of PLCζ, which may explain the infertility caused in humans by the naturally occurring 

Ile489Phe mutation. This mutation is located within the β1-strand of the C2 domain and is 

sufficient to disrupt the C2-EF hand domain interactions, possibly hindering the interactions 

of PLCζ with its lipidic targets/substrates (Escoffier et al., 2016). The absence of the PH 

domain may also explain why PLCζ appears to bind PIP2 located in intracellular 

membranes, as surmised by expression of a fluorescently–tagged PLCζ that attains a diffuse 

distribution in eggs, unlike the distribution observed following expression of other members 

of the PLC family, which show a clear association to the plasma membrane where most of 

the cellular PIP2 is found (Sanders et al., 2018; Yu et al., 2012).
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Finally, the mouse PLCζ XY-linker region contains a predicted nuclear localization signal 

(NLS) sequence. Indicating a functional role for this signal, substitution of basic for acidic 

residues in the mouse PLCζ NLS led to loss of nuclear translocation ability without 

affecting Ca2+ oscillation-inducing activity, although allowing Ca2+ oscillations to continue 

beyond formation of the pronuclei (Ito et al., 2008; Kuroda et al., 2006). This finding 

suggested that nuclear sequestration might be a mechanism for terminating the Ca2+ 

oscillations at fertilization. However, interestingly, this mechanism is specific only to mouse 

zygotes, as bovine, rat and human PLCζs, which also possess a putative NLS, do not appear 

to undergo nuclear localization (Ito et al., 2008). As such, it currently remains unclear how 

Ca2+ oscillations are terminated in eggs of these and other mammalian species.

Human male infertility and PLCζ

One important piece of evidence in favor of a significant role for PLCζ in the egg activation 

process is the discovery of association between defects in PLCζ expression and/or function, 

and certain types of infertility in men. The use of ICSI has made it possible to treat many 

cases of male factor infertility, especially those caused by severe oligospermia, 

asthenospermia, teratospermia, or a combination of such disorders (Neri et al., 2014). 

However, fertilization failure after ICSI occurs in up to 3% of couples, and certain couples 

never achieve fertilization rates greater than 50%. Notably, nearly 80% of the eggs 

unsuccessfully fertilized by ICSI do not exit the MII stage, suggesting that such failure is 

caused by a defect in egg activation (Flaherty et al., 1998; Flaherty et al., 1995). While egg 

activation failure may be due to a variety of underlying causes, and in some cases defects are 

present in both egg and sperm, studies have shown that the success of ICSI is consistently 

reduced when sperm with certain morphological defects, for instance the round-headed 

sperm characteristic of the globozoospermia condition, are used.

Yoon et al. (2008) first showed that sperm from certain patients that had failed ICSI, with 

some having globozoospermia, and others having sperm of normal morphology, also were 

unable to trigger Ca2+ oscillations and egg activation when injected into mouse eggs (Yoon 

et al., 2008). Analysis of PLCζ expression using immunofluorescence and western blotting 

indicated an absence of PLCζ protein in the sperm of patients who repeatedly failed ICSI 

and who were unable to induce Ca2+ oscillations (Figure 4). Injection of Plcz1 mRNA into 

eggs at the same time as the patients’ sperm triggered Ca2+ oscillations and egg activation, 

suggesting that the egg activation failure was due to a lack of expression of PLCζ, and not 

some defect in the egg’s ability to respond to a PLCζ stimulus (Yoon et al., 2008). Although 

the immunofluorescence and immunoblot data suggested some defect in PLCζ expression, 

analysis of the PLCZ1 gene in these patients failed to identify the molecular basis for such a 

lack of expression. Nevertheless, these results spurred research to understand the loss of 

PLCζ in globozoospermic patients. A significant finding was the discovery of the 

association of the loss of the DPY19L2 gene with human globozoospermia (Harbuz et al., 

2011). These studies were later extended with a corresponding mouse knockout model that 

mimicked the human phenotype (Pierre et al., 2012). These studies showed using EM that 

the lack of Dpy19l2 causes severe morphological head anomalies with disjunction of the 

nuclear envelope and loss of the nuclear theca and consequently of PLCζ during 

spermiogenesis (Escoffier et al., 2015); thus, the late loss of PLCζ results in failure of egg 
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activation in these patients. Genetic analysis of infertile men by Heytens et al. (2009) 

provided the first link between human male infertility and a mutation with a clearly 

debilitating functional effect on the PLCζ protein (Heytens et al., 2009). This study also 

looked at the sperm from a heterogeneous cohort of patients who had failed ICSI some of 

whom displayed globozoospermia and some others with normal sperm morphology. 

