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Abstract

Liver disease is a leading cause of morbidity worldwide and treatment options are limited, with 

organ transplantation being the only form of definitive management. Cell-based therapies have 

long held promise as alternatives to whole-organ transplantation, but have been hindered by the 

rapid loss of liver-specific functions over a period of days in cultured hepatocytes. Hypothesis-

driven studies have identified a handful of factors that modulate hepatocyte functions in vitro but 

our understanding of the mechanisms involved remains incomplete. We thus report here the 

development a high-throughput platform to enable systematic interrogation of liver biology in 
vitro. The platform is currently configured to enable genetic knock down screens and includes an 

ELISA-based functional assay to quantify albumin output as a surrogate marker for hepatocyte 

synthetic functions as well as an image-based viability assay that counts hepatocyte nuclei. Using 

this platform, we identified 12 gene products that may be important for hepatocyte viability and/or 

liver identity in vitro. These results represent important first steps in the elucidation of 

mechanisms instrumental to the phenotypic maintenance of hepatocytes in vitro, and we hope that 

the tools reported here will empower additional studies in various fields of liver research.

Please address correspondence to: Sangeeta N. Bhatia, M.D., Ph.D., Koch Institute for Integrative Cancer Research at MIT, Building 
76, Room 473, 500 Main Street, Cambridge, MA 02142, sbhatia@mit.edu. 

HHS Public Access
Author manuscript
J Biomol Screen. Author manuscript; available in PMC 2019 January 30.

Published in final edited form as:
J Biomol Screen. 2016 October ; 21(9): 897–911. doi:10.1177/1087057116660277.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

High content screening; Image analysis; Cell-based assays; RNA interference; Hepatocytes

INTRODUCTION

Liver disease is a major healthcare burden with limited treatment options short of organ 

transplantation. Cell-based therapies represent promising alternatives, particularly for organs 

with complex repertoires of biochemical functions such as the liver. Progress in the field, 

however, has been hindered by the propensity of hepatocytes to lose phenotypic functions in 
vitro 1, and consequently, the lack of a reliable in vitro model of human hepatocyte biology 

capable of predicting clinical outcome. The underlying mechanisms of this cellular decline 

are not well understood but it is likely that the transformation is related to the loss of the 

native microenvironment.

In vivo, hepatocytes exist within the complex architecture of the liver and interact with 

diverse extracellular matrix molecules, non-parenchymal cells, and soluble factors. 

Heterotypic interactions between parenchymal cells (hepatocytes) and their stromal 

neighbors are known to be important during development 2 and in the adult liver, under both 

physiologic and pathologic conditions 3, 4. Conventional tissue cultures of primary cells lack 

such multi-faceted cellular stimuli. Liver microsomes are currently used in high-throughput 

identification of detoxification enzymes, but their lack of cytoarchitecture and functional 

cellular machinery including dynamic gene expression systems limits their use in the study 

of many aspects of liver biology. Liver slices do contain intact cells, but have extremely 

limited viability (~1 day) and are not readily adapted to high throughput screening. 

Similarly, hepatic spheroids, and models that manipulate the extracellular matrix (ECM) 

microenvironment of hepatocytes with Matrigel and/or collagen require a high degree of 

hepatocyte confluency for long-term survival, and are difficult to miniaturize into a standard 

and high-throughput format.

In vitro, the viability and liver-specific functions of hepatocytes from multiple species can be 

maintained for several weeks upon co-cultivation with stromal cell types. This co-culture 

effect can be observed using a wide variety of non-parenchymal cells, both primary and 

immortalized, from intra-hepatic and extra-hepatic sources, and can be observed even across 

species barriers 5-7. Hepatocytes in co-cultures, particularly with murine embryonic J2-3T3 

fibroblasts, maintain for weeks the distinct nuclei, polygonal morphology, well-demarcated 

cellcell borders, and visible bile canaliculi network displayed by cells in vivo. Co-cultures 

have been utilized to investigate various physiologic and pathologic processes, and more 

recently, to develop in vitro liver models for pharmaceutical drug screening, disease 

modeling (e.g. HCV, HBV, malaria) and engineered hepatic tissues 8-12.

In order to better understand the molecular mechanisms driving the phenotypic maintenance 

of hepatocytes by co-cultures, previous work characterized the type and duration of 

heterotypic cell-cell interactions required to mediate the co-culture effect. Studies suggest 

that cell-cell contact between primary hepatocytes and non-parenchymal cells (such as 

murine embryonic 3T3 fibroblasts) is required for ~18-24 hours, after which continuous 
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stimulation with stromal-derived soluble signals alone over a distance of <400um is 

sufficient 13. These critical soluble factors appear to be constitutively expressed by 3T3 

fibroblasts, independent of hepatocyte interactions, and are not involved in any reciprocal 

signaling loops between hepatocytes and the supporting non-parenchymal cells. A handful 

of stromal-derived molecules have been implicated in this process. These include liver 

regulating protein (LRP), E-cadherin, TGF-beta1, and decorin 14-17. While these molecules 

have been shown to modulate hepatocyte functions in vitro, none of them are sufficient in 

replacing the stromal cells nor are they all expressed by all cell types known to maintain the 

hepatocyte phenotype. Using a gene expression profiling approach, we had previously 

identified additional candidate fibroblast genes that may play a role in stabilization of liver-

specific functions 17. Although these findings are promising, a complete picture of the 

mechanisms underlying the stabilizing effect of fibroblasts remains elusive. This includes 

the unknown identity of a single factor or cocktail of factors that can adequately support 

hepatocytes in culture, emphasizing the need to apply objective, genome-wide approaches to 

these studies.

We thus report here the development of a high-throughput genetic screening platform (Fig. 

1A) in order to identify the most critical stromal cell gene products involved in the 

stabilization of phenotypic functions of primary human hepatocytes (Fig. 1B). We hope our 

findings will provide a foundation for a more complete understanding of liver phenotype 

maintenance, with implications for basic research, drug development, molecular 

therapeutics, and cell-based therapies.

MATERIALS and METHODS

Cell Culture

J2-3T3 Culture.—Passage 2 J2-3T3 murine fibroblasts were obtained from Howard Green 

(Harvard) and kept in liquid nitrogen until use. Cells were maintained under standard tissue 

culture conditions, in 1X DMEM media containing 10% BS and 1% Penicillin-streptomycin. 

