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Abstract

Rationale:MMPs (Matrix metalloproteinases) and their endogenous
tissue inhibitors may contribute to lung injury through extracellular
matrix degradation and modulation of inflammation and fibrosis.

Objectives: To test for an association between MMP pathway proteins
and inflammation, endothelial dysfunction, and clinical outcomes.

Methods:Wemeasured MMPs in plasma collected on acute
respiratory distress syndrome (ARDS) Day 1 from 235 children at
five hospitals between 2008 and 2017. We used latent class analysis to
identify patients with distinct MMP profiles and then associated those
profiles with markers of inflammation (IL-1RA, -6, -8, -10, and -18;
macrophage inflammatoryprotein-1a and -1b; tumor necrosis factor-
a and -R2), endothelial injury (angiopoietin-2, vonWillebrand factor,
soluble thrombomodulin), impaired oxygenation (PaO2

/FIO2
[P/F]

ratio, oxygenation index), morbidity, and mortality.

Measurements and Main Results: In geographically distinct
derivation and validation cohorts, approximately one-third of
patients demonstrated an MMP profile characterized by elevated

MMP-1, -2, -3, -7, and -8 and tissue inhibitor of metalloproteinase-1
and -2; and depressed active and totalMMP-9. ThisMMPprofile was
associatedwithmultiplemarkers of inflammation, endothelial injury,
and impaired oxygenation onDay 1 ofARDS, and conferred fourfold
increased odds of mortality or severe morbidity independent of the
P/F ratio and other confounders (95% confidence interval, 2.1–7.6;
P, 0.001). Logistic regression using both the P/F ratio and MMP
profiles was superior to the P/F ratio alone in prognosticating
mortality or severe morbidity (area under the receiver operating
characteristic curve, 0.75; 95% confidence interval, 0.68–0.82 vs. area
under the receiver operating characteristic curve, 0.66; 95% confidence
interval, 0.58–0.73; P = 0.009).

Conclusions: Pediatric patients with ARDS have specific plasma
MMP profiles associated with inflammation, endothelial injury,
morbidity, andmortality. MMPsmay play a role in the pathobiology
of children with ARDS.

Keywords: matrix metalloproteinases; pediatric intensive care
unit; pediatric acute respiratory distress syndrome; tissue inhibitor
of metalloproteinases; pediatric acute lung injury
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In children, the acute respiratory distress
syndrome (ARDS) is defined by clinical
oxygenation impairment and radiographic
evidence of new-onset noncardiogenic
pulmonary edema (1). This disease is
mediated by systemic inflammation,
pulmonary endothelial and epithelial
injury, and abnormal coagulation and
fibrinolysis, resulting in 15–20% mortality
and significant morbidity among survivors
(2–5). As such, identification of novel
biochemical pathways related to disease
onset and severity is of paramount interest
to clinicians and researchers.

MMPs (matrix metalloproteinases)
represent a potential class of proteins
involved in pediatric ARDS because of their
predominant localization to neutrophils,
monocytes, fibroblasts, and epithelial cells
(6–8); their direct role in extracellular
matrix degradation; and their ability to
modulate inflammation by cleaving
membrane-bound cytokines and
chemokines (9–11). More than 20 proteins
in this family have been described;
individual members share overlapping
functions as collagenases, gelatinases,
stromelysins, matrilysins, and activators of

a variety of proteins including pro–TNF-a
(tumor necrosis factor-a), pro–IL-1b, and
pro–TGF-b (transforming growth factor-b)
(9). Elevated levels of many MMPs have
been measured in lung fluid and plasma
of animals and adults with ARDS and are
associated with disease severity and mortality
(12–14). Furthermore, pharmacologic or
genetic inhibition of MMPs, such as MMP-3,
has been associated with decreased severity
of lung injury in preclinical models (15–17).
However, after the initial inflammatory
response to injury, some MMPs play
an important role in the resolution
of inflammation by downregulating
chemokinesis, inducing leukocyte
autophagy, and opposing the effects of
TGF-b (18, 19). In several animal models of
ARDS, pharmacologic or genetic inhibition
of MMP-9 leads to prolonged, unresolved
inflammation resulting in pulmonary
fibrosis (20, 21). In adults, an imbalance
in MMP-9 relative to its endogenous
inhibitor TIMP-1 (tissue inhibitor of
metalloproteinase-1) has been
demonstrated in several fibrotic diseases,
including idiopathic pulmonary fibrosis
(22–24). However, to date, evidence linking
MMP levels to pediatric ARDS
pathobiology and clinical outcomes is
lacking.

