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Abstract

Many recent studies have now shown that even under healthy conditions, the bladder and urinary 

tract harbors its own microbial community, collectively known as the urinary microbiota. This 

contradicts the long held notion that urine is a sterile environment in the absence of an acute 

infection. Given this relatively new discovery, many basic questions which are critical for our 

understanding of the role that the urinary microbiota plays in human health and disease remain 

unanswered. As this is an emerging area of study, optimized techniques and protocols to identify 

microorganisms in the urinary tract are still being established. This is made more challenging for 

the urinary microbiota given its low microbial biomass. A clear understanding of the unique 
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technical considerations of low microbial biomass samples, as well the impact of key elements of 

experimental design and computational analysis on downstream interpretation will improve the 

interpretability and comparability of results across methods and studies both for the urinary 

microbiota as well as other sites of low microbial abundance.

Introduction

The bladder and lower urinary tract have traditionally been considered a sterile environment 

where the presence of bacteria, revealed by culturing, is indicative of an infection. However, 

recent studies indicate that urine is actually not free of bacteria under healthy conditions1–8. 

These studies have sampled catheter-collected and clean-catch midstream urine as a 

reflection of the bladder and genitourinary microbiota (bacteria and other microbes) 

respectively and have identified a number of bacteria that are not detected by clinical 

microbiology but that can be detected using 16S rRNA gene sequencing2,5 and expanded 

culture techniques3,4,9. Understanding the normal microbial composition of the bladder and 

lower urinary tract in healthy individuals is essential so that microbial changes associated 

with bladder disorders such as overactive bladder syndrome, urgency urinary incontinence, 

interstitial cystitis, and recurrent urinary tract infections can be recognized.

In other regions of the body, resident microbes play a key role in maintaining homeostasis. 

Modulating these microbial communities through probiotics, prebiotics, or microbiota 

transplants has been explored as a therapeutic strategy for a variety of human diseases10. 

Likewise, mapping the healthy urinary microbiota and identifying deviations from normal 

may radically transform how we treat women and men with bladder disorders11,12. For 

example, literature from gut microbiota studies suggest that overuse, prolonged use, or 

incorrect use of antibiotics can alter microbial composition. This predisposes the host to 

colonization by pathogenic bacteria such a clostridium difficile13–15. Although a similar 

level of evidence does not yet exist in the genitourinary microbiota literature, a similar 

phenomenon may occur and explain why treatment with antibiotics for asymptomatic 

bacteriuria significantly increases the risk of recurrent UTI in young women16. It is possible 

that treatment for acute as well as recurrent UTI with oral and parenteral antibiotics may 

reduce the presence of beneficial bacteria that combat pathogenic ones. An understanding of 

the normal urinary microbiota may change our treatment approach, such that we focus more 

on rebuilding a more resilient microbiota that decreases host susceptibility to pathologic 

bacteria rather than antibiotic driven destruction of pathologic bacteria along with collateral 

damage to normal microbiota.

However, because this is a newly emerging field, optimal techniques to identify the 

microorganisms in the urinary tract and other sites of microbial scarcity that were previously 

thought to be sterile such as the lung and placenta, are not yet established. In contrast to 

other human body sites such as the gut and vagina, the urinary tract appears to harbor a 

relatively small amount of bacteria (less than 105 colony forming units [CFU] per milliliter 

compared to 1012 CFU that is typically found in gut microbiome samples)3,4. Thus, 

techniques for sample collection and data analysis need to account for issues that may arise 

due to the low microbial biomass environment. A consistent and high yield analysis pipeline 
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is needed to help design studies appropriately and optimize the quality of our biological 

conclusions.

The purpose of this review is to give an overview of the methodology currently used to study 

the human microbiota and their genes (microbiome) in general, and to discuss elements of 

experimental design and data analysis that can have a large impact on studies of the urinary 

microbiota in particular (Figure 1). This information will be useful for researchers seeking to 

study the urinary microbiota as well as other sites of low microbial abundance. Our review is 

divided into four main sections: 1) considerations for sample collection, 2) considerations 

for laboratory methods to identify microbial communities, 3) sources of contamination and 

approaches to control for them, and 4) computational considerations for data processing and 

analysis.

1. Considerations for sample collection

Bacteria isolated from urine are considered to be a reflection of the microbiota that resides in 

the bladder and lower urinary tract. While urine is relatively easy to collect, careful 

considerations must be made in order to minimize contamination of samples and maximize 

the microbial information that can be extracted from these samples. In addition, to minimize 

unintended variability, efforts should be made to collect specimens in a standardized manner 

throughout a study. Once collected, samples should be stored and transported under 

bacteriostatic conditions. Indeed, sample handling conditions are likely to profoundly impact 

the composition of a microbial community from its normal human environment. For 

example, oxygen exposure may promote the propagation of aerobes but induce cell death 

among strict anaerobes within minutes. Thus, variables such as temperature, pH and oxygen 

tension are all factors that should be controlled and standardized throughout sample 

collection and processing. To minimize contamination (discussed further below), samples 

should ideally be processed in a biosafety cabinet after specimen collection.

Specimen collection method.

When designing an experiment, the investigator should carefully weigh the benefits and 

drawbacks of each sampling method and determine if the sampling method chosen will 

appropriately address the scientific question. Methods for collecting urine specimens 

directly from the bladder include suprapubic aspirate and transurethral catheter. To 

investigate the genitourinary microbiota arising from the lower urinary tract and surrounding 

genital areas, midstream clean-catch voided specimens can be used.

Suprapubic aspirates, where a needle is used to puncture the skin and abdomen to aspirate 

urine from the bladder directly, provides the cleanest method of urine collection with 

minimal contamination1. Risks associated with this collection method include pain 

associated with the use of a needle, and the possibility of traversing intestinal contents. 