Fibroblasts were grown in T-150 tissue culture flasks and passaged 1:10 using 0.25% 

Trypsin-EDTA when cells reached confluency. Experiments used J2-3T3s ranging in 

passage numbers from P7 to P9.

Hepatocyte Culture.—Primary human hepatocytes were purchased in cryopreserved 

suspension from Celsis In vitro Technologies, and kept in liquid nitrogen until use. To thaw, 

cells were pelleted by centrifugation at 50g for 10 min. The supernatant was discarded 

before resuspension of cells in hepatocyte culture medium, which consisted of 1X DMEM 

supplemented with 10% fetal bovine serum (FBS), 15.6 ug/ml insulin, 7.5 μg/ml 

hydrocortisone, 16 ng/ml glucagon and 1% penicillin-streptomycin.

Automated Cell Seeding.—Cell suspensions were diluted to the desired densities and 

kept in suspension using a magnetic stir bar. A Thermo Combi robot was used to dispense 

cells into 384-well formats using speed setting low and standard cassette, 30ul/well.
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Functional Assays

Albumin Competitive ELISA.—A saturating amount of human albumin (40μl/well of 

50ug/mL albumin) was coated onto the walls of adsorptive 384-well plates (NUNC 

MaxiSorp plates, cat# NUNC 460372) at room temperature overnight under agitation. 20μl 

of sample supernatant was then introduced and competed with coated albumin for binding to 

HRP-conjugated antibodies (MPBio Cat #55235). The amount of bound antibody was then 

quantified via an ultra-sensitive chemiluminescent substrate (Thermo SuperSignal ELISA 

Pico Chemiluminescent Substrate, Cat # 37070). The competitive ELISA signal was 

normalized to the standard deviation of all 44 control wells found on the same plate to yield 

a z-score. Due to the competitive nature of the ELISA assay, higher ELISA z-scores 

represent lower albumin output.

Biochemical Assays.—Urea concentration was quantified using a colorimetric assay that 

reacted diacetylmonoxime with acid and heat, following product instructions (Stanbio Labs 

Urea Nitrogen Test, Ref # 0580-250).

Cytochrome-P450 Induction.—7-benzyloxy-4-trifluoromethylcoumarin (BFC, 

BDGentest) was added to cultures at 50μM and incubated for 1 hr at 37C in phenol-red free 

media. Many different CYP450 isoforms process BFC into its fluorescent product of 7-

hydroxy-4-trifluoromethylcoumarin (7-HFC), which was then quantified fluorometrically.

Automated Plate Washing.—Washing for plates containing cells was done manually to 

prevent cell loss. Plate washing for ELISA was performed on the BioTek ELx-405 HT, using 

the following optimized settings:

• Prime: Prime_200 using DI water

• Wash: Named program HEPELISA

– Method

♦ Number of cycles = 02

♦ Wash Format = Plate

♦ Soak/Shake = Yes

♦ Soak Duration = 010 sec

♦ Shake before soak = yes

♦ Shake Duration = 005 sec

♦ Shake Intensity = 4 (18 cycles/sec)

♦ Prime after soak = No

– Disp

♦ Dispense volume = 100μl/well

♦ Dispense flow rate = 05

♦ Dispense height = 120 (15.240 mm)
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♦ Horizontal X disp pos = 25 (1.143mm)

♦ Horizontal Y disp pos = 20 (0.914mm)

♦ Bottom wash 1st = no

♦ Prime before start = no

– Aspir

♦ Aspir. Height = 020 (2.540 mm)

♦ Horiz. X Asp. Pos = 00

♦ Horiz Y asp pos = 00

♦ Asp rate = 05 (6.4 mm/sec)

♦ Asp delay = 0000 msec

♦ Cross-wise aspir = yes

♦ Cross-wise on = all

♦ Cross-wise height = 020 (2.540mm)

♦ Cross-wise X horiz. Pos = 00

♦ Cross-wise Y horiz. Pos = 00

♦ Final asp = Yes

♦ Final asp. Delay = 0000 msec

Automated Plate Reading.—A Perkin Elmer Envision 2102 Multilabel Reader was used 

to quantify ELISA signal, integrated over 0.1 sec using luminescence 700 emission filter and 

measurement height of 6.5mm.

Fibroblast Viability Assay (AlamarBlue)

Plated J2-3T3 fibroblasts were incubated with the AlamarBlue (Thermo) reagent following 

manufacturer protocols. Stock solution was diluted 10x in culture medium and incubated 

with seeded J2-3T3 fibroblasts for 1hr at 37C. The level of fluorescence was then read using 

an excitation wavelength of 540–570 nm (peak excitation is 570 nm) and emission 

wavelength of 580–610 nm (peak emission is 585 nm). It is important that all reagents and 

media are pre-warmed to 37C prior to addition to cells; failure to do so leads to significant 

edge effects.

Hepatocyte Viability Assay (Imaging)

Image Acquisition.—Cultures of hepatocytes and J2-3T3 fibroblasts were fixed using 4% 

paraformaldehyde (PFA) in black-walled, clear- and flat-bottomed 384-well plates 

(Corning). Fixed samples were then stained with Hoechst 33342. It is important to note that 

the cell membrane is much more permeable to Hoechst 33342 than Hoechst 33258; thus an 

additional permeabilization step using 0.1% Triton-X for 30 min is necessary if visualizing 

nuclei with Hoechst 33258. Images of fluorescently labeled nuclei were acquired and 
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digitized using a high-throughput screening microscope (Molecular Devices IXM) coupled 

to a barcode reader and robotic arm (Thermo) for automated plate loading. The microscope 

was configured to self-focus, first using lasers to identify the bottom of wells via differences 

in the refractive index of plastic and fluids, then using image-based focusing algorithms that 

scan through a z-stack of ~200 μm in ~50μm steps in search of the plane with the sharpest 

images. Accurate examination of nuclear morphology required image acquisition with a 20x 

objective. 50% of the well area was sampled in a checkerboard fashion, imaging a total of 21 

sites per well in order to balance burden of analysis with potential sampling errors.