Therefore, the objective of this study
was to interrogate a wide spectrum of the
MMP family in the blood of children on Day
1 of ARDS and test for associations with
clinical outcomes. Furthermore, the clinical
observation that patients with similarly
impaired oxygenation on ARDS Day 1 can
progress to markedly different outcomes
suggests that there may be differences in
ARDS biology that cannot be observed at the
bedside (25, 26). As such, we hypothesized
that subgroups of pediatric ARDS patients
might exist and could be distinguished
using MMP measurements. Finally, we
hypothesized that these biologically
different groups would have specific
patterns of inflammation, endothelial
injury, and impaired oxygenation on ARDS
Day 1 and disparate clinical outcomes.

Methods

Patients
As described previously (27), patients were
enrolled with parent/surrogate consent in
an ongoing, prospective cohort between
2008 and 2017 if they were between 30 days

and 18 years of age, used positive pressure
ventilation, and met the Berlin diagnostic
criteria for ARDS (University of California
San Francisco IRB 10-00206) (28).
Patients younger than 36 weeks corrected
gestational age and those with limited goals
of care were excluded. We divided patients
into a derivation cohort, consisting of patients
enrolled at the primary site (University of
California San Francisco Benioff Children’s
Hospital), and a validation cohort, consisting
of patients enrolled at collaborating sites
(Oakland Children’s Hospital, Children’s
Hospital Central California, Children’s
Hospital Los Angeles, and American Family
Children’s Hospital).

Measurements
We collected plasma within 24 hours of
ARDS diagnosis and used a customized
multiplex immunoassay to measure MMP-
1, -2, -3, -7, -8, and -9 (total) and TIMP-1
and -2 (Myriad RBM), and an ELISA to
measure active MMP (aMMP)-9 (R&D). A
subset of measurements was repeated to
verify less than 15% intraassay variability.

Classification of MMP Profiles
We tested whether patients could be
grouped according to similar MMP profiles
using a model-based clustering approach
called latent class analysis (LCA; Mplus
version 7; see the METHODS section of
the online supplement). This method
allows identification of patients that are
biologically similar with respect to the
MMP pathway measurements and unlike
supervised clustering strategies, is agnostic
toward any distal outcome, such as
mortality. It also allows the inclusion of
patients with partially missing data by using
the Full Information Maximum Likelihood
approach (29). The optimal number
of patient groups was selected using
previously described criteria (25, 26, 30). To
determine whether MMP profiles found in
the derivation cohort also existed in the
validation cohort, we modeled latent groups
in the derivation cohort with parsimonious
linear regression, applied that regression to
the validation cohort to assign latent group
membership, and compared the assignments
with those made by independent latent
profile analysis.

Outcomes
Our primary outcome was hospital
mortality and the secondary outcomes were
morbidity, as estimated by the Pediatric

At a Glance Commentary

Scientific Knowledge on the
Subject: MMPs (matrix
metalloproteinases) and their
endogenous tissue inhibitors may
contribute to lung injury through
extracellular matrix degradation and
modulation of inflammation and
fibrosis.

What This Study Adds to the
Field: Approximately one-third of
children with acute respiratory distress
syndrome display an MMP profile of
elevated MMP-1, -2, -3, -7, and -8 and
tissue inhibitor of metalloproteinase-1
and -2; and depressed active and
total MMP-9. This MMP profile was
associated with multiple markers of
inflammation, endothelial injury, and
impaired oxygenation on Day 1 of
acute respiratory distress syndrome,
and conferred a fourfold increase in the
adjusted odds of mortality or severe
morbidity. Patients with this MMP
profile represent a high-risk subgroup
and merit further investigation.
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Logistic Organ Dysfunction (PELOD) score,
and the composite outcome of hospital
mortality or severe morbidity. The PELOD
score was taken from the highest individual
score recorded on pediatric ICU Days 1–7,
14, 21, and 28 (31). Severe morbidity was
defined as the top quartile of PELOD score
among survivors (PELOD >30). To
control for potential confounding, we
tested for associations between mortality
and age; sex; race; admission illness
severity; lung injury subtype; a diagnosis
of cancer or prior hematopoietic cellular
transplantation (HCT), which we have
previously shown to be strongly associated
with pediatric ARDS outcomes (5, 32, 33);
and white blood cell count, which we
hypothesized might be directly associated
with plasma MMP levels and ARDS
outcomes. Admission illness severity was
estimated by the PRISM-3 score and
the worst PaO2

/FIO2
(P/F) ratio and

oxygenation index (OI) recorded in the
first 24 hours after ARDS diagnosis.