Thus, collecting urine in this way for research or clinical purposes may not be practical due 

to the invasiveness and risks of the procedure.

Collecting urine using a transurethral catheter is less invasive, and the bacterial communities 

identified using this sampling method have been shown to be consistent with samples 
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collected by suprapubic aspirate in women1. Risks associated with this collection method 

include urethral irritation as well as discomfort during and following catheterization. There 

is also a small risk of acquiring a urinary tract infection. Despite these risks, this approach is 

generally well tolerated with minimal side effects in the research setting.

Obtaining a clean-catch midstream urine specimen is the least invasive and the easiest way 

to obtain urine from participants; however, it only allows characterization of the 

genitourinary microbiota including those found in the lower urinary tract and genital 

regions, not explicitly the bladder. Due to anatomical differences, urine collection from men 

and women generates different issues that must be considered to minimize contamination. 

One challenge with collecting midstream urine specimens from women is potential 

contamination from the surrounding vulvovaginal region, which has its own microbial 

environment. Wolfe et al. demonstrated that urine collected by midstream clean catch can be 

contaminated by vulvovaginal microbiota1. The bacterial profile of each individual’s clean-

catch urine specimen was more similar to that individual’s vaginal bacterial profile than to 

the urine specimen profile collected from the same individual by suprapubic aspirate. Other 

approaches have been used to minimize vulvovaginal contamination of midstream urine 

samples from female participants. For example, Siddiqui et al. collected urine from women 

using clean-catch with labial separation under the supervision of a trained nurse in order to 

minimize contamination6,8. However, these studies did not compare the urinary microbiota 

profiles obtained to vulvar, vaginal, or catheter-collected specimens, so the success of this 

technique at minimizing vulvovaginal microbiome contamination is unknown. In general, 

obtaining a clean-catch midstream urine specimen that is free of microbiota from the 

vulvovaginal area is difficult. It may be possible to identify and computationally remove the 

signal from the vulva and/or vaginal microbiome prior to downstream analysis, but currently 

no standard analytical approach for this exists. If an approach were successfully developed, 

voided urine would provide a means to identify bacteria from the lower urinary tract with 

minimal contribution from surrounding tissue.

In men, there is a decreased risk of contamination from surrounding tissue. To date studies 

of the male urinary microbiota have primarily been from clean catch voided specimens17–19. 

However, it is currently unknown whether the male urethra has a microbial environment 

different from that of the urinary bladder. The male urinary microbiota has been found to be 

distinct from the microbiota inhabiting the coronal sulcus19, but similar to the microbiota 

identified from urethral swabs17,18. It is likely that, like women, the bladder of men has a 

distinct microbiome and future studies should be design to determine if the male bladder 

microbiome contributes to lower urinary tract disorders in men.

Sample volume.

Another consideration when collecting samples is the amount of urine needed to extract 

bacterial DNA from urine. One key factor is the use of voided versus catheter collected 

urine, since catheter collected urine will contain less amount of bacteria. Studies have had 

high success rates (>85%) of identifying bacteria from voided urine using 1–2mL20. 

However, studies investigating the bladder microbiome with catheter collected urine were 

only able to extract bacterial DNA from about half of the samples collected using 1–2 mL of 
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urine.1,5,21 By increasing the amount of urine collected to at 30 – 50 mL, Karstens et al. 

have reported successful extraction of bacterial DNA from almost all (95%) samples with 

catheter-collected urine22. Thus, since urine has a low microbial biomass, there is likely 

more success when extracting and amplifying bacterial DNA from larger sample volumes. 

The ideal urine volume needed to achieve high yield is yet to be determined, but 30 – 50 mL 

has proven to be successful for studies of the bladder22 and genitourinary6,8 microbiota.

Specimen storage.

Specimens for sequencing should be frozen as soon as possible. Freezing samples upon 

collection allows for subsequent parallel processing of multiple samples, minimizing 

untraceable batch effects that can occur during sample processing. As of now, there is no 

published study examining the effect of sample handling and storage conditions on the 

downstream analysis of the urinary microbiota. Thus, no definitive guidelines currently 

exist. Extensive research regarding the influence of storage conditions on the microbial 

composition from other body sites, such as the vagina, skin, and gut, has been conducted. 

The effect of storage at −20C and −80C has been found to have little impact on microbial 

composition for these samples23,24. If immediate freezing and storage is not possible, 

freezing delay (e.g. storage either at room temperature or 4C) can introduce variation in 

sample composition. In other microbiota sites, these alterations have been minimized by use 

of different buffers25. However, it is currently unknown if these findings translate to urine 

specimens.

Sample metadata.

The human microbiome is dynamic and highly influenced by its host environment. In the 

gut, dietary changes26, aging27, and lifestyle28 amongst other factors have been found to 

affect microbial composition. In the vagina, sexual activity and the menstrual cycle have 

been associated with changes in the composition of the vaginal microbiome29. Such 

variations in the urinary microbiome are currently under-studied, but compositional 

differences that covary with age and sex have been identified in the genitourinary 

microbiome7. Therefore, information about study participants should include such 

parameters as age, sex, body mass index, menopausal status and medical history, in addition 

to information and questionnaires about the clinical condition being examined. Additional 

information such as dietary preferences, over the counter and prescription drug use including 

estrogen products or antibiotics, sexual activity, and use of genital wipes or lubricants should 

also be collected as they may influence the composition or function of the urinary 

microbiota. Additionally, detailed information about the sample collection such as time of 

day and study staff involved with sample collection and sample handling should be recorded. 