Immunoblot and immunofluorescence analysis identified defects both in the pattern of 

localization of PLCζ protein and its expression. In one of these non-globozoospermic 

patients, analysis of the PLCζ gene protein-coding sequence revealed a mutation His398Pro 

(H398P) that was predicted to have detrimental effects on PLCζ protein structure. Moreover, 

injection of a recombinant RNA version of the H398P mutant sequence failed to trigger 

Ca2+ oscillations in mouse eggs (Figure 4). One puzzling aspect of this study was that the 

H398P mutation was heterozygous, so while it should decrease the concentration of wild 

type PLCζ by approximately half, there should still be oscillations and only subfertility. 

However, subsequent analysis of this patient by Kashir et al. (2012) identified a second 

mutation, His233Leu (H233L), and showed that a recombinant PLCζ RNA carrying this 

mutation also failed to trigger Ca2+ oscillations in mouse oocytes (Kashir et al., 2012). 

Analysis of relatives of this patient showed that the H398P mutation had been inherited from 

the patient’s father and the H233L mutation from his mother and thus the patient showed 

compound heterozygosity. The H233L and H398P mutations occur in the X and Y catalytic 

domains of PLCζ. In line with these mutations affecting PLCζ’s catalytic activity, Nomikos 

et al. (2011a) showed that the H398 amino acid is conserved in the mouse sequence and that 

the injection of the mouse equivalent of the human H398P mutant (in mouse H435P) fails to 

trigger Ca2+ oscillations in mouse eggs. Moreover, Nomikos et al. also analyzed the 

enzymatic activity of the mouse PLCζ H435P protein using an in vitro assay of PLC 

activity, and showed the mutant protein to be enzymatically inert, in line with its location 

(and that of the H398P human equivalent) in the catalytic region of the PLCζ protein. 

Interestingly, this histidine is also conserved in PLCδ, further indicating an important 

functional role (Nomikos et al., 2011a).

Most recently, Escoffier et al. (2016) studied two brothers, born from first cousin parents, 

who showed complete fertilization failure after ICSI despite normal sperm morphology 

(Escoffier et al., 2016). Whole exomic sequencing of these two patients’ DNA identified a 

homozygous mutation Ile489Phe (I489F), which occurs within the C2 domain of PLCζ. 

Analysis of a recombinant PLCZ1 containing the I489F mutation showed that it generated 

fewer Ca2+ transients than was the case with a wild type PLCZ1 mRNA when injected into 

mouse eggs. A tagged recombinant PLCζ containing the I489F mutation also showed an 

abnormal pattern of localization in GV and MII eggs, compared to wild type PLCζ. In 

addition, immunofluorescence and immunoblot analysis of sperm from the two patients 

showed an absence of expression of the mutant I489F PLCζ protein, suggesting that the 

mRNA or the protein might be unstable, although this proved not to be the case following 

injection of a tagged version of PLCζ mRNA containing the I489F mutation. Further 

analysis of the mutant I489F PLCζ by Nomikos et al. (2017) showed that the mutant PLCZ1 
mRNA or protein failed to trigger Ca2+ oscillations in mouse eggs at physiological 

concentrations, but could trigger Ca2+oscillations if much higher, non-physiological 

concentrations of the mutant PLCζ protein were injected. In vitro biochemical analysis of 
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the mutant I489F PLCζ protein by Nomikos et al. showed that it had similar enzymatic 

properties to wild-type PLCζ, but dramatically reduced binding to PI3P and PI5P-containing 

liposomes, confirming previous structure-function studies indicating the important role for 

the C2 domain binding to such lipids, which is required to trigger Ca2+ oscillations in the 

egg (Nomikos et al., 2017). This is consistent with modeling predictions that suggested that 

the I489F mutation creates an unusually large hydrophobic area in the C2 domain that might 

compromise the targeting and/or binding of PLCζ to specific substrate(s) (Escoffier et al., 

2016). These studies of the effect of naturally occurring mutations in human PLCζ 
demonstrate their importance, both for identifying the molecular basis of certain types of 

male infertility, and also because they revealed important clues about the structure-function 

relationships of the PLCζ protein.