Plasma Biomarkers
Measurement of inflammatory biomarkers
(IL-1RA, -6, -8, -10, and -18; macrophage
inflammatory proteins 1a and 1b; TNF-a;
TNF-R2) and endothelial injury biomarkers
(soluble thrombomodulin, angiopoietin-2,
von Willebrand factor) in this cohort was
described previously (4, 27, 34).

Statistics
Distributions of categorical and continuous
variables were compared across MMP
profiles using the Pearson chi-square and
Wilcoxon rank sum tests, respectively.
Multiple logistic regression was performed
to test for associations between latent
class assignment and the primary and
secondary outcomes, and area under the
receiver operating characteristic curve
(AUROC) was compared using a
nonparametric covariance matrix with
significance estimated by a two-tailed chi-
square statistic (35).

Results

Of 326 patients enrolled in the primary
study, 235 patients consented to and had
adequate plasma for MMP measurements
and were included in this study (Table 1).
Nonwhite race was more common
among patients without biomarker
measurements (see Supplemental Data 1

and Table E1 in the online supplement).
Because of limitations in available
blood volume, 170 of 235 patients had
all nine biomarkers measured and 65 of
235 patients had a subset of the nine
biomarkers measured.

Plasma Levels of Individual MMP
Pathway Proteins Are Associated
with Morbidity and Mortality
Compared with survivors, nonsurvivors
had higher Day 1 MMP-3 and TIMP-1 and
had lower aMMP-9 and aMMP-9/TIMP-1
ratio (Table 2). Among ICU survivors,
MMP-1, -2, -3, and -7 and TIMP-1
and -2 were each positively associated
with greater peak organ dysfunction as
assessed by the PELOD score (see Table E2).

Adjusted analysis. Measures of
pulmonary dysfunction (P/F ratio, OI),
multiorgan dysfunction (PRISM-3), a
history of cancer/HCT, and lower white
blood cell count were each associated
with ARDS mortality and multiple MMP
pathway proteins (see Tables E3–E7).
After adjustment for the P/F ratio and
cancer/HCT, mortality remained strongly
associated with Day 1 plasma MMP-3,
TIMP-1, and the aMMP-9/TIMP-1 ratio
(Table 2). aMMP-9 was associated with
mortality independent of the P/F ratio but
not independent of cancer/HCT status.

Pediatric ARDS Patients Have Two
Distinct MMP Profiles
To understand the broader relationship
between various MMP family proteins in
pediatric ARDS patients, we tested for the
presence of latent classes of patients with
similar MMP profiles using derivation and
validation cohorts (n = 126 and n = 109,
respectively). The derivation and validation
cohorts differed in distribution of race and
reason for ARDS but not in illness severity,
mortality, or the composite outcome
of mortality or severe morbidity (see
Supplemental Data 2 and Table E8). LCA
of the derivation cohort identified two
groups of patients with distinct MMP
profiles (see Tables E9 and E10). The group
with MMP profile 1 (n = 43) had elevated
MMP-1, -2, -3, -7, and -8 and TIMP-1 and
-2, and depressed active and total MMP-9
relative to the group with MMP profile 2
(n = 83) (Figure 1; see Table E11). Although
the distributions of each of the nine
measured MMP proteins differed between
the two groups, most of the variation
between the groups could be explained by

levels of MMP-2, -3, -7, and -9 and TIMP-1
(adjusted R2 = 0.816) (see Table E12).

We then independently applied
LCA to the validation cohort and again
saw patients form two groups, with profile 1
demonstrating elevated MMP-1, -2, -3, -7,
and -8 and TIMP-1 and -2, and depressed
MMP-9 relative to profile 2 (n = 42 and n =
67, respectively) (see Supplemental Data 3
and Tables E13 and E14). Although latent
groups in the derivation and validation
cohorts demonstrated similar profiles, these
profiles cannot be directly compared across
populations. Therefore, we fit a linear
regression model associating MMP-3, -7,
and -9 and TIMP-1 and -2 with latent
group assignment in the derivation cohort,
and then applied this model to the
validation cohort (see Table E15). In all but
three patients, latent group assignments
using this method were identical to those
made by LCA, suggesting external validity
of the latent profiles across the derivation
and validation cohorts. These data suggest
that two distinct MMP profiles exist in
pediatric ARDS, and that the probability of
any individual patient belonging to MMP
profile 1 can be accurately modeled using
just MMP-3, -7, and -9, and TIMP-1 and -2
levels.