Image Processing and Nuclei Identification.—We used the freely available open-

source software CellProfiler for all image analysis 18, and the configured image analysis 

pipelines are provided online (http://cellprofiler.org/published_pipelines.html). All images 

(Figure 2A) underwent illumination correction, as the background intensities varied by up to 

1.5 fold across a field of view and often caused unacceptable intensity artifacts (Figure 2B). 

The illumination correction algorithm averaged all acquired images per plate to identify and 

normalize consistent discrepancies in the staining intensities across the field of view 19. All 

corrected images then underwent a custom image analysis pipeline for nuclei identification 

(segmentation), by smoothing and using relative peaks in intensity to separate overlapping 

nuclei. For each identified nucleus, we measured a large number of features to construct a 

nuclear profile, including measures of nuclear size, shape, and texture, and the number of 

punctate sub-nuclear spots (Figure 2B, bottom). This per-cell data profile was stored in a 

MySQL database (Oracle, Inc.) and was subsequently used to train supervised machine 

learning algorithms to automatically classify nuclei as hepatocytes or fibroblasts (Figure 

2C).

Nuclei Classification and Quantification.—The nuclear profiles generated by 

CellProfiler were loaded into CellProfiler Analyst 20 for training of supervised machine 

learning algorithms to distinguish and count hepatocyte nuclei (Figure 2C). Manually 

created training sets of representative hepatocytes and fibroblasts (50 example objects each) 

generate a preliminary set of rules for nuclei classification using the GentleBoosting 

algorithm applied to regression stumps 20. This rule set was used by CellProfiler Analyst to 

classify a new batch of nuclei, outputting the results for manual error correction. Iteration of 

this process refined the rule set until an acceptable accuracy plateau was reached. The final 

rule set was then applied to the profiles of every nucleus in every image acquired to classify 

each object as a hepatocyte or fibroblast before outputting a count of each nucleus type per 

well. The final training set contained 577 objects with an accuracy plateau using a total of 

100 rules. We observed that the single feature of nuclear morphology that most effectively 

distinguished fibroblast nuclei from hepatocyte nuclei was the punctate sub-nuclear 

structures present in fibroblasts but absent in hepatocytes, due to the murine origin of the 

former, which is known to have more textured chromatin 26. The main pipeline, illumination 

correction pipeline, and the classifier rules are all available at http://cellprofiler.org/

published_pipelines.html.
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shRNA Library

The custom shRNA library was assembled from The RNAi Consortium (TRC) library, 

designed and synthesized at the Broad Institute Genetic Perturbation Platform. 24, 25 The 

pLKO lentiviral delivery vector contains a U6 promoter for constitutive expression of the 

shRNA sequence, and a PGK promoter to drive PAC conveying puromycin resistance. A 

total of 44 wells were devoted to control viruses that included 22 distinct pLKO-shRNAs 

targeting GFP, LacZ, Luciferase, and RFP (32 wells total), a GFP/puro fusion-expressing 

virus (8 wells), and the pLKO-EmptyT virus that expresses a non-hairpin sequence that 

therefore does not induce seed-based off-target effects (4 wells).

Validation Screen

The workflow of the high-throughput screen to validate implicated factors is summarized in 

Figure 1C. 384-well screening plates (Corning) were incubated with a solution of type-I 

collagen in water (100 mg/ml, BD Biosciences) for 1 h at 37°C. A feeder layer of J2-3T3 

fibroblasts was robotically plated onto the collagen at a density of 4,000 cells/well and 

allowed to acclimate over 24 hours. Polybrene at 8ug/mL and a library of 362 lentiviruses, 

of which 318 carried 318 different shRNAs representing the 59 genes of interest as well as 

44 wells containing 24 different control vectors, were added to two duplicate plates, 

centrifuged for 30 min at 37°C, and allowed to incubate for 24 hours prior to selection with 

5ug/mL of Puromycin over 2 days. Infection efficiency was calculated as:

Alamar Blue fluorescence pre-puromycin selection / Alamar Blue fluorescence post 
selection

In order to avoid donor-to-donor variability, human primary hepatocytes from a single donor 

were plated onto successfully transduced fibroblasts at a density of 4,000 cells/well and 

maintained under standard culture conditions with daily replacement of hepatocyte medium 

for 7 days, during which time the sample plates were kept in metal stacks with uniform air 

buffers between each plate in order to provide uniform gas and heat exchange. Additionally, 

breathable membranes and extra water reservoirs were employed to minimize edge effects 

arising from fluid evaporation. On day 7 of co-culture, culture supernatants were collected 

for automated ELISA analysis, and cells were fixed in 4% PFA for imaging and analysis, as 

described under “Functional Assays” and “Hepatocyte Viability Assay”.

Western Analysis

Samples from transduced J2-3T3 fibroblasts were lysed in RIPA buffer (Upstate 

Biotechnology, Waltham, MA) with protease inhibitors cocktail (Roche, Indianapolis, IN) 

and analyzed by Western Blot as previously described 21. The following primary antibodies 

were used: Decorin, GAPDH (Cell Signaling, San Jose, CA).

Statistical Analyses

Assay readiness was assessed via Z’-factor. The platform and assays were developed to 

detect two fold changes in hepatocyte populations; therefore, the positive control was set as 

“2x hepatocytes” or 4000 hepatocytes per well while the negative control was set as “1x 

hepatocytes” or 2000 hepatocytes per well.
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The z-score of each shRNA was calculated as its deviation from the mean of all 44 control 

wells found on the same plate, normalized to the standard deviation of all control wells on 

the plate. The control vectors were comprised of 23 distinct shRNAs, which target various 

reporter genes not found in wild type J2-3T3s to represent the distribution of off-target seed-

based effects inherent to shRNAs, plus one GFP-PAC fusion expressing vector and one 

vector, “EmptyT”, that expresses a short non-hairpin (non-palidromic) sequence to avoid 

both on- and off-target effects. Hit candidates from the screen were selected according to 

their z-score, as described under “Hit Selection”. Due to the competitive nature of the 

ELISA assay, higher ELISA z-scores represent lower albumin output.