Escoffier et al (2016) also examined the expression of the protein PAWP in the sperm of 

these two patients. PAWP, which is coded by the WBP2NL gene, has been proposed as an 

alternative candidate for the physiological agent of egg activation (Wu et al., 2007). The 

initial claims were based on the findings that injection of the recombinant protein into eggs 

of several species caused egg activation (Wu et al., 2007). An additional study demonstrated 

that recombinant PAWP induced Ca2+ responses when injected into mouse and human eggs, 

although the shape of the individual rises was greatly abnormal (Aarabi et al., 2014). 

Further, injection of PAWP cRNA into mouse eggs by another group failed to induce Ca2+ 

oscillations (Nomikos et al., 2014; see also below for additional studies on the effects on 

fertility of genetic deletion of Wbp2nl). Consistent with this, analysis by Escoffier et al. of 

the WBP2NL gene failed to identify any mutations of this gene in the two patients. 

Moreover, immunoblot and immunofluorescence analysis of PAWP showed that it had 

normal expression and localization in the sperm of these two patients. Therefore, thus far 

PLCζ remains as the only protein whose presence is required for the initiation of Ca2+ 

oscillations during human fertilization.

Mutant mouse models of PLCζ function

The most definitive way to test the importance of a particular protein in a specific 

physiological process is to use genetic engineering to interfere with the expression of the 

gene coding for that protein in an animal model. Knott et al. (2005) carried out the first 

attempt to block expression of PLCζ using RNA interference (Knott et al., 2005). This study 

generated transgenic mice that expressed a short hairpin RNA (shRNA) targeting PLCζ. 

This led to a partial reduction of expression of PLCζ protein levels (~60% compared to 

controls) in sperm of transgenic males. Sperm from transgenic males were similar in 

number, morphology, and motility to those from control males. When transgenic sperm were 

used in IVF experiments, during which intracellular Ca2+ was monitored in the fertilized 

eggs, subtle differences emerged in the pattern of Ca2+ oscillations compared to controls. In 

addition, eggs fertilized by sperm from transgenic males showed reduced egg activation and 

development to blastocyst. Although transgenic males could produce offspring, genotyping 

of offspring showed no germline transmission of the transgene, suggesting that expression of 

the transgene had inhibited sperm egg activation capacity. Although this study indicated a 

role for PLCζ in egg activation, the partial nature of the gene knockdown left unresolved the 
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issue of whether PLCζ is the physiological trigger of the Ca2+ oscillations that initiate 

embryogenesis in mammals.

A different transgenic approach was taken by Yoshida et al. (2007), who rather than 

knocking down PLCζ expression, created a transgenic mouse in which a PLCζ transgene 

construct was expressed in all cell types in both male and female mice (Yoshida et al., 2007). 

Oocytes from transgenic females underwent unperturbed meiotic maturation to the 

metaphase II stage, but unlike control eggs, these subsequently exhibited autonomous 

intracellular free Ca2+ oscillations, second polar body extrusion, pronucleus formation and 

parthenogenetic development. This finding was in line with a role for PLCζ as the trigger of 

the Ca2+ oscillations at fertilization, but did not address the issue of whether sperm PLCζ is 

the physiological trigger of such Ca2+ oscillations.