MMP Profiles Are Associated with
Elevated Inflammation, Endothelial
Injury, and Impaired Oxygenation
In both the derivation and validation
cohorts, patients with MMP profile 1 had
significantly higher concentrations of
proinflammatory and antiinflammatory
markers, including IL-1RA, -6, -8, -10, and
-18; macrophage inflammatory protein-1a
and -1b; and TNF-a and -R2 (see Table
E16). Similarly, patients with MMP profile 1
had significantly higher concentrations of
markers of endothelial injury, including
angiopoietin-2, von Willebrand Factor,
and soluble thrombomodulin. However,
there was only weak evidence of impaired
oxygenation in patients with MMP profile 1.
These data associate MMPs with
inflammation and endothelial injury on the
first day of ARDS diagnosis and support the
broader biochemical uniqueness of the two
MMP profiles.

MMP Profiles Are Associated with
Mortality and Survivor Morbidity
In both the derivation and validation
cohorts, patients with MMP profile 1 had
significantly greater hospital mortality than
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patients with MMP profile 2 (26.7% vs.
12.7%, P = 0.047 and 34.5% vs. 8.0%, P,
0.001, respectively). Mortality rates for
patients with MMP profiles 1 versus 2
diverged within 1 week of ARDS diagnosis
(Figure 2).

Adjusted analysis. Cancer/HCT
patients were more likely than noncancer/
HCT patients to display MMP profile 1
in both the derivation and validation cohorts
(48% vs. 29%, P = 0.070 and 94% vs. 29%,
P, 0.001, respectively). After controlling for
the P/F ratio and cancer/HCT, MMP profile
1 remained independently associated with
both mortality (odds ratio, 2.31; 95%
confidence interval [CI], 1.02–5.23; P =
0.046) and the composite outcome of
mortality or severe morbidity (odds ratio,
4.0; 95% CI, 2.1–7.6; P, 0.001) in the
combined study population.

MMP Profiles Improve Prognostication
of Clinical Outcomes
Individually, the P/F ratio, OI, and MMP
profile each demonstrated similar AUROC
for the outcome of mortality and for the
composite outcome of mortality or severe
morbidity (see Table E17). Given the
finding that MMP profile 1 was associated
with clinical outcome independent of
the P/F ratio, we sought to quantify the
extent to which MMP latent profiles might
improve the ability of the P/F ratio to
identify high-risk patients on ARDS Day 1.
A logistic regression model incorporating
both the P/F ratio and MMP profile on
ARDS Day 1 was superior to the logistic
model using the P/F ratio alone in predicting
the composite outcome of mortality or
severe morbidity (AUROC, 0.75; 95% CI,
0.68–0.82 vs. AUROC, 0.66; 95% CI

0.58–0.73; P = 0.009) (Figure 3). Similarly, a
logistic regression model incorporating both
the OI and MMP profile on ARDS Day 1
was superior to the logistic model using the
OI alone (AUROC, 0.78; 95% CI, 0.71–0.85
vs. AUROC, 0.69; 95% CI, 0.62–0.77; P =
0.019). The composite outcome of mortality
or severe morbidity occurred in 53.1% of
patients in the top quartile of risk according
to the OI alone (26/49; positive likelihood
ratio, 2.26; 95% CI, 1.40–3.64), whereas the
composite outcome occurred in 67.4% of
patients in the top quartile of risk according
to the OI and MMP profile model (33/49;
positive likelihood ratio, 4.09; 95% CI,
2.44–6.88), demonstrating a doubling of the
positive likelihood ratio and a 27% relative
enrichment in the outcome when stratifying
patients using the combined model. These
data demonstrate that MMP profiles on

Table 1. Characteristics of Enrolled Patients with MMP Pathway Measurements

Characteristics All Patients (n = 235) Survivors (n = 193) Nonsurvivors (n = 42) P Value

Age, yr, median (IQR) 4.1 (1.0–11.5) 3.7 (0.9–11.3) 7.7 (2.5–12.6) 0.141
Sex, male, n (%) 125 (53.2) 98 (50.8) 27 (64.3) 0.112
Race, n (%) 0.712
White 160 (68.1) 132 (68.4) 28 (66.7)
Unknown 30 (12.8) 24 (12.4) 6 (14.3)
Black 17 (7.2) 15 (7.8) 2 (4.8)
Asian/Pacific Islander 15 (6.4) 13 (6.7) 2 (4.8)
Multiple 12 (5.1) 8 (4.2) 4 (9.5)
American Indian 1 (0.4) 1 (0.5) 0 (0)

