Skip to main content
. 2019 Jan 23;13:17. doi: 10.3389/fnins.2019.00017

Table 1.

Multiple linear regression of the BRS (gain) and BEI estimated by the sequence method for original SAP and PI series.

LP filtered series only HP filtered series only LP + HP filtered series



BRS BEI BRS BEI BRS BEI
d R2 R2 R2 R2 R2 R2

0 0.06 0.06 0.89 0.84 0.89 0.85∗#
1 0.06 0.05 0.86 0.84 0.86 0.84
2 0.01 0.01 0.62 0.80 0.63 0.80
3 0.04 0.05 0.89 0.86 0.89 0.86
4 0.08# 0.00 0.76 0.90 0.76 0.90
5 0.03 0.16# 0.72 0.91 0.72 0.91
6 0.02 0.01 0.85 0.80 0.86 0.80
7 0.05 0.01 0.66 0.81 0.66 0.82
8 0.02 0.02 0.78 0.82 0.78 0.82
9 0.04 0.02 0.91 0.81 0.91 0.81
10 0.04 0.00 0.85 0.83 0.86 0.83
11 0.03 0.09# 0.84 0.83 0.84 0.83
12 0.04 0.15# 0.85 0.67 0.85 0.69

The gain estimated from low-pass (LP) and high-pass (HP) filtered series were taken individually or combined as independent variables of the model. The same procedure was applied, separately, for the BEI. The minimum sequence length was set to n = 3. BRS: baroreflex sensitivity; BEI: baroreflex effectiveness index; SAP: systolic arterial pressure; PI: pulse interval; d: delay of the sequence method; R2: the coefficient (between 0 and 1) expressing how well each model describe the dependent variable; #P < 0.05 for the association between the original (dependent) and LP series; P < 0.05 for the association between the original (dependent) and HP series.