These additional metadata can be used for exploratory data analysis to identify unanticipated 

relationships with the composition of the microbiota (i.e. batch effects), which may need to 

be controlled for in the analyses.
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2. Methods to identify microbial communities

Strategies for identifying microbes.

Once samples have been collected, there are a variety of complementary methods currently 

used to identify the microbial composition of a sample. In addition to conventional culture-

based methods, there are DNA sequencing-based methods. Whole-genome shotgun 

sequencing (metagenomics) aims to sequence all of the bacterial genes in a given sample, 

while marker gene sequencing aims to sequence a specific gene region. Common marker 

genes are the 16S ribosomal RNA (rRNA) gene that is specific to bacteria and archaea; the 

18S rRNA gene for eukaryotes; and the internal transcribed spacer (ITS) for fungi. 

Additional methods for investigating microbiota include expanded quantitative urine culture 

(EQUC), which uses a variety of media and incubation conditions to grow bacteria that do 

not grow under standard culturing conditions4,9,30; and quantitative PCR, which provides a 

targeted approach to quantify specific bacteria31. While certainly useful, these latter two 

methods may require a priori knowledge of physiological or DNA sequence properties of 

constituent bacteria and hence are inherently selective. The remainder of this review will 

focus on the major steps involved in microbial community profiling by 16S rRNA 

sequencing, since this technique is less intrinsically biased and currently the most widely 

adopted method for studying complex microbial communities.

The 16S rRNA gene is a highly conserved gene that exists in all bacteria and archaea, and 

has been used to study bacterial phylogeny since the late 1970’s32,33. These studies led to a 

major shift in how scientists classify microorganisms from phenotypic classification (e.g. 

Gram-positive bacteria) to taxonomic classification into various kingdoms, phyla, classes, 

orders, families, genera, and species. The 16S rRNA gene is approximately 1,550 base pairs 

long and is composed of multiple hypervariable regions that vary in sequence between 

species and that are flanked by highly conserved regions. The conserved regions allow the 

16S rRNA gene to be targeted by primers for broad PCR amplification, while sequence 

variation in the targeted hypervariable region allows for taxonomic identification of the 

bacteria present in a sample. Importantly since the degree of variation of samples acts as an 

evolutionary chronometer, their (dis)similarity also reveals the relatedness of particular taxa, 

which also may give insight to shared biological properties. Most 16S rRNA gene 

sequencing studies target a specific hypervariable region or set of adjacent hypervariable 

regions, which typically allow for taxonomic identification down to the genus level. Because 

16S rRNA sequencing cannot discriminate DNA from viable or non-viable bacteria, it is 

worth noting that most microbiota analyses represent a snapshot of both the living and the 

dead microbiota.

DNA extraction.

DNA extraction from bacteria involves two major steps of cell lysis and DNA purification. 

In the first step, the cell membrane is chemically lysed using detergents and surfactants. 

Heat and/or mechanical lysis (e.g. bead beating) can expedite this process and is often used 

for more complex or fibrous sample types such as stool. In addition, proteases and RNAases 

can be used to breakdown proteins and RNA respectively to improve DNA yield and limit 

non-DNA contamination. In the second step, DNA is purified from cellular debris, salts, 
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proteins, and other remaining contaminants in addition to reagents used for cell lysis. DNA 

purification techniques include: ethanol/isopropanol precipitation; phenol-chloroform 

extraction, in which aqueous phase DNA is separated from phenol-denatured proteins that 

segregate to a distinct organic phase; or DNA adsorption to a solid phase (e.g. silica) 

minicolumn, in which DNA binding is modified by pH and salt concentration.

The DNA extraction technique chosen will significantly affect how faithfully the bacterial 

composition of the original sample is represented by the DNA extracted from it. Some 

bacteria, such as Gram-positive bacteria and Mycobacteria, may be more difficult to lyse 

than others in a microbial community, and hence become underrepresented34. On the other 

hand, if an extraction method is too harsh, the DNA from the easily lysed species may 

become sheared. Currently, there is no standard technique that works equally well for lysing 

all bacteria in a given sample35, though methods involving bead beating and/or mutanolysin 

are recommended to effectively lyse cells34,36. Future studies should consider comparing 

different DNA extraction methods to identify optimal methods for DNA extraction from 

urine specimens, as has been performed for a variety of samples with high and low microbial 

biomass such as feces37, cervicovaginal lavage samples,38 and marine biofilms39.

While there have not been comprehensive studies investigating optimal methods for DNA 

extraction from urine, there are some common practices amongst urinary microbiota 

researchers. In common with other high volume, low microbial biomass samples such as air 

particulates40, sea water or glacial ice41, microbes within a urine sample are typically 

concentrated through filtration and/or centrifugation prior to DNA extraction. After 

concentration, DNeasy blood and tissue kit (Qiagen, Valencia, CA) has been successfully 

used for urinary microbiome studies4,6,8,22

PCR amplification.

The use of a marker gene such as the 16S rRNA gene for community profiling increases the 

efficiency of sequencing effort, but at the cost of multiple sources of variability introduced 

during the PCR amplification, which is required to generate amplicons for sequencing. 

Examples, which have been extensively reviewed elsewhere42,43, include the fidelity of 

DNA polymerases (each with a distinct error profile); quantity of input DNA (too little or 

too much DNA may inhibit a PCR reaction); cycle number (a high number of PCR cycles 

significantly enhances the likelihood of amplifying contaminant DNAs); choice of primers 

(which may bias amplification efficiencies toward some species over others); and other PCR 

reaction conditions. Additionally, chimeric sequences may arise during PCR amplification, 

when two distinct DNA sequences anneal to form a new, non-biological sequence, which is 

subsequently amplified. The likelihood of generating chimeras increases with the number of 

PCR cycles used42, and these chimeric sequences need to be removed bioinformatically 

(discussed in further detail in Computational Considerations).