RESULTS

Liver Platform Development

To best represent normal human physiology in our liver model and to maximize the model’s 

ability to predict clinical outcome, we opted to employ primary human hepatocytes in our in 
vitro platform. All cells were sourced from a single donor in order to eliminate innate 

genetic variations that exist within the human population. Eight different donors of 

cryopreserved human hepatocytes were tested in total. Three were non-plateable, thus 

incompatible with phenotypic screening. While the remaining five donors all yielded 

hepatocytes that adhered to rigid collagen in culture, one donor was too young (0.1 years) to 

exhibit a full repertoire of mature hepatocyte functions while another two donors had poor 

functions at baseline. Ultimately, we chose donor GHA, a one-year-old Caucasian female 

who died from dry drowning, whose hepatocytes attached well to rigid collagen and 

demonstrated good synthetic, detoxification and metabolic functions.

To maintain GHA hepatocytes in culture, we co-cultivated them with murine embryonic 

J2-3T3 fibroblasts, which we had previously found to be the most effective non-parenchymal 

cell type at transiently stabilizing hepatocyte phenotype in vitro 17. The platform contained a 

subconfluent population of hepatocytes on top of a confluent layer of J2-3T3s within 384-

well plates (Figure 1A). This design enabled fibroblast-mediated hepatocyte stabilization for 

at least 9 days and is amenable to genetic manipulation of fibroblast populations in 384-well 

formats. The number of fibroblasts seeded per well was empirically optimized to 4,000 cells/

well in order to establish a confluent feeder layer while minimizing the risk of phenotypic 

transformations due to overcrowding at the end of a four-day transduction process. The 

number of hepatocytes seeded per well was empirically optimized to 4,000 cells/well, 

placing the functional protein output of both control and experimental groups within the 

linear detection range (Figure 3A). Similarly, the amount of media used per well was 

empirically optimized to balance opposing needs of oxygen transport and nutrient supply – 

too much media presented a transport barrier for gas diffusion, causing observable steatosis 

in cultured hepatocytes; too little media caused nutrient deprivation. In this case, there was 

an additional instrument-based practical restriction that all fluids handled robotically could 

only be dispensed in volumes that are multiples of 10μl. All cells were robotically seeded at 

the lowest possible speed setting in order to minimize shear stresses. During pilot testing, it 

was observed that fibroblasts had difficulty remaining attached to plain tissue culture plastic 
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in 384-well formats, thus a matrix coating of Collagen type I was added at a concentration of 

100 ug/mL.

High-throughput Assay Development

To assess cell fates in this platform, we developed three separate high-throughput readouts. 

The commercially available AlamarBlue assay was employed to quantify viability of the 

fibroblast feeder layer, prior to initiation of fibroblast-hepatocyte co-cultures. This assay was 

also used to measure transduction efficiency and enabled optimization of transduction 

procedures by measuring viability in the absence and presence of puromycin for selection of 

cells carrying the puroR gene that was included in the shRNA viral vector. Two additional 

assays were developed to measure hepatocyte functions and cell numbers after one week of 

heterotypic fibroblast-hepatocyte interactions in the aforementioned co-culture setting.

A number of commercial assays exist to measure cell viability in culture, including 

fluorescent-based live/dead cell stains as well as quantifications of cellular enzyme activity 

as surrogate markers of cell number. Many of these assays, however, are not amenable to 

automation due to cumbersome workflow and/or have cytotoxic properties that restrict them 

to end-point usage only. After testing a number of candidates, including CellTiter-Glo, Ki67 

staining and the MTT assay, we chose AlamarBlue to quantify fibroblast viability and 

transduction efficiency. AlamarBlue is based on the conversion of the molecule resazurin to 

resorufin through the reducing power of living cells. Resazurin is non-toxic, cell permeable, 

blue in color and minimally fluorescent while Resorufin produces bright red fluorescence, 

thus providing both a colorimetric and fluorescent distinction between parent and daughter 

compounds. AlamarBlue yielded linear relationships between fluorescence and fibroblast 

cell numbers when tested on J2-3T3 fibroblasts in 384-well formats, with an effective range 

of 2,000 to 16,000 cells and a coefficient of determination of R2 = 0.98. The incubation 

period was empirically optimized to one hour, though the data shows an acceptable window 

between one and five hours, during which the assay showed excellent signal to noise ratio, 

with good reproducibility across wells, plates and batches (Figure 3A). Using the 

AlamarBlue assay, we automated and optimized lentiviral transduction conditions for 

delivering shRNAs to J2-3T3 fibroblasts in 384-well formats in order to systematically 

knock down genetic factors of interest. Parameters examined include polybrene 

concentration for neutralization of cell surface charges, viral titers needed for effective 

transduction, as well as the concentration of puromycin required for selection of successfully 

transduced cells. Our results showed that a higher polybrene concentration of 8ug/mL 

provided superior transduction than 4ug/mL of polybrene. Similarly, puromycin was tested 

at a concentration range between 0ug/mL and 8ug/mL, and found to be optimal at 5ug/mL 

(Figure 3B). Using these transduction parameters, we were able to obtain a median infection 

efficiency of 79.3% (Figure 3B). Knockdowns of target genes were also confirmed via 

Western analysis (Figure 3B).

In order to assess hepatocyte phenotype in vitro, we equipped the high-throughput liver 

platform with several functional assays. Due to the diverse repertoire of the 500+ 

documented and yet unidentified biochemical functions of the liver, there does not exist a 

single all-inclusive, gold-standard assay for measuring hepatocyte functions. We thus opted 
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to sample 3 major types of liver functions: 1) albumin output as a surrogate marker for 

protein synthesis functions of the liver through a competitive ELISA, 2) urea generation as a 

surrogate marker for amino acid metabolism functions of the liver through a colorimetric 

assay, 3) cytochrome P450 activity as a surrogate marker for detoxification functions of the 

liver through an enzyme activity assay. For all 3 assays, we optimized parameters such as 

reagent type, concentration, and volume to develop them into biochemical assays compatible 

with high-throughput screening. Validation data demonstrated that these assays can 

confidently (Z’>0) detect two-fold changes in hepatocyte populations with low variance 

(CV<20%) and good reproducibility (Figure 3).