To definitively address the issue of PLCζ’s physiological importance during fertilization, a 

full gene knockout (KO) was required. The creation of the first Plcz1 gene KO mice was 

reported by Ito et al. (2010). The authors claimed that in this gene KO expression of PLCζ 
was abolished at the level of both mRNA and protein, as assessed by Northern blot and 

immunoblot, respectively. However, the authors also claimed that spermatogenesis was 

arrested at the round spermatid stage, and as this meant no spermatozoa were formed, this 

made it impossible to test the effect of PLCζ knockout on the capacity of sperm to trigger 

Ca2+ oscillations. It was however difficult to be sure of the validity of these claims since this 

report was only presented as a conference abstract and the findings were not published in a 

peer-reviewed journal. It is worth noting nevertheless that in mammals the genes Plcz1 and 

Capza3, an actin-capping protein controlling actin polymerization during spermiogenesis, 

are located back-to-back in the genome and they appear to contain a common bidirectional 

promoter (Coward et al., 2005). Further, a mutation in the Capza3 gene in mice caused 

severe defects in spermiogenesis and infertility (Geyer et al., 2009), and it is possible that at 

this first attempt of knocking out PLCζ might have also disrupted Capza3 gene expression, 

causing the unexpected spermatogenesis phenotype.

More recently, Hachem et al. (2017) used CRISPR/Cas9 genome editing to generate two 

Plcz1 gene KO lines (Hachem et al., 2017). One of these lines was generated using standard 

Cas9, which makes a double-stranded break in the DNA, and a single guide RNA (sgRNA), 

targeted to exon 5 in the PLCζ gene. The other line was generated using Cas9 nickase, 

which makes a cut in only a single strand of the DNA double helix, and two sgRNAs 

targeted at two sequences close together in exon 3 of the PLCζ gene. This approach was 

employed since Cas9 nickase has been shown to reduce the possibility of off-target effects. 

Both lines were predicted to lead to expression of truncated PLCζ proteins corresponding to 

small N-terminal portions lacking regions necessary for enzymatic activity. Complete 

absence of wild type Plcz1 mRNA expression in the testis, and lack of full length PLCζ 
protein in sperm, was confirmed by RT-PCR and immunoblot analysis, respectively, for both 

lines. Importantly, and in contrast to the report by Ito et al. (2011), spermatogenesis in both 

the Plcz1 KO lines was normal.

Given the presence of spermatogenesis, Hachem et al. (2017) examined the sperm of Plcz1 
KO males; the sperm showed normal viability, motility, and ability to undergo capacitation 
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and the acrosome reaction. Consequently, sperm from these males were cryopreserved and 

used for fertilization trials by ICSI or IVF. Remarkably, cryopreserved Plcz1 KO sperm 

failed to trigger Ca2+ oscillations in either case. This finding provides the first definitive 

evidence that PLCζ is the physiological trigger of the Ca2+ oscillations that normally initiate 

embryogenesis. Evaluation of eggs for signs of activation following IVF using KO sperm or 

natural mating with KO males showed greatly increased levels of polyspermy, likely due to 

the lack of Ca2+ oscillations failing to engage the Ca2+-sensitive mechanisms responsible for 

blocking polyspermy such as the cortical reaction, which is underpinned by the exocytosis of 

the cortical granules, and/or the plasma membrane block whose molecular underpinning(s) 

are not fully known (Avella et al., 2013). Surprisingly, however, a few zygotes obtained after 

IVF with KO sperm or natural mating with KO males, and then cultured in vitro developed 

to blastocysts, albeit with greatly reduced efficiency and after a significant delay. Moreover, 

male PLCζ KO mice were only subfertile, generating fewer pups per litter and less offspring 

per female over a 10-week mating period, rather than being totally infertile as might be 

expected based on the critical role of Ca2+ signals as the trigger of embryogenesis and the 

data from human patients discussed above. This constituted the first demonstration that in 
vivo fertilization without the normal physiological trigger of egg activation can result in 

offspring, at least in mice.

The ability of eggs fertilized by sperm lacking PLCζ to develop to blastocyst, albeit with 

greatly reduced efficiency and after a significant delay, and even develop into live offspring, 

was explained by Hachem et al. as being possibly due to spontaneous activation in vivo, 

something that has previously been reported in ovulated hamster and mouse eggs left to 

reside in the oviduct for extended periods of time in the absence of fertilization 

(Whittingham and Siracusa, 1978; Xu et al., 1997; Yanagimachi and Chang, 1961). 