Ethnicity, n (%) 0.568
Hispanic/Latino 84 (35.7) 67 (34.7) 17 (40.5)
Not Hispanic/Latino 139 (59.2) 117 (60.6) 22 (52.4)
Unknown 12 (5.1) 9 (4.7) 3 (7.1)

Lung injury etiology, n (%) 0.288
Pneumonia 127 (54.5) 104 (54.2) 23 (56.1)
Sepsis 49 (21.0) 38 (19.8) 11 (26.8)
Other 27 (11.6) 26 (13.5) 2 (4.9)
Trauma 13 (5.6) 11 (5.7) 2 (4.9)
Aspiration 12 (5.2) 10 (5.2) 2 (4.9)
TRALI 5 (2.2) 3 (1.6) 2 (4.9)

Cancer/HCT, n (%) <0.001
Cancer 26 (11.2) 11 (5.7) 15 (36.7)
HCT 29 (12.6) 14 (7.4) 15 (35.7)
Cancer or HCT 41 (17.5) 20 (10.4) 21 (50.0)

WBC, median (IQR) 7.8 (4.3–14) 8.9 (5.1–14.4) 3.9 (1.9–7.8) <0.001
Day 1 illness severity, median (IQR)

P/F 132 (84.3–220) 145 (88.3–239) 96.3 (72.2–157.3) 0.005
OI 10.1 (6.1–19.6) 9.3 (5.4–17.2) 15.3 (9.8–30.4) 0.002
PRISM-3 12 (7–20) 12 (6–19) 17 (11–20) 0.006

Day 3 illness severity, median (IQR)
P/F 173.9 (116.1–264.8) 194.7 (120–272) 125 (98.5–162) <0.001
OI 7.9 (4.5–14.5) 6.9 (4.3–13.8) 13.1 (9.7–21.7) <0.001
PELOD 11 (1–12) 11 (1–11) 11 (10–21) 0.002

Definition of abbreviations: HCT = hematopoietic cellular transplantation; IQR = interquartile range; MMP=matrix metalloproteinase; OI = oxygenation
index; PELOD= Pediatric Logistic Organ Dysfunction score; P/F ratio = PaO2

/FIO2
ratio; PRISM-3=Pediatric Risk of Mortality-3; TRALI = transfusion-

associated acute lung injury; WBC=white blood cell count.
Associations were tested with Fisher exact test for categorical variables and Wilcoxon rank sum for nonnormally distributed continuous variables. On
Day 1, P/F ratio n = 219; OI n = 198; PRISM-3 n = 198. On Day 3, P/F ratio n = 208; OI n = 181, PELOD n = 235. Bold P values indicate statistical
significance with an a priori set threshold of P , 0.05.
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ARDS Day 1 have the potential to improve

the prognostication of clinical outcomes.

Discussion
In this study, we measured a wide spectrum
of MMP family proteins in the plasma

of children with ARDS, discovered
associations with mortality and survivor
morbidity, and identified two latent groups
of patients with discrete MMP profiles.
MMP profile 1, characterized by elevated
MMP-1, -2, -3, -7, and -8 and TIMP-1 and
-2 and depressed active and total MMP-9,

was associated with markers of elevated
inflammation, endothelial injury, and
impaired oxygenation. Although only one
third of the cohort demonstrated MMP
profile 1, it was strongly associated with
morbidity and mortality independent of
known confounders. Inclusion of the plasma
MMP profile improved the prognostic
discrimination of the Day 1 P/F ratio and OI
for predicting the composite outcome of
mortality or severe morbidity. Furthermore,
theMMP profile 1 was more prevalent among
the cancer/HCT patients, suggesting a possible
dysregulated profile that might contribute to
the poor outcomes of this high-risk subgroup.