Another major consideration is the choice of hypervariable region targeted by the primers 

used for PCR44,45. Since no individual hypervariable region will universally distinguish all 

bacteria, targeting different hypervariable regions will result in different biases in the 

analysis. There has not yet been a comprehensive systematic comparison of how well 

different hypervariable regions capture the diversity and composition of the urinary 
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microbiota. However, a variety of hypervariable regions have been used to study the urinary 

microbiota, including the V4 hypervariable region9,20,22, as well as V1–V32,7, V1–V2, and 

V6 regions6,8. This choice of variable region is particularly important for taxonomic 

identification, and may lead to the under- or over- representation of microbial taxa46 in 

addition to limiting the resolution of taxonomic identification possible47. This has also been 

observed for PCR reaction conditions such as annealing temperature48. While a direct 

comparison of the fidelity of representation by different variable regions has yet to be 

performed for urine samples, the V149 and V646 regions are reported to be inferior to other 

variable regions. We currently favor the V4 or V1–3 region. The former since this region is 

also used by the Earth Microbiome Project, the most comprehensive effort to date to 

characterize thousands of samples from a huge diversity of sample types50,51 The latter since 

this has been used by the vaginal microbiome project52.

Sequencing.

The development of high-throughput Next-Generation Sequencing (NGS) has revolutionized 

our ability to study microbial communities. NGS is used to identify the DNA sequences that 

represent the different types of microbiota in a sample when sequencing the 16S rRNA gene 

or performing metagenomics. Currently, popular NGS platforms are 454 pyrosequencing 

and Illumina’s HiSeq and MiSeq. Illumina sequencing is now becoming the norm due to its 

low cost and high speed51, as well as the withdrawal of the Roche 454 pyrosequencing 

platform in 2016. However, this is a rapidly developing field, and newer sequencing 

platforms are being developed, such as the Ion Torrent™ (Thermo Fisher Scientific), 

PacBio™ (Pacific Biosciences), and the MinION™ (Oxford Nanopore Technologies) 

sequencers.

The accuracy of sequence-based microbial profiling is highly dependent on the quality and 

pre-processing of the sequencing data. Sequencing errors originate from the NGS 

technologies and result in incorrect base calls (Figure 2) in the output sequences. 

Sequencing errors make it difficult to distinguish technical variability from biological 

variability, and leads to inflated diversity measures, incorrect taxonomic classifications, and 

incorrect inferred function. The unique challenges and importance of correcting sequencing 

errors in 16S rRNA gene sequencing data53,54 have prompted development of bioinformatics 

tools specifically for 16S rRNA gene sequencing data. Sequencing errors and the approaches 

to correct them are dependent on the specific sequencing technology being used. Most 16S 

rRNA gene sequence correction tools were developed for use with pyrosequencing 

technology, which is characterized by insertions, deletions, and homopolymers (stretches of 

identical nucleotides)55 and are not applicable to Illumina sequencing data, where errors are 

primarily substitution mis-calls (e.g. an A is called instead of a C) and are not randomly 

distributed54. Sequencing replicates can allow for identification and removal of spurious 

errors and has been used in sequence-based urinary microbiome studies5,9,21. Other 

commonly used approaches for handling Illumina sequencing errors are quality trimming 

and merging overlapping paired-end reads54, though more sophisticated algorithms such as 

Illumina-specific denoising algorithms56 and DADA257 are being developed and used (See 

Computational Considerations).

Karstens et al. Page 8

Nat Rev Urol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Handling contamination

Unlike other human-associated microbial communities, urine, especially catheter-collected 

urine, typically yields a low microbial biomass and the true signal arising from the resident 

microbiota can easily be overshadowed by signal arising from technical variation and 

experimental errors. The accuracy of microbial profiling in low microbial biomass samples 

is highly dependent on appropriately identifying, controlling, and correcting these errors 

(Figure 2). The previous sections described sources of error arising from PCR amplification 

(chimeras) and NGS (sequencing errors). An additional key consideration for accurate 

representation of a microbial community is the exposure of a urine or other sample to 

environmental or ‘foreign’ nucleic acids, either during sample collection, DNA extraction, or 

PCR amplification. This is most relevant for samples with low microbial biomass.

Sources of contaminants.

Sources of foreign nucleic acids may include patients, healthcare staff, laboratory personnel, 

airborne bacteria, surface contaminants on laboratory instruments and plasticware (e.g. PCR 

tube lids), molecular biology reagents, and cross-sample contamination. Indeed, it has been 

reported that contaminating DNA is widespread in commercially available kits used for 

DNA extraction and may represent a significant source of error in community profiling of 

samples prepared with these kits58–60. Batch-to-batch variation in otherwise identical kits 

can produce distinct contamination profiles58, and as noted by Glassing et al, a DNA 

extraction kit itself can generate over 20,000 reads from dozens of bacterial genera.60 Taken 

together, this makes contaminant DNA a major problem for low microbial biomass samples 

that can be difficult to identify.

Control of contaminants.

Some level of laboratory contamination should be anticipated in studies involving urine or 

other low microbial biomass samples. Unfortunately, there is little consensus on how to best 

mitigate contamination of microbiome samples by exogenous bacterial DNA and there is 

currently no standard technique to remove these contaminants. Procedures can be taken to 

minimize the amount of exogenous DNA introduced to the samples during sample 

processing, such as using pretreating reagents60,61 and using DNA extraction kits designed 

specifically to minimize contamination. However, Glassing el al. concluded that techniques 

involving pretreating reagents may not be suitable for low microbial biomass samples60. 