Moreover, eggs from the C57BL/6 strain, the strain used by Hachem et al. (2017), have been 

shown to have a particularly high susceptibility to spontaneous activation during in vitro 
maturation (Cheng et al., 2012). While normally such parthenogenetic embryos would only 

develop to a very limited extent, penetration by a PLCζ KO sperm, even though this 

provided no apparent activating stimulus, might allow development to term following 

spontaneous egg activation. It is worth recalling that men presenting mutations in the PLCZ1 
gene are completely infertile, despite years of unprotected sexual intercourse. This could 

reflect species differences between mice and men in terms of the ability of sperm to be able 

to activate the egg in the absence of PLCζ expression in the sperm, or the possibility that 

such infertile men have other defects that affect egg activation. To explore this point further, 

it would be useful to generate PLCζ deficient animals in different species to confirm 

whether or not the partial fertility displayed by PLCζ deficient mice is specific to rodents.

However, another explanation for the subfertility of PLCz1 KO males is that the KO sperm 

can trigger an atypical Ca2+ signal that was not detected by the study, or by acting on a 

signalling component downstream of the Ca2+ stimulus. Such a scenario has been 

strengthened by an even more recent study by Nozawa et al. (2018) that also used CRISPR/

Cas9 genome editing to generate two Plcz1 gene KO lines as well as two Plcz1 knockin (KI) 

lines. In the Plcz1 KO mice, similar to the report of Hachem et al. (2017), spermatogenesis 

was normal (Nozawa et al., 2018). Nevertheless, using sperm from recently collected males 

and IVF, this study showed that KO sperm were able to initiate Ca2+ oscillations, although 
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the oscillations started over an hour after fertilization and displayed an abnormal pattern that 

consisted of only a few Ca2+ transients. These highly abnormal Ca2+ oscillations could 

explain why Plcz1 KO sperm could trigger egg activation, albeit with lower efficiency, and 

with a considerable delay in pronuclear formation and embryo development, both in this 

study and in the work of Hachem et al. (2017). Remarkably, fresh Plcz1 KO sperm failed to 

induce Ca2+ transients if fertilization was performed using ICSI, just as reported by Hachem 

et al. Similarly, Nozawa et al. found that Plcz1 KO males were not infertile, only subfertile, 

producing smaller litters, and attributed this subfertility to the high rates of polyspermy due 

to failure of engaging the plasma membrane block mechanism for preventing polyspermy. 

Regarding the KI lines, homozygous male mice carrying Asp210Arg (D210R) or H435P 

mutations phenocopied Plcz1 KO male mice in spermatogenesis, fertility, IVF, and ICSI 

outcomes. The D210R mutation, which results in an enzymatically dead protein, could be 

detected as a full-length protein of ~74 kDa in similar amounts to PLCζ in WT mice 

following immunoblotting. However, the H435P protein, which is the mouse equivalent of 

the human H398P mutation, was not detected at ~74 kDa, suggesting that this mutant protein 

is unstable. This is line with a previous study that showed that the human PLCζ H398P 

protein also appears to be unstable when expressed in HEK cells (Kashir et al., 2011). 

Together, these studies show the importance of PLCζ in the initiation of Ca2+ oscillations 

and monospermic fertilization in mammals. Future studies should elucidate the 

mechanism(s) responsible for the PLCζ-independent Ca2+ oscillations in mouse 

fertilization, and the underlying reasons for why fertilization by ICSI cannot induce the Ca2+ 

these atypical responses.

A gene knockout approach has also been used to test the physiological importance of PAWP 

(gene name Wbp2nl) in mammalian egg activation. Satouh et al. (2015) generated a Wbp2nl 
KO mouse and showed that had no obvious defects in spermatogenesis (Satouh et al., 2015). 