For our validation screen, we chose the ELISA-based albumin quantification as the 

functional readout because it exhibited the highest Z’ and was of the greatest clinical 

relevance. The most common form of the ELISA assay is a sandwich ELISA that captures 

the antigen of interest in between 2 layers of antibodies. This assay is difficult to adapt to 

high-throughput screening due to a cumbersome protocol, which is difficult to program 

robotically, thus limiting throughput. Therefore, for our liver platform, we employed a 

competitive ELISA assay, which reduced the length of the workflow by approximately one 

third. It is important to note here that the competitive nature of the assay inverts the readout 

such that a higher ELISA Z score reflects a lower albumin content. When coupled with the 

optimized fibroblast and hepatocyte cell numbers as well as transduction procedure, the 

platform and assays are able to easily identify cultures where hepatocytes have lost their 

liver-specific synthetic functions (Figure 4A “Empty” red dots; the fibroblasts of these 

cultures were not treated with any lentivirus but still underwent puromycin selection; they 

thus effectively became hepatocyte-only cultures that lost viability and phenotype by day 7).

In addition to assessing the functional output of hepatocytes, we developed an image-based 

proliferation assay that uses nuclear morphology to quantify hepatocyte nuclei numbers in 

co-culture. This allowed us to measure hepatocyte viability in addition to determining 

hepatocyte synthetic functions on a per cell basis. When visualized with Hoechst stain, 

hepatocyte nuclei are more uniform in texture while fibroblast nuclei are punctate (Figure 

2A). The assay thus visualizes all cell nuclei in culture using a simple Hoechst stain, 

specifically identifies hepatocytes based on nuclear morphology, and provides a count of the 

number of hepatocyte nuclei in culture. Imaging of multiple 384-well plates containing 

untreated hepatocyte-fibroblast co-cultures showed that the image-based readout can 

confidently (Z’>0) detect two-fold changes in the number of hepatocyte nuclei, with low 

variance (CV<15%) and good reproducibility (Figure 3A, 3B).

Functional Screening

Selection of genetic factors for systematic knock down—A large number of non-

parenchymal cell types are known to support the co-culture phenomenon. They differ, 

however, in the degree of hepatic functions that they are able to induce when co-cultivated 

with primary hepatocytes. J2-3T3 fibroblasts, for example, are able to induce physiological 

or even supra-physiological levels of liver-specific functions in co-cultivated hepatocytes, 

while the closely related NIH-3T3 fibroblasts and the primary mouse embryonic fibroblasts 

(MEFs) from whence these cell lines were originally derived are much lower inducers of the 
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co-culture effect. Previously, Khetani et. al. conducted gene expression profiling of these 

three fibroblast populations using Affymetrix GeneChips 17. Here, we re-analyzed those data 

to identify 59 genes whose levels of expression correlated strongly with the induction of 

hepatocyte functions in vitro. Using our high-throughput liver platform together with virally-

delivered shRNAs, we tested the effect of loss-of-function perturbation of these genes in 

fibroblast feeder cells on phenotypes of co-cultured hepatocytes to assess the potential role 

of these stromal factors in the co-culture phenomenon.

The 59 genes exhibited a minimum of five-fold difference in levels of expression between 

the high inducer J2-3T3s and low inducer MEFs. We prioritized molecules with known 

functions in cell-cell communications, such as various cell surface (e.g. Delta-like homolog 

1), extracellular matrix (e.g. Decorin) and secreted factors (e.g. VEGF-D, ceruloplasmin) 

and eliminated genes that were flagged for having poor quality-control data on the 

Affymetrix GeneChips. We also added factors that have been implicated in the co-culture 

effect through previous investigations (e.g. T-cadherin) 22. Among these 59 genes were 31 

genes whose differential levels of expression correlated positively with the pattern of 

hepatocyte induction observed (positive inducers); the remaining 33 factors showed 

expression patterns that correlated negatively with hepatocyte functions (negative inducers). 

All 59 genes are listed in Table 1.

Functional screen and hit selection—To determine if any of these 59 differentially 

expressed fibroblast genes play a critical role in the maintenance of hepatocyte phenotype in 
vitro, we conducted knock-down studies in J2-3T3 fibroblasts, targeting each gene through a 

custom shRNA library, and monitoring effects on co-cultured primary hepatocytes. The 

library contained 4 to 10 different shRNAs for each gene of interest, a redundancy designed 

to distinguish the real biological effects of gene knock-down from artifacts such as off-target 

effects and the disruption of potentially critical cellular functions through the random 

insertion of lentiviral genes into the host genome. Only genes represented by two or more 

different shRNAs were included in the screen hit list, though exceptions were made for those 

with particularly profound effects (z-score > 4). All shRNAs were tested in duplicate along 

with various controls: “empty” red dots represent cultures whose fibroblast feeder layer was 

not treated with lentivirus but still underwent puromycin selection; these effectively became 

hepatocyte-only cultures that lacked fibroblast co-culture support; “control vector” blue dots 

represent treatments with viruses conferring expression of either shRNA targeting reporter 

genes not found in wild type J2-3T3s that are meant to assess the range of seed-based RNAi 

off-target activities, or of a non-hairpin (non-palindromic) sequence that should not produce 

either on- or off-target RNAi-based effects. The resultant mutant J2-3T3 fibroblasts were 

then co-cultivated with primary human hepatocytes in the high-throughput liver platform and 

their ability to induce liver-specific functions was examined via the competitive ELISA-

based functional assay (where high Z score indicates low albumin output) and the image-

based hepatocyte viability assay.

Individual shRNAs were considered biologically active and selected for further analysis if 

their effect on the feeder cells was to significantly decrease either total albumin output from 

the hepatocytes or a hepatocyte-number adjusted albumin level. Population level data was 

directly measured by the ELISA assay and any shRNA with a z score greater than 3 was 
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selected (p<0.001). We would like to re-emphasize here that a higher ELISA z score reflects 

lower albumin output due to the competitive nature of the ELISA assay. Albumin output was 

also assessed relative to the albumin versus HepCount trend observed for the control vectors. 

Regression analyses of cultures treated with control vectors (blue dots, which thus contained 

wild type fibroblasts) revealed the following relationship between ELISA z scores 

(z_ELISA) and imaging z scores (z_HepCount):

𝗓_𝖤𝖫𝖨𝖲𝖠 = (−0.37 × 𝗓_𝖧𝖾𝗉𝖢𝗈𝗎𝗇𝗍)

That is, as expected, albumin levels were higher (lower ELISA z-score) when more 

hepatocyte numbers were higher (higher HepCount z-score). Applying to this population-

adjusted albumin level the same hit selection criteria of z score greater than 3 (p<0.001), hit 

shRNAs were considered to be those for which z_ELISA > (−0.37 × z_HepCount + 3). 