Analytic approaches have also been developed to identify and remove contaminants from 

low microbial biomass samples by exploiting the relationship between the abundance of 

individual bacteria and each sample’s overall bacterial DNA concentration62. Another 

potential analytical approach for identifying contamination is by using a Bayesian approach 

implemented in SourceTracker63 if the contaminant sources are adequately defined. Further 

studies identifying which of these approaches are suitable for identification of the urinary 

microbiota are needed.

Salter et al and others have developed lists of common laboratory contaminants58,60. While 

such lists are useful, care should be used in how this information is handled during analysis 

since some of these identified contaminants may actually be biologically meaningful in a 
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sample of interest. Hence, researchers should not simply disregard and remove all sequences 

mapping to bacteria in these lists, but should instead carefully monitor any results that 

include these bacteria and evaluate whether the result is most likely of biological relevance 

or a technical artifact.

Finally, not all contaminants in a PCR reaction arise from laboratory reagents and kits. For 

instance, cross-sample contamination can easily occur between PCR tubes, plate covers and 

pipette tips. This is particularly an issue for amplified DNA and hence the steps pre- and 

post- PCR amplification should be performed in dedicated spaces with their own equipment. 

Extra care should be taken to avoid cross contamination between low and high microbial 

biomass samples (i.e. do not process high and low microbial biomass samples at the same 

time).

Negative and positive control samples.

The use of both positive and negative controls is essential for evaluating the urinary 

microbiome or similar low microbial biomass samples. Negative controls can aid in the 

identification of the contaminants potentially introduced during lab processing and allow for 

identification of samples that only contain contaminant DNA and should not be used for 

downstream analyses. Ideally such controls are subject to every step of the DNA extraction 

procedure, are run in parallel to samples and incorporate use of original sample collection 

materials such as a ‘clean’ swab or rinse of sample collection materials. In addition to 

negative controls, positive controls are also necessary to verify that the experimental 

procedures worked as expected. A positive control can consist of a single known bacterial 

isolate or a mock community with a known polymicrobial profile. Mock communities can be 

created by mixing known proportions of pure cultures or be purchased commercially. Since 

the microbial community composition is known, the biases and accuracy of the experimental 

and computational procedure can be evaluated53, in addition to identifying contaminants in 

urine or other specimens from the laboratory methods used for sample preparation.

4. Computational considerations

Next generation sequencing generates millions of sequencing reads that require 

manipulation to generate information about the microbial community of interest. Many 

bioinformatics methods and tools have been developed to process the sequenced reads. 

Individual bioinformatics tools are typically joined to form a bioinformatics pipeline, where 

the input is the raw sequencing reads and the output is a data table of counts of identified 

bacteria (e.g., an operational taxonomic unit table) used for downstream statistical analysis 

(Figure 3). The exact workflow selected depends on the sequencing technology employed, 

the data format received from the sequencing facility, the experimental design, and available 

computational resources. Developing a bioinformatics workflow for 16S rRNA gene 

sequence processing is important but challenging in large part because software is 

continuously emerging and each processing step presents multiple decision points.

We review the key processing and data analysis steps below to help inform readers of the 

techniques commonly used to analyze 16S rRNA gene sequencing data from urine and 

summarize the methods that have been used in urinary microbiome papers using 16S rRNA 
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sequencing in Table 1. We also highlight current areas of development which should be 

considered for future studies involving the urinary microbiome. It should be noted that these 

steps are applicable to sequence data derived from a diversity of sample types including 

urine, vaginal swabs or feces.

Bioinformatics workflow software packages.

Currently, several software packages can implement the bioinformatics steps described 

below to process and analyze 16S rRNA gene sequencing data. Of these, Quantitative 

Insights Into Microbial Ecology (QIIME)64 and mothur65 are commonly used and have been 

used in urinary microbiome studies. Additional workflow software for 16S rRNA 

sequencing data exist and have been reviewed elsewhere66,67. These software packages 

enable users to create customized workflows without deep knowledge of the intricacies of 

each individual step. Furthermore, they can minimize problems that may arise when input 

and output formats differ between individual bioinformatics tools. QIIME and mothur are 

well documented and well supported through online communities, which are excellent 

resources for learning about the necessary steps for data processing and for troubleshooting 

when technical issues occur. When using these workflow packages such as QIIME or 

mothur, researchers should cite the package as well as specific methods used within the 

package.

Documentation.

Documenting the bioinformatics workflow specifics (including the method, version, and 

parameters used for each tool) is essential to ensure the fidelity of bioinformatics processing, 

as well as to promote analytical transparency and reproducibility in the urinary microbiome 

research field. Multiple options exist to support documentation and sharing data analysis 

workflows. Mothur users should generate a batch file to document each generated workflow. 

QIIME users may create Jupyter Notebooks to document the workflow and display key 

output or summaries, downstream analyses can be completed in R Markdown, which 

enables sharing key output and underlying code for analyses.

Preprocessing.

The first step in analyzing 16S rRNA sequences requires preprocessing the sequencing data 

so that it is in the proper format for subsequent processing steps. This commonly includes 

demultiplexing sequence reads if the samples are multiplexed, a common practice in which 

multiple microbiome samples are combined on a single sequencing run, and removing 

barcode and primer sequences. Preprocessing also includes quality filtering the sequences to 

avoid bias and minimize artifacts caused by PCR amplification and sequencing68. When 

sequencing produces overlapping paired-end reads, they can be merged prior to quality 

filtering, taking advantage of redundant base calls at overlapping nucleotide positions to 

generate improved posterior quality scores. Low quality reads are typically removed on the 

basis of quality scores, presence of ambiguous bases, expected errors, mismatched bases in 

the barcodes and primers, and sequence length. While this reduces the error rate by 

removing poor quality and low abundant sequences, a more rigorous, complementary 

solution (discussed further below) is to actively resolve sequencing errors using amplicon 

sequence variant algorithms that correct sequences, allowing for more data to be kept in 
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downstream analyses. This is an active area of research, and new computational approaches 

to infer and correct Illumina sequencing errors are currently being developed.