Sperm produced by Wbp2nl KO males had normal morphology and could undergo the 

acrosome reaction. In addition, Wbp2nl KO sperm injected into oocytes by ICSI showed no 

defect in their ability to trigger Ca2+ oscillations. IVF experiments with Wbp2nl KO sperm 

showed no differences in either the time to complete pronuclear formation or time to 

complete fusion between the two pronuclei. Also, there appears to be no defects in the block 

to polyspermy following IVF with Wbp2nl KO sperm, as the number of normally fertilized 

embryos was comparable to that obtained after using WT sperm, which is in line with the 

ability of Wbp2nl KO sperm to trigger the normal pattern of Ca2+ oscillations. Mating 

studies with Wbp2nl KO males showed no defects in fertility, with normal size litters being 

produced by these males. These findings along with the previously discussed data in human 

sperm suggest that PAWP plays no role in egg activation in mammals, although it remains 

remotely possible that loss of PAWP expression is being compensated functionally by up 

regulation of another gene product, or by the recently reported ortholog Wbp2 (Hamilton et 

al., 2018). Hachem et al. (2017) also examined the issue of whether PAWP expression was 

altered following Plcz1 gene knockout. This study used RT-qPCR and immunoblot analysis 

to investigate levels of Wbp2nl mRNA and PAWP protein in Plcz1 KO testis and sperm, 

respectively. There were no observed differences in the levels of PAWP protein between wild 

type and Plcz1 KO sperm, although the level of Wbp2nl mRNA was slightly higher than in 
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controls. Therefore, these findings indicate that the defect in the ability of PLCζ KO sperm 

to trigger Ca2+ oscillations in eggs is not due to some unintended off-target effect on PAWP.

Conclusions and Future Directions

Over the last 30 years, significant progress has been made in understanding the mechanisms 

of egg activation in all living animals and the universal role of Ca2+ in this process. 

Nevertheless, elucidation of how Ca2+ oscillations are initiated in mammals has remained 

elusive and controversial. The discovery of PLCζ nearly 15 years ago represented an 

important breakthrough and a starting point to objectively test hypotheses and examine the 

signaling mechanisms of fertilization. The emergence of affordable whole exome and 

genome sequencing procedures along with the advent of CRISPR technology has confirmed 

the pivotal role of PLCζ in mammalian fertilization. Nevertheless, significant questions 

remain. Despite its essential role for initiating oscillations, there appears to be, at least in the 

mouse, a secondary, PLCζ independent Ca2+ release mechanism(s). Whereas it purportedly 

plays a minor role, understanding its molecular nature, and determining whether its 

expression and function extends to other mammals would add fundamental insights in the 

understanding of fertilization. Further, we still do not know where PIP2 hydrolysis takes 

place in the ooplasm during fertilization (although see recent review by Sanders et. al. 

(Sanders et al., 2018)), or how PLCζ is targeted to its substrate. It also remains unresolved 

how the function of PLCζ is terminated, especially in species where PLCζ is not 

translocated to the pronuclei. Despite these lingering questions, the recent progress in the 

field and greater availability of tools ensures faster progress and discoveries. Importantly, the 

generation of Plcz1 KO mice provides an invaluable resource to address these known 

questions and pursue new ones that have gained urgency because of the phenotype of Plcz1 
KO mice. For example, how are the gene expression profiles and epigenetic changes affected 

in embryos and pups conceived using Plcz1 KO males? What is the sequence of molecular 

change(s) underlying the plasma membrane block to polyspermy that are not induced 

following fusion of Plcz1 KO sperm? The Plcz1 KO experimental model should provide 

conclusive answers to these questions, which will greatly advance our understanding of the 

molecular mechanisms of fertilization.

In terms of clinical application, the absence of Ca2+ oscillations and infertility observed in 

some of the aforementioned patients is currently rescued in the clinic by treatment with Ca2+ 

ionophores (Mateizel et al., 2018). Exposure to ionophore causes a single and much larger 

Ca2+ response than those induced by fertilization, and whereas the treatment is effective at 

inducing egg activation and embryo development, additional studies are needed to evaluate 

the effects on the long term health of the offspring and their fertility. A less dramatic change 

in Ca2+ signaling is also observed following ICSI (Kurokawa and Fissore, 2003; Nakano et 

al., 1997; Tesarik and Sousa, 1994), which seems to be the fertilization method of choice in 

the clinic, even if sperm are suitable for IVF. Given the inherently higher risks of the ICSI 

procedure in terms of the health of the offspring (Davies et al., 2012) and the possible effects 

on the fertility of males offspring (Belva et al., 2016), it is worth conducting more thorough 

studies on how altered Ca2+ activating patterns might impact further embryo development, 

and in particular its effects on the epigenetic landscape of the embryo. Recombinant human 

PLCζ has been produced and studies have demonstrated that it is active and capable of 
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inducing oscillations upon injection into human eggs (Sanusi et al., 2015; Yoon et al., 2012). 