Additionally, any shRNA with infection efficiency below 20% was eliminated from 

analyses. The final hit list was thus generated via the following algorithm:

1. [Infection efficiency >20%] AND

2. [z_ELISA > (−0.37 × z_HepCount + 3) OR z_ELISA > 3] AND

3. [number of active hairpins per gene > 2 OR z_ELISA > 4]

A total of 12 hit genes, listed in Table 2, were nominated by this screen in agreement with 

previous hypotheses that these molecules play an important role in the maintenance of 

hepatocyte phenotype in vitro. The magnitude and consistency of effect of some 

representative active shRNAs in the hit list is plotted in Figure 4B.

DISCUSSION

Sourcing of hepatic cells is a fundamental challenge for many fields of liver research. Many 

are forced to employ xenogeneic sources such as rodent and porcine hepatocytes, or 

immortalized human hepatocyte cell lines. Animal hepatocytes are extensively studied and 

easily obtained, but exhibit numerous species-specific differences in hepatocellular functions 

ranging from apolipoprotein expression, metabolic regulation of cholesterol, to phase I 

detoxification enzymes. Human hepatocyte cell lines, while expandable, contain mutations 

and exhibit an abnormal repertoire of liver functions, limiting their clinical relevance.

Primary human hepatocytes present the best functional output and recent advances in 

cryopreservation technologies have additionally enabled the storage of entire livers of human 

hepatocytes, enough to power multiple batches of phenotypic screens. This enables hundreds 

of thousands of knockdown or overexpression studies on a constant genetic background over 

a period of several months. We recognize that it would be important to test additional donors 

and genetic backgrounds and recommend changing donors after the completion of primary 

screening, such as during various follow-up studies. While extensive previous 

characterizations have shown that high-quality cryopreserved primary human hepatocytes 

exhibit phenotypes that approach fresh hepatocytes and are thus very useful for in vitro liver 

studies, our findings here indicate that not all donors are suitable for use in phenotypic 

screens. Therefore, we propose that empirical characterization of each donor of 
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cryopreserved primary human hepatocytes is an indispensable first step to their use in liver 

research.

Maintenance of cryopreserved primary human hepatocytes in vitro can be achieved 

transiently via co-cultivation with a variety of non-parenchymal cells. There exist multiple 

configurations of co-cultures, with varying degrees of architectural organization. The 

simplest implementation consists of a co-planar distribution of randomly mixed hepatocytes 

and J2-3T3 fibroblasts on a matrix of rigid collagen type I. More sophisticated designs use 

semiconductor-driven microtechnology to organize primary hepatocytes into in vitro 
colonies of empirically optimized island sizes, subsequently surrounded by J2-3T3 

fibroblasts (MPCC). All configurations of hepatocyte-J2 co-cultures were found to maintain 

primary human hepatocyte functions in vitro for at least 9 days 12, 23. Generally, increased 

architectural organization of cells in culture leads to longer-term stabilization of hepatocyte 

functions, with MPCC being the most optimal configuration, enabling maintenance of 

hepatocyte functions in vitro for 4-6 weeks. However, such segregation of hepatocyte and 

fibroblast populations limits the number of hepatocytes that engage in heterotypic cell-cell 

interactions. Additionally, MPCCs are difficult to miniaturize beyond 96-well platforms and 

in any case, such prolonged periods of hepatocyte functions are neither necessary nor 

practical for most whole-cell screens. We thus designed our high-throughput liver platform 

to assume a feeder layer co-culture configuration, which ensures that every hepatocyte has 

access to a fibroblast and can participate in heterotypic cell-cell signaling.

Significant efforts were dedicated to the development of an image-based hepatocyte viability 

assay. The co-existence of two different cell types in each well renders their differentiation 

challenging. Existing measurements of cellular numbers, such as AlamarBlue, CellTiter-Glo 

and Live/Dead stains all reflect the joint state of the whole well, which allows behavior of 

the more populous J2-3T3 fibroblasts to mask the number of hepatocytes in culture. We 

additionally considered generating stable fluorescent clones of hepatocytes; however the 

rapid decline in hepatocyte viability ex vivo as well as their inability to proliferate in vitro 
renders such lengthy manipulations technically unfeasible. Therefore, we needed to develop 

a custom readout in order to isolate and quantify the hepatocyte subpopulation. Human 

hepatocytes in culture can be distinguished from underlying J2-3T3 fibroblasts via a variety 

of methods, including phase-contrast microscopy, staining for hepatocyte-specific markers, 

and striking species-specific differences in nuclear morphology. Brightfield images, while 

easy to acquire, are difficult to quantify, particularly in a high-throughput manner. 

Immunofluorescent staining of particular antigens, while easy to measure in an automated 

fashion, are difficult and expensive to execute in 384-well and smaller formats with often 

unacceptable signal to noise ratios. Therefore, we chose to leverage differences in nuclear 

morphology. It should be noted that the highly textured nature of fibroblast nuclei rendered 

their segmentation difficult, often leading to the breakup of a single nucleus into multiple 

nuclei. Therefore, while the assay does ostensibly report numbers of fibroblast nuclei as well 

as hepatocyte nuclei, it is optimized for accurate detection of hepatocyte nuclei only. We 

point to our later work, which yielded an image analysis pipeline for more accurate 

measurement of the number of fibroblasts in co-culture 26.
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Additionally, we recognize that counting nuclei is not always equivalent to counting cells. 

Hepatocytes in particular are well known for their ability to assume polyploid states and can 

sometimes contain 8 or more nuclei. While nuclear proliferation does not always translate 

into cellular proliferation, cell death is always accompanied by a decrease in nuclei numbers. 

Therefore, nuclei number is still a viable surrogate marker for cell number, albeit without a 

strict one-to-one correlation. We note that polyploidy can be detected visually in images in 

followup analysis of hits.