Individual Plasma MMP Pathway
Proteins Are Associated with
Morbidity and Mortality
The results of this study indicate that early
elevated plasma MMP levels are associated
with adverse clinical outcomes in pediatric
ARDS and augment similar associations
drawn from animal models and adult
cohorts, with one notable exception (14, 22,
36, 37). Our data demonstrated that
patients with MMP profile 1 displayed
lower plasma MMP-9 on ARDS Day 1
than patients with MMP profile 2, despite
progressing to worse clinical outcomes.
A recently published animal model of
ARDS demonstrated that intratracheal
instillation of lipopolysaccharide resulted
in peak plasma MMP-9 levels within 24
hours with resolution by 48 hours (38). In

Table 2. Plasma MMP Levels Are Associated with Mortality in Pediatric ARDS

Biomarker
Survivors (n = 193) (ng/ml)

[Median (IQR)]
Nonsurvivors (n = 42) (ng/ml)

[Median (IQR)] P Value
Adjusted OR
(95% CI)

Adjusted
P Value

MMP-1 1,092.4 (662.5–2,324.3) 1,665.5 (618.6–2,798.0) 0.215 1.2 (0.6–2.8) 0.688
MMP-2 486.1 (358.5–727.7) 517.9 (405.6–649.3) 0.704 1.2 (0.2–6.3) 0.856
MMP-3 3.3 (1.9–7.8) 4.8 (3.0–14.0) 0.044 2.3 (1.0–5.5) 0.048
MMP-7 420.4 (173.0–1,039.8) 461.2 (185.3–1,472.2) 0.224 1.0 (0.5–2.0) 0.967
MMP-8 29.6 (13.0–57.7) 31.3 (9.0–89.0) 0.877 1.1 (0.5–2.4) 0.780
MMP-9 116.0 (64–248) 89.0 (46–186) 0.123 1.0 (0.3–3.2) 0.972
aMMP-9 242.3 (126.9–510.2) 135.1 (76.9–274.5) 0.007 0.8 (0.3–1.7) 0.493
TIMP-1 274.5 (138–487) 475.5 (335–996) <0.001 4.5 (1.3–15.7) 0.019
TIMP-2 78.4 (60.9–98.1) 81.1 (70.4–97.1) 0.369 2.3 (0.2–26.4) 0.495
MMP-9/TIMP-1 0.49 (0.17–1.11) 0.14 (0.07–0.54) <0.001 0.5 (0.2–1.1) 0.101
aMMP-9/TIMP-1 0.98 (0.34–2.27) 0.26 (0.11–0.74) <0.001 0.5 (0.2–0.9) 0.044

Definition of abbreviations: aMMP= active MMP; ARDS = acute respiratory distress syndrome; CI = confidence interval; IQR = interquartile range; MMP=
matrix metalloproteinase; OR = odds ratio; TIMP = tissue inhibitor of metalloproteinase.
Of 235 patients, n = 170 patients have all nine MMPs, n = 38 patients have just MMP-3/-9/TIMP1, n = 27 patients have just MMP-1/-2/-7/-8/-9a/TIMP2.
Therefore, n = 208 for MMP-3, MMP-9, TIMP-1, and MMP-9/TIMP-1 ratio; n = 197 for MMP-1, MMP-2, MMP-7, MMP-8, aMMP-9, and TIMP-2; and
n = 170 for aMMP-9/TIMP-1. Univariate significance was tested using the Wilcoxon rank sum test. Adjustment for multiple comparisons using the
Benjamini-Hochberg procedure confirmed significantly different distributions of aMMP-9, TIMP-1, MMP-9/TIMP-1, and aMMP-9/TIMP-1 but not MMP-3
among survivors versus nonsurvivors. Adjusted associations were measured using logistic regression for the outcome of hospital survival with the predictor of
log10-transformed plasma biomarker and confounding variables of PaO2

/FIO2
ratio and cancer/hematopoietic cellular transplantation status. Mortality OR with

95% CIs and P values are reported. Bold P values indicate statistical significance with an a priori set threshold of P , 0.05.
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Figure 1. MMP (matrix metalloproteinase) profiles in pediatric acute respiratory distress syndrome. Each
bar represents the mean level for each log10-transformed MMP protein, standardized to the cohort mean
of 0 and SD of 1. In both the derivation (n=126) and validation (n= 109) cohorts, patients separated into
two profiles using MMP-1, -3, -7, -8, and -9, and TIMP-1 (tissue inhibitor of metalloproteinase-1) and -2
(MMP-2 and active MMP-9 were not used in latent class generation because of collinearity with TIMP-2
and total MMP-9, respectively). MMP profile 1 demonstrated elevated MMP-1, -2, -3, -7, and -8 and
TIMP-1 and -2, and depressed active and total MMP-9 relative to MMP profile 2.
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our study, MMP-9 levels were measured
within 24 hours after ARDS onset,
but the initial pulmonary insult may
have preceded ARDS by several days,
precluding us from recapitulating the
plasma kinetics demonstrated in animal
models.