OTU clustering.

Commonly, 16S rRNA gene sequencing workflows employ operational taxonomic unit 

(OTU) clustering methods that group sequences according to their similarity. The primary 

purpose of clustering sequences into OTUs is to render downstream computations less 

intensive and to minimize noise. The choice of clustering method and similarity threshold 

significantly impact downstream results69, and a similarity threshold of 97% is commonly 

used. Most OTU-picking algorithms can be grouped into 3 categories: de novo, closed-

reference, and open-reference70. De novo approaches are data-driven methods that perform 

clustering based on the similarity of sequences in the data set to each other69,71. Closed-

reference methods cluster sequences based on similarity to a reference database70, and 

therefore results will depend on the database used. This is problematic for urine or other 

understudied tissues which may have fewer constituent bacteria represented in existing 

databases. Finally, open-reference methods first perform closed-reference OTU picking and 

then perform de novo picking on the sequences that failed to cluster using the reference 

database70,72. Though all of the urinary microbiome studies to date have used OTU 

clustering methods, a major limitation of OTU clustering methods is that they tend to 

overinflate the number of bacteria present in a sample, typically identifying thousands of 

unique OTUs from mock communities which have under 100 true OTUs present71,73. This 

can lead to incorrect determination of ecological diversity in microbiota samples obtained 

from the bladder, urinary tract, or any other tissue site.

Alternatives to OTU clustering.

Recently, a number of alternative approaches to OTU clustering have been developed, which 

we refer to as amplicon sequence variant (ASV) methods. ASV methods attempt to achieve 

finer taxonomic resolution than traditional OTU clustering methods. These methods consider 

the frequency distribution of sequences, and may attempt to identify and resolve Illumina 

sequencing errors. Some ASV algorithms, such as UNOISE274 and Deblur75, employ a 
priori models of sequencer error profiles, while DADA257 uses experiment-specific, 

adaptive error models estimated from the data, and MED76 uses information theory to 

distinguish closely related taxa. Once the errors have been estimated and corrected or 

removed, all variation is considered to be biologically meaningful. Thus, in addition to 

removing noise, ASV methods offer finer taxonomic resolution than is possible with 

traditional OTU clustering methods73. Benefits thus include more accurate estimates of 

microbial diversity since a) closely related bacterial taxa that OTU methods may group into 

a single entity may be more successfully distinguished as ASVs57,73,76 and b) ASV methods 

avoid assigning sequence variants that arise due to error into distinct OTU clusters57,74,75. 

Additional benefits of ASV methods over OTU clustering methods are that ASVs are more 

reproducible and reusable across studies, and are independent of reference databases73. 

These benefits may prove particularly useful for urinary microbiome studies.
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Chimera removal.

Removal of chimeric sequences, which are an artifact of PCR where two DNA sequences 

anneal to form a new, non-biological sequence and are amplified, is essential for 16S rRNA 

studies of any sample, but particularly low biomass or poorly characterized samples such as 

urine since the number of PCR cycles are usually high, and this has been shown to increase 

the formation of chimeras significantly42. Failure to remove chimeras can lead to errors such 

as inflated diversity and incorrect identification of novel taxa77. Chimera removal algorithms 

can be database-dependent (relying on a reference database of known sequences), which 

again may be problematic for urine, or database-independent (relying on the sequences in 

the dataset). Commonly used algorithms include ChimeraSlayer77, Perseus78, UCHIME79, 

which are included in the bioinformatics workflow packages QIIME and mothur.

Taxonomy assignment.

After sequences have been grouped into OTUs or ASVs, the representative sequences must 

be assigned a taxonomy to identify which microbes are present in the samples. In addition to 

choosing the appropriate database for taxonomy assignment, there are also various 

algorithms for assigning taxonomy to the individual sequence clusters, many of which are 

implemented in different bioinformatics workflow packages. Most methods use either a 

Bayesian k-mer matching approach (such as the RDP Classifier)80 or sequence matching 

based on similarity to a reference database. This is also a current area of active research and 

improved classifiers are being developed, such as the BLCA algorithm81, to improve 

taxonomic classification down to the species level.

The reference database chosen for taxonomy assignment will bias downstream results and 

must be taken into account when attempting to compare results from different studies. 

Currently, three major databases are commonly used: SILVA82, Ribosomal Database Project 

(RDP)83, and Greengenes84. All of these databases include taxonomy based on 16S rRNA, 

but take different approaches for obtaining names of associated organisms. Both SILVA and 

RDP offer contain taxonomy to the genus level and additionally contain information about 

additional marker genes (such as 18S and large subunit rRNAs) and eukaryotes (such as 

fungi). Greengenes is currently limited to 16S rRNA sequences, but contains some 

taxonomy down to the species level. Each database has several versions available to 

incorporate the generation of new information, and it is important to use the latest version 

for taxonomy assignment when possible. SILVA and RDP were both updated in September 

2016. Greengenes, though widely used, has not been updated since 2013. While there has 

yet to be a study specifically on database performance for the urinary microbiome, SILVA is 

currently the most frequently used.

Site-specific taxonomic databases can overcome some limitations of general databases. 