Analyses of the validation screen focused on finding only positive mediators of co-culture 

and neglected to examine negative mediators, whose knockdown would enhance hepatocyte 

functions. This decision was made because J2-3T3 fibroblasts are strong inducers of the 

coculture effect, often supporting physiological to supra-physiological levels of liver-specific 

synthetic functions in vitro. We thus believe that it would not be rewarding to look for 

negative mediators in a cell type that is inherently already a high inducer of hepatocyte 

functions. We also prioritized the search for positive mediators because their gene products 

have the potential to substitute for non-parenchymal cells and directly advance the 

development of fibroblast-free tissue-engineered hepatic systems. Although negative 

mediators are less useful in this regard, studies of such factors can provide insight into the 

signaling pathways involved in the phenotypic maintenance of hepatocytes ex vivo and 

should be conducted in the future. Such studies might be best suited for knock down studies 

in non-parenchymal cells known to be low inducers of the co-culture effect, such as primary 

MEFs.

As a first step to analysis of the functional screen results, we examined the effect of Decorin, 

a putative positive control, in our screen. Decorin is a chondroitin sulfate-dermatan sulfate 

proteoglycan that binds to collagen, whose role as a positive mediator of the co-culture 

effect was not only theoretically predicted by gene expression profiling, but also confirmed 

via studies that showed up-regulation of hepatic functions in vitro when co-cultivated with 

stromal cells on adsorbed Decorin in a dose-dependent manner17. In our screen, two active 

shRNAs were found to represent Decorin and both showed a decrease in hepatocyte 

functions upon knock-down, consistent with prior findings. Similar to other top hits of the 

screen (e.g. H2-K1, which encodes for the K region of a histocompatibility protein with a 

human ortholog of HLA-A; or Inhba, which encodes for a subunit of both activin A and 

inhibin A, both secreted growth factors involved in a myriad of biological processes 

including cell cycle regulations), it is not immediately apparent how decorin might be 

maintaining liver functions or what signaling pathways may be involved. These questions 

are the subject of ongoing investigations.

We also noted that knockdown of Decorin did not completely remove the rescue effects of 

co-culture on hepatocyte phenotype, again consistent with prior studies that Decorin alone 

cannot stabilize hepatocytes in vitro. In fact, while knockdown of the hit candidates each had 

significant effects on hepatocyte functions, the co-culture effect was not consistently 

abolished in any of the cultures with mutant fibroblasts, as evidenced by significantly higher 

albumin output when compared with hepatocytes cultured alone, without fibroblast support 

(Figure 4A). Although it is possible this is related to incomplete knockdown of protein 

products under our experimental conditions, we suspect that multiple signaling molecules 
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are involved in the maintenance of hepatocyte phenotype ex vivo, and that a cocktail of 

stromal factors will ultimately be needed to replace non-parenchymal cells in hepatic tissue-

engineering applications.

In conclusion, we report here the development of a high-throughput human liver model and 

attendant automatable assays capable of reflecting human liver physiology in vitro. These 

tools were used to conduct a small genetic knockdown screen of fibroblast-derived factors in 

order to identify molecules important to the maintenance of hepatocyte functions in vitro. 

Overall, we identified 12 genes as priority candidates for further experimental validation and 

hope the tools reported here will empower additional studies in the various fields of liver 

research.
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Figure 1. Platform and Screen Design.
(A) High-throughput liver platform. (B) Selection of candidate stromal factors for high-

throughput genetic knockdown screening. (C) Validation screen workflow.
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Figure 2. Image Analysis and Machine Learning Classification Workflow.
(A) Example microscope field and nuclei types. (B) Image analysis workflow with two 

pipelines: Illumination correction pipeline and main pipeline to segment nuclei, speckles/

spots and measure features. (C) Machine learning workflow to classify nuclei. (D) 

Histograms of the top two distinguishing features, or rules, in the classifier. The most 

distinguishing feature is speckles per nucleus, with fibroblast nuclei averaging >6 speckles 

and hepatocyte nuclei ~1. The next most distinguishing feature is Zernike moment [1,1], one 

of many coefficients of a Zernike polynomial fit to a binary image of each nucleus, which 

when combined can reconstruct the shape of the nucleus. Many more rules comprise the 

classifier to help distinguish the nuclei, which is a benefit of the machine learning approach 
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here. These rules are available for inspection at http://cellprofiler.org/

published_pipelines.html.
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Figure 3. Platform and Assay Characterization.
(A) Brightfield image of feeder layer coculture of J2-3T3 fibroblasts and cryopreserved 

primary human hepatocytes. Signal strength and variability of attendant high-throughput 

assays, shown in ranges relevant for screening – (B) AlamarBlue viability assay, (C) image-

based hepatocyte viability assay, (D) albumin competitive ELISA functional assay (higher 

signal corresponds to lower albumin content), (E) urea colorimetric assay, (F) cytochrome 

P450 activity assay; for hepatocyte density, 1.0x indicates 2000 hepatocytes per well; 0.5x 

indicates 1000 hepatocytes per well, 2.0x indicates 4000 hepatocytes per well; 4.0x indicates 

8000 hepatocytes per well. (G) Puromycin selection curve post transduction of J2-3T3 

fibroblasts with lentiviral shRNA library in high-throughput liver platform; (H) infection 

efficiency of J2-3T3 fibroblasts with lentiviral library in high-throughput liver platform; (I) 

protein knock down confirmation via Western analysis. (J) High-throughput assay quality 

metrics. Z’-factors were calculated for two-fold changes in the hepatocyte population and 

thus used positive controls of “2x hepatocytes” hepatocytes per well and negative controls of 

“1x hepatocytes” per well. Error bars represent standard deviation.
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Figure 4. Validation screen.
(A) Primary screening data and hit selection. Due to the competitive nature of the albumin 

ELISA, higher ELISA z scores reflect lower albumin output. “Empty” red dots represent 

cultures whose fibroblast feeder layer was not treated with any lenti-virus but still underwent 

puromycin selection; these effectively became hepatocyte-only cultures that lacked 

fibroblast co-culture support; or the 44 “control vector” blue dots, 32 dots represent 22 

distinct shRNA vectors targeting various reporter genes not found in wild type J2-3T3s to 

illustrate any off-target effects ubiquitous to shRNAs, 8 dots represent replicates of a GFP-

PAC fusion-expressing vector, and 4 dots represent replicates of a non-hairpin (non-

palindromic) expressing pLKO vector. “Experimental” black dots represent 318 shRNA 
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vectors designed to knock down the 59 genes of interest, with an average of 5.4 shRNAs/

gene. Green boxes indicate significantly (Z>3) impaired hepatocyte viability or phenotype 

on both a population and individual cell level. Final hit selection utilized the following 

algorithm: 1. [Infection efficiency >20%] AND 2. [z_ELISA > (−0.37 × z_HepCount + 3) 

OR z_ELISA > 3] AND 3. [number of active hairpins per gene > 2 OR z_ELISA > 4]. (B) 

Representative hit candidates.
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Table 1.