Future studies should assess its clinical application and whether its use offers molecular and 

clinical advantages over the use of ionophores.

In closing, the discovery of PLCζ and the demonstration of its function have finally 

identified the sperm component that was suggested by Loeb more than 100 years ago to 

activate the egg metabolism during fertilization. Nevertheless, the identity, function and 

regulation of many other components of the Ca2+ toolkit of eggs and zygotes that crosstalk 

with PLCζ and are required to support the sperm-induced oscillations remain unresolved. 

Only when these unknown cellular components and mechanisms are identified, will we have 

a more complete understanding of the pathways of fertilization, which would optimize ART 

procedures and could make possible the development of effective contraceptive methods 

with minimal side effects.
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Figure 1. Sperm fusion with the egg induces repetitive Ca2+ oscillations in the mammalian 
zygote.
A. Eggs loaded with a Ca2+ fluorescent dye (Fluo-3) were monitored for changes in 

fluorescence after addition of sperm. Unfertilized eggs had low fluorescence (blue signal) 

whereas fertilized zygotes exhibited transient peaks of fluorescence (red signal). B. 

Quantification of the fluorescence changes recorded in a fertilized zygote.
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Figure 2. PLCζ is mostly located in the post-acrosomal area apposed to the inner acrosomal 
membrane.
A. Immunofluorescence studies of human sperm analyzed by confocal microscopy showing 

the localization of PLCζ in these cells. Control human sperm were stained with hPLCζ-

antibodies (green) and Hoechst to identify nuclear DNA (blue). PLCζ has a ring-like shape 

at the base of the acrosome and surrounding the nucleus. B. Subcellular localization of 

PLCζ by EM. Gold particles targeting PLCζ antigenic sites were observed in the perinuclear 

matrix along the inner acrosomal membrane (white arrow heads). Gold particles targeting 

PLCζ antigenic sites were often observed at the base of the acrosome. Adapted from 

Escoffier et al, 2015.
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Figure 3. Organization of the different domains of PLCζ
A. The PLCZ1 gene contains 15 exons. The coding sequence starts at exon 2 and finishes at 

exon 15. B. PLCζ has three different domains, which are the EF-hands, the catalytic 

domain, and the C2 domain from the N terminus to the C terminus, respectively. The 

catalytic domain is subdivided into X and Y catalytic regions joined by the XY linker. The X 

and Y domains act together on the target as two mandibles of a jaw. C. The 3D structure of 

hPLCζ was modeled from the crystallographic structure of rPLCδ1. The model shows the 
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close spatial interaction of the EF-hand and the C2 domains. The human I489F mutation is 

located at the EF-hands-C2 domain interface. Adapted from Escoffier et al, 2016.
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Figure 4. Human infertility due to PLCζ deficiencies
A. In contrast to what is observed in sperm of fertile men (A1-A2), in patients presenting 

globozoospermia (round sperm head devoid of acrosome), PLCζ is not detectable (A3-A4). 

Control and globozoospermic human sperm were stained with hPLCζ-antibodies (green) 

and Hoechst to evidence nuclear DNA (blue). A5. Whereas injection of the sperm head from 

a fertile patient leads to Ca2+ oscillations, injection of a globozoospermic sperm head does 

not trigger Ca2+ signaling. B. Localization of the different mutations found on the PLCZ1 
gene. Two mutations (H233L and H398P) were found in the catalytic domains (from one 
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compound heterozygote patient) and one mutation in the C2 domain (I489F) in two sterile 

brothers. C. Whereas injection of recombinant mRNA coding for WT hPLCζ triggers Ca2+ 

oscillations, injection of the mRNA coding for the C2 I489F mutant triggers abnormal or no 

Ca2+ signaling. Eggs injected with recombinant mRNAs coding for H233L and H398P 

mutants display similar reduced Ca2+ signaling. Adapted from Yoon et al 2008 and Escoffier 

et al 2016.
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