Microbial site-specific and hand-curated databases have been created, such as databases 

specific to the vaginal microbiome52 (optimized for V1–V3 region of 16S rRNA), the oral 

microbiome86 and the gut microbiome87. This is especially important in microbial niches 

that are poorly represented in the currently available databases or where species level 

resolution is expected to be of importance, such is in the urinary microbiome. The cultured 
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isolates from the bladder microbiota appear to be distinct from vaginal microbiota88, which 

supports the need for a urinary microbiome 16S rRNA database.

Data analysis.

After the above steps are completed, the processed 16S rRNA sequencing data takes the 

form of a large data matrix, where typically the columns represent individual samples and 

the rows contain the bacterial features at the taxonomic level of interest (Phylum, Class, 

Order, Family, Genus, or OTU/ASV). Each cell in the matrix thus indicates the number 

reads identified for a given bacterial feature and sample. There are several characteristics of 

these data that make downstream statistical analysis challenging. One issue is that there is 

variation in the total number of sequences obtained per sample (referred to as library size), 

which can vary by orders of magnitude. With Illumina MiSeq and HiSeq data, the number of 

sequences per sample can range from tens of thousands to millions of sequences, and with 

454 pyrosequencers this range is from hundreds to tens of thousands of sequences. The 

variation in the number of reads per sample does not necessarily reflect biological 

information, but can be due to technical variation. Normalization attempts to correct the 

distribution of the data and minimize the effects of uneven sampling depth on downstream 

analysis. Many different normalization strategies have been proposed for 16S sequencing 

data89–91, but no one-size-fits-all approach exists. Another technical challenge is the 

sparseness of the data matrix. Due to the heterogeneity of the human microbiome, many 

cells of the full data matrix will contain zeros, especially at lower taxonomic rankings 

(genus, OTU, or ASV level). This sparseness can cause problems when attempting to apply 

certain statistical analyses, violating their assumptions or weakening their power.

Identifying the community structure.

The microbial communities of a given sample are commonly described by measures of alpha 

and beta diversity. Alpha diversity describes the within-sample diversity by taking into 

account how many different types of bacteria are in a sample (richness, commonly measured 

with the Chao1 estimator) and the distribution of these bacteria (evenness). Many popular 

alpha diversity metrics, such as the inverse Simpson index and Shannon index, account for 

both richness and evenness of a sample. Beta diversity refers to between-sample diversity 

and describes how individual samples relate to each other. Beta diversity measures are based 

on a distance or dissimilarity matrix, usually calculated by the Bray-Curtis method92 (non-

phylogenetic) or UniFrac method93 (phylogenetic), and may account for information on the 

abundance of bacteria (weighted methods) or simply the presence or absence of bacteria 

(unweighted). Beta diversity is usually visualized with a Principal Coordinate Analysis plot 

(PCoA) or non-metric multidimensional scaling (NMDS). These are data reduction methods 

that summarize the multidimensional data to a new set of axes to represent the data in low-

dimensional space. Such methods provide a concise overview of the dataset, and can be used 

to identify whether any covariates are contributing to microbial composition.

Identifying differentially abundant bacteria.

A common goal of microbiome studies is to identify bacteria that are different between 

groups of individuals (for example, between women with urgency urinary incontinence and 

healthy controls) in order to identify whether specific bacteria are associated with a disease 
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or phenotype. Following the terminology of other -omic fields, this is referred to as 

differential abundance testing89,91.

Because 16S rRNA sequencing data is complex and does not follow a normal distribution, 

many studies have used non-parametric tests such as the Kruskal-Wallis rank sum or 

Wilcoxon rank sum tests to identify significant differences between groups. While these 

approaches do not require the data to come from a normal distribution, they do assume that 

the data come from identical distributions, and will result in erroneous conclusions if the 

data being compared come from different distributions or have unequal variances. 

Additionally, use of these tests when an appropriate parametric statistical test exists may 

result in a loss of power to detect differences. More recently, methods based on generalized 

linear models have been developed for identifying differentially abundant bacteria between 

groups. Some of these methods, such as DESeq294, have been adapted from approaches to 

identify differential expression from RNA-Seq data and repurposed to identify differentially 

abundant bacteria from 16S rRNA sequencing data. Additional methods such as ANCOM95 

and metgenomeSeq91 have been specifically developed for microbiome analyses. These new 

methods hold promise and are growing in popularity, though some statistical expertise is 

needed to appropriately use them.

Scope and limitations of sequencing-based microbiome studies

Identifying the individual microbes and understanding the structure of a microbial 

community is an important first step in understanding a new microbial environment. 

However, it is only a first step and additional studies must be conducted in order to 

understand the complex biology of human-associated microbial communities such as those 

of the urinary tract. 16S rRNA gene sequencing is one approach to sample the microbiota of 

an environment, but it has limitations, such as its semi-quantitative nature and biases that are 

introduced through sample and data processing. Furthermore, 16S rRNA gene sequencing-

based approaches currently used usually lack taxonomic resolution down to the species or 

strain level and do not give insight into the functional capabilities of the bacteria that are 

present, which would provide insight into how they contribute to host health. Functional 

microbial community profiling by shotgun metagenomics, transcriptomics, proteomics, and 

metabolomics can provide novel insights into the function of microbial communities and 

should thus be pursued as well12. Another limitation of sequencing-based approaches to 

understand human-associated microbes is that they only yield information about the 

microbial DNA in a sample. While this allows for identification of the types of bacteria 

present in a biological sample, it does not distinguish between bacteria that are live from 

those that are dead. The use of complementary techniques such as EQUC can identify live 

bacteria, though some may be missed if they are difficult to culture under these conditions.