Whereas plasma MMP-9 seems to
normalize quickly after an insult, several
investigators have reported that MMP-9
levels within pulmonary fluid continued to
rise beyond 96 hours and are associated with
resolution of extravascular lung water in
adult ARDS and protection from the

development of chronic lung disease in
neonates (39–41). Conversely, MMP-9-
deficient animal models have shown
an inability to self-limit pulmonary
inflammation, leading to pulmonary
fibrosis and death (20, 21, 42–44). Further
research contrasting daily plasma versus
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Figure 2. Pediatric acute respiratory distress syndrome survival stratified by Day 1 plasma MMP (matrix metalloproteinase) profile. Kaplan-Meier survival
estimates are plotted according to MMP profile. Survival estimates were compared using the log-rank test of equality of survivor functions. By hospital
discharge, mortality rates for patients with MMP profile 1 exceeded those of patients with MMP profile 2 (derivation cohort: 26.7% vs. 12.7%, P = 0.047;
validation cohort: 34.5% vs. 8.0%, P, 0.001). ARDS = acute respiratory distress syndrome.
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Figure 3. Prognostication of mortality or severe morbidity in pediatric acute respiratory distress syndrome. In the combined cohorts, logistic regression for
the composite outcome of mortality or severe morbidity was performed with the Day 1 PaO2
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(P/F) ratio and then again with both the Day 1 P/F ratio

and Day 1 plasma MMP (matrix metalloproteinase) profile. The model using both Day 1 P/F ratio and the Day 1 plasma MMP profile demonstrated greater
area under the receiver operating characteristic curve (AUROC) than the model using Day 1 P/F ratio alone (AUROC, 0.75; 95% confidence interval [CI],
0.68–0.82 vs. AUROC, 0.66; 95% CI, 0.58–0.73; P = 0.009). Similar findings occurred when replacing the P/F ratio with the oxygenation index (AUROC,
0.78; 95% CI, 0.71–0.85 vs. AUROC, 0.69; 95% CI, 0.62–0.77; P = 0.019). OI = oxygenation index.
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pulmonary MMP profiles might identify
longitudinal patterns of interest. For
example, on ARDS Day 3, resolution of
depressed plasma MMP-9 in conjunction
with sustained elevation in pulmonary
MMP-9 might be associated with a survival
advantage, although this hypothesis needs
to be tested in a future cohort.

Pediatric ARDS Patients Display
Distinct MMP Profiles
Using LCA, we identified that approximately
one-third of both the derivation and validation
cohorts demonstrated a specific signature,
MMP profile 1, that was characterized by
elevated MMP-1, -2, -3, -7, and -8 and TIMP-1
and -2, and depressed active and total MMP-9.
Although it was not possible to determine the
relative contribution of each MMP to each
patient’s overall clinical outcome, we did note
that levels of TIMP-1 and MMP-3 were the
strongest determinants of MMP profile, which
was in turn strongly associated with worse
outcome. Potential mechanisms linking
TIMP-1 and mortality include inhibition of
pro-MMP-9 activation and upregulation of
myofibroblast growth; potential mechanisms
linking MMP-3 and mortality include
upregulation of epithelial mesenchymal
transition, TGF-b activation, and endostatin
release (18, 45, 46). However, the function of
each MMP is cell type specific and varies
according to the time from the original insult,
making the exact mechanisms of tissue injury
and fibrosis challenging to isolate in this cohort.

The identification of latent classes
of patients using clinical and biomarker
measurements has previously been used in
ARDS (25, 26, 30) and is an appealing
alternative to traditional hierarchical
clustering approaches because it groups
patients based on shared biology rather
than shared outcome (47). In an analysis of
the ARMA and ALVEOLI trials, Calfee and
coworkers (25, 30) identified a latent class
of patients with a hyperinflammed profile
associated with mortality and a differential
response to mechanical ventilation strategy.
Famous and coworkers (26) replicated this
finding in the FACTT and demonstrated
an association between a hyperinflammed
profile and mortality as well as response to
conservative fluid management. Whereas
our analysis represents a first step toward
incorporating this approach into pediatric
ARDS, future studies are needed to assess
whether the MMP profile 1 bears any
association with differential response to
therapeutic strategies in children.