Genes tested in validation screening.

Gene Protein Gene Families Gene
ID

Acta1 Actin, alpha 1 Actins 11459

Adm Adrenomedullin Endogenous ligands 11535

Ccl9 Chemokine ligand 9 Endogenous ligands 20308

Cd44 CD44 antigen CD molecules 12505

Cdh13 T-cadherin Major cadherins 12554

Cdkn1a Cyclin-dependent kinase inhibitor 1A Cyclin-dependent kinase inhibitors 12575

Col8a1 procollagen, type VIII, alpha 1 Collagens 12837

Cp Ceruloplasmin Multicopper oxidases 12870

Ctgf Connective tissue growth factor Matricellular proteins 14219

Cwc22 Functional spliceosome-associated protein B CWC22 80744

Cyba Cytochrome B-245, alpha polypeptide p22phox 13057

Dcn Decorin Small leucine-rich repeat proteoglycans 13179

Ddx3y DEAD Box Helicase 3, Y-linked DEAD-box helicases, Minor histocompatibility 
antigens

26900

Dhfr Dihydrofolate reductase Dihydrofolate reductase 13361

Dkk3 dickkopf WNT signaling pathway inhibitor 3 dickkopf 50781

Dlk1 Deltalike 1 homolog EGF-like homeotic 13386

Dpysl3 Dihydropyrimidinase-like 3 DHOase 22240

Dtd1 DtyrosyltRNA deacylase 1 DTD 66044

F2r Thrombin receptor G-protein coupled receptor 14062

Fhl1 Four and a half LIM domains 1 Four and a half LIM domains 14199

Figf Vascular endothelial growth factor D PDGF/VEGF 14205

Gtf2h1 general transcription factor II H, polypeptide 1 (62kD subunit) General transcription factors 14884

H2-K1 MHC class I antigen MHC I antigen 14972

Hmgb1 high mobility group box 1 Canonical high mobility group 15289

Hnrnpa3 Heterogeneous nuclear ribonucleoprotein A3 RNA binding motif containing 229279

Hnrpdl Heterogeneous nuclear ribonucleoprotein D-like RNA binding motif containing 50926

Htra1 protease, serine, 11 (Igf binding) Trypsin 56213

Ifi204 interferon, gammainducible protein 16 Pyrin and HIN domain 15951

Ifi27l1 interferon, alpha-inducible protein 27-like 1 IFI6/IFI27 52668

Igfbp2 Insulin-like Growth Factor Binding Protein 2 IGFBP 16008

Inhba activin∣inhibin beta A Endogenous ligands 16323

Irf1 Activating transcription factor 3 Basic leucine zipper proteins 16362

Jup Junction plakoglobin Armadillo repeat containing 16480

Lasp1 LIM and SH3 protein 1 LIM / nebulin 16796

Mlf1 Myeloid leukemia factor 1 MLF 17349

Myo1b Myosin IB Myosin, class I 17912
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Gene Protein Gene Families Gene
ID

Ndn Necdin MAGE 17984

Pdlim1 PDZ and LIM domain 1 Enigma protein 54132

Pkp2 Plakophilin 2 Armadillo repeat containing 67451

Pold2 Polymerase, delta 2, accessory subunit DNA-directed polymerases 18972

Prl2c3 Prolactin family 2, subfamily c, member 3 Growth hormone 18812

Prrc1 Proline-rich coiled-coil 1 PRRC1 73137

Ptprf Protein tyrosin phosphatase, receptor type, F Fibronectin type III domain containing 19268

Racgap1 Rac GTPase Activating Protein 1 GTPase-activating protein 26934

Rgnef Rho interacting protein 2∣Rho specific exchange factor Rho guanine nucleotide exchange factor 110596

Rock2 Rho-associated coiled-coil containing protein kinase 2 Pleckstrin homology domain containing 19878

Sec23a Sec23 Homolog A SEC23/SEC24 20334

Sfrs3 Serine/Arginine-rich splicing factor 3 RNA binding motif containing 20383

Shc1 src homology 2 domain containing transforming protein 1 SH2 domain containing 20416

Snx10 Sorting nexin 10 Sorting nexins 71982

Sorbs1 Sorbin and SH3 domain containing 1 Sorbs1 20411

Ssb Sjogren syndrome antigen B RNA binding motif containing 20823

Tardbp TAR DNA binding protein RNA binding motif containing 230908

Timm8a1 translocase of inner mitochondrial membrane 8 homolog a small Tim 30058

Timp2 TIMP metallopeptidase inhibitor 2 Tissue inhibitor of metallopeptidases 21858

Tpd52 Tumor protein D52 TPD52 21985

Tsnax Translin-associated factor X Translin 53424

Ttk TTK protein kinase TTK protein kinase 22137

Xlr Xlinked gene family of Bcell surface antigens Xlr 22441
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Table 2.

Hit candidate genes from validation screen.

Tier Gene Protein Description

0 DCN Decorin  Positive Control

1

H2-K1 MHC class I antigen  Strongest hits from validation screen:
 • Multiple independent hairpins
 • Good reproducibility
 • KD effects are consistent within screen an with prior predictions

Ttk TTK protein kinase

2

Rgnef Rho interacting protein 2∣Rho specific exchange 
factor

 • Multiple hairpins
 • Effects are consistent within screen and with prior predictionsPkp2 Plakophilin 2

Mlf1 Myeloid leukemia factor 1

3

CD44 CD44 antigen

 • Multiple hairpins
 • Effects are mostly consistent within screer and with prior predictionSsb Sjogren syndrome antigen B

Tsnax Translin-associated factor X

4

Shc1 src homology 2 domain containing transforming 
protein 1

 •  Multiple hairpins
 • Effects are consistent within screen

Inhba Activin∣inhibin beta A

Srsf3 Serine/Arginine-rich splicing factor 3

Rock2 Rho-associated coiled-coil containing protein 
kinase 2
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