Finally, though bacteria isolated from catheter-collected urine specimens are considered to 

be a reflection of the microbiota that resides in the bladder, sampling the microbiota from 

urine may not enable detection of all bladder-resident microbes. It is currently unknown how 

the urinary microbiome may differ from the urothelium-associated microbiota of the bladder 

wall. In light of the fact that the mucosal-associated microbiota of the intestinal tract are 

distinct from those found in stool96,97 such site-specific differences in the bladder are 
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probable and will likely require more invasive sampling procedures such as biopsies or 

lavages.

Conclusions

We are only just now beginning to understand the clinical relevance of the urinary 

microbiota in lower urinary tract health and disease88. Since the discovery of the urinary 

microbiota in 201017 and bladder microbiota in 20121, several studies have confirmed that 

most adult women have microbial communities in their bladders2,3 and lower urinary tracts. 

Furthermore, these microbes are been identified as live and cultivatable under non-standard 

culturing conditions6,20. The urinary microbiota appear to be altered in women with bladder 

disorders such as urgency urinary incontinence4,5,9,22 and interstitial cystitis8. 

Characteristics of these microbial communities have also been associated with successful 

treatment of UUI21 and post-treatment risk of infection5. These studies provide strong 

evidence that the genitourinary microbiota are likely clinically relevant and warrant further 

investigation.

As we begin to elucidate the role of genitourinary microbiota in bladder disorders as well as 

their potential role for therapy, we must consider the technical and computational nuances 

for low microbial biomass environments. This review provides initial framework to help 

shape community guidelines to maximize the potential of this emerging and highly 

interdisciplinary field of study.
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Key Points

• Like other areas of the human body, the urinary tract is inhabited by 

commensal microbes referred to as the urinary microbiota.

• Characteristics of the urinary microbiota have been associated with response 

to treatments, risk of infection, and urological disorders.

• Studying the urinary microbiota presents many challenges due to its low 

microbial biomass and proximity to other body sites with rich microbial 

environments.

• Further research is needed to understand these microbial communities and 

their relationship to urological disorders are warranted and require careful 

planning from sample collection to data analysis to ensure conclusions drawn 

are robust and reproducible.
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Figure 1. 
General overview of the workflow for 16S rRNA gene-based analysis of microbial 

communities, with specific considerations for urinary microbiome studies highlighted.
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Figure 2. Common errors in 16s rRNA sequencing-based microbiome studies.
Sequencing errors arise from incorrect base calling during sequencing and can be corrected 

when processing sequence reads with platform specific algorithms. Chimeric errors occur 

during the PCR amplification step and can be corrected for in the bioinformatics processing 

workflow. Contaminant errors arise from foreign bacteria being introduced to the sample 

throughout the sample collection and laboratory methods used to extract the bacterial DNA 

from the sample. Identifying and removing contaminant sequences is a particular challenge 

for samples with low microbial biomass.

Karstens et al. Page 25

Nat Rev Urol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Typical bioinformatics pipeline for 16S rRNA sequencing based microbiome studies. Raw 

sequence reads are preprocessed typically by merging paired end reads and quality filtering 

to remove low quality sequences. The sequence reads passing this step are then grouped into 

operational taxonomic units (OTUs) or amplicon sequence variants (ASVs). This results in a 

data matrix of OTU/ASVs per sample that is annotated with taxonomic assignments. This 

table is used for downstream analysis to describe and understand the microbial communities.
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Table 1.

Summary of bioinformatic methods used for processing 16S rRNA sequencing data from urinary microbiome 

studies

Sequencing Technology Workflow Package OTU Clustering Chimera Removal Taxonomic Database Taxonomic Classifier Reference

Sanger none none Bellerophon RDP RDP Classifier 17

Sanger none none Bellerophon unspecified, subset 
with Silva

RDP Classifier, 
subset with BLASTn 19

454 Pyrosequencing mothur mothur (unspecified) unspecified unspecified RDP Classifier 103

454 Pyrosequencing none none unspecified unspecified RDP Classifier 18

454 Pyrosequencing none mothur (unspecified) unspecified custom MEGAN 6

454 Pyrosequencing none mothur (unspecified) unspecified custom MEGAN 8

454 Pyrosequencing mothur mothur (unspecified) UCHIME RDP RDP Classifier 7

454 Pyrosequencing none none unspecified unspecified, subset 
with Silva

RDP Classifier, 
subset with BLASTn 19

Illumina MiSeq mothur mothur (unspecified) UCHIME Silva RDP Classifier 4

Illumina MiSeq mothur mothur (unspecified) UCHIME Silva METAGENassist 9

Illumina MiSeq mothur mothur (unspecified) UCHIME Silva RDP Classifier 5

Illumina MiSeq QIIME usearch blast Silva RDP Classifier 22

Illumina MiSeq QIIME uclust UCHIME Greengenes RDP Classifier 98

Illumina MiSeq none vsearch unspecified STIRRUPS unspecified 99

Illumina MiSeq QIIME open reference uclust unspecified Greengenes unspecified 100

Illumina MiSeq mothur mothur (unspecified) UCHIME Silva RDP Classifier 20

Illumina MiSeq QIIME unspecified unspecified unspecified + 
Resphera Insight unspecified 102

Illumina MiSeq QIIME open reference (unspecified) unspecified Greengenes unspecified 104

Illumina MiSeq QIIME open reference (unspecified) unspecified Greengenes unspecified 105

Illumina HiSeq QIIME not specified uclust unspecified Resphera Insight 106

Ion Torrent QIIME unspecified unspecified Greengenes unspecified, subset 
with BLASTn 101

Footnotes: Unspecified is indicated when the specific method was not mentioned in the manuscript’s methods section. The bioinformatics methods 

will vary according to the sequencing platform used (e.g. the chimera method Bellerophon85 was used on Sanger sequences, but is not commonly 
used on short reads produced by Illumina).
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