Plasma MMP Profiles Are Associated
with Biochemical Evidence of
Inflammation, Endothelial Injury, and
Impaired Oxygenation
In our analysis, plasma MMP profile 1
was strongly associated with multiple
inflammatory cytokines on ARDS Day 1. This
finding is concordant with previous studies
that have associated elevated TNF-a with
TIMP-1, and have demonstrated that IL-1b
and IL-6/STAT pathways induce MMP-1,
MMP-3, and TIMP-1 expression via
JAK/STAT and ERK/MAPK pathways
(48–51). Our finding that MMP profile 1
also demonstrates an endothelial injury
signature is also concordant with studies
showing that release of angiopoietin-2
induces MMP expression (52, 53). These
data provide evidence for the biochemical
uniqueness of the MMP profiles described
here and also fill in a key missing piece of
pathobiology regarding the evolution of
ARDS in children.

Plasma MMP Profiles Improve
Mortality Prognostication
The ability to predict poor clinical outcomes
early in the course of pediatric ARDS is
crucial so that new therapies can be applied
before the development of irreversible
lung injury or multiorgan dysfunction
syndrome (54). In our study, incorporation
of Day 1 plasma MMP profile in a logistic
regression model predicting mortality or
severe morbidity demonstrated superior
performance relative to a model with just
the Day 1 P/F or OI. In other words, were
patients to be enrolled in a clinical trial on
ARDS Day 1, stratification enhanced with
MMP measurements would result in a 27%
relative enrichment in the outcome of
mortality. Progress in identifying and
evaluating potential new therapies may
depend on early and accurate identification
of such high-risk patients (54).

Pediatric HCT Patients with ARDS
Have a High Burden of MMP Profile 1
In this study, we found that MMP profile 1
was common among pediatric cancer/HCT
patients. Emerging evidence suggests that
monocyte myeloid-derived suppressor cells
produce significant quantities of MMP-9
post-HCT and that neutropenic mice are
deficient in pulmonary MMP-9; we
therefore speculate that post-transplant
immune reconstitution of these cellular
lineages may play a role in ARDS (44, 55). In
our study, aMMP-9 was associated with

mortality independent of P/F ratio but not
independent of cancer/HCT status, and
because total and aMMP-9 levels were
strongly depressed in cancer/HCT patients,
this suggests a potential pathobiologic
pattern largely unique to this patient group.
Furthermore, we speculate that HCT
patients may have endogenously upregulated
TIMP-1 in response to chronic post-
transplant inflammation and endothelial
injury (56, 57), which might inhibit the
compensatory antiinflammatory response
and thus play a role in the propagation of
pulmonary fibrosis. Interestingly, both
animals and humans with bleomycin-
induced pulmonary fibrosis have
demonstrated decreased MMP-9/TIMP-1
ratios, and treatment with the antifibrotic
drug pirfenidone has been associated with
restoration of the MMP-9/TIMP-1 ratio in
the lungs, downregulation of the TGF-b
pathway, and clinical improvement (18,
58–61). Other pharmacotherapeutics that
have reported efficacy in modulating the
MMP-9/TIMP-1 ratio in patients with
pulmonary fibrosis include aliskiren,
artusenate, bosentan, doxycycline, and
induced pluripotent stem cells, although
further studies are needed (62–66).

The analyses we present here have
several strengths. First, we analyzed a wide
spectrum of the MMP pathway and
benchmarked our results to clinically
relevant outcomes including mortality
and survivor morbidity. Second, we
characterized the role of individual MMP
proteins while also identifying subgroups of
patients with specific MMP profiles. Third,
the MMP profiles were derived and validated
in geographically distinct cohorts with a
rigorous statistical method that is agnostic
to patient outcomes. One limitation of
this work is that the MMP distributions
among survivors and nonsurvivors partially
overlapped, suggesting thatMMPprofilesmay
account for some but not all of the pathways
critical to ARDS pathobiology. In addition,
after ARDS diagnosis, treatment decisions
pertaining to supportive care were not
mandated, and thus different provider practice
patterns may have influenced outcomes. A
future study in pediatric ARDS needs to be
done to validate the proposed MMP profiles
for their associations with clinical outcomes.

Conclusions
In pediatric ARDS, MMPs and their
endogenous inhibitors are independently
associated with Day 1 illness severity,
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inflammation, endothelial injury, morbidity,
and mortality. Pediatric ARDS patients
demonstrate specific patterns of MMP
concentration in the plasma, and these
MMP profiles correlate with clinical
outcomes independent of confounders.
Additional investigation into the pathobiologic

significance of MMPs in pediatric ARDS is
warranted. n
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