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Abstract

IMPORTANCE—DNA methylation may play an important role in schizophrenia (SZ), either 

directly as a mechanism of pathogenesis or as a biomarker of risk.

OBJECTIVE—To scan genome-wide DNA methylation data to identify differentially methylated 

CpGs between SZ cases and controls.

DESIGN, SETTING, AND PARTICIPANTS—Epigenome-wide association study begun in 

2008 using DNA methylation levels of 456 513 CpG loci measured on the Infinium 

HumanMethylation450 array (Illumina) in a consortium of case-control studies for initial 

discovery and in an independent replication set. Primary analyses used general linear regression, 

adjusting for age, sex, race/ethnicity, smoking, batch, and cell type heterogeneity. The discovery 

set contained 689 SZ cases and 645 controls (n = 1334), from 3 multisite consortia: the 

Consortium on the Genetics of Endophenotypes in Schizophrenia, the Project among African-

Americans To Explore Risks for Schizophrenia, and the Multiplex Multigenerational Family Study 

of Schizophrenia. The replication set contained 247 SZ cases and 250 controls (n = 497) from the 

Genomic Psychiatry Cohort.

MAIN OUTCOMES AND MEASURES—Identification of differentially methylated positions 

across the genome in SZ cases compared with controls.

RESULTS—Of the 689 case participants in the discovery set, 477 (69%) were men and 258 

(37%) were non–African American; of the 645 controls, 273 (42%) were men and 419 (65%) were 

non–African American. In our replication set, cases/controls were 76% male and 100% non–

African American. We identified SZ-associated methylation differences at 923 CpGs in the 

discovery set (false discovery rate, <0.2). Of these, 625 showed changes in the same direction 
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including 172 with P < .05 in the replication set. Some replicated differentially methylated 

positions are located in a top-ranked SZ region from genome-wide association study analyses.

CONCLUSIONS AND RELEVANCE—This analysis identified 172 replicated new associations 

with SZ after careful correction for cell type heterogeneity and other potential confounders. The 

overlap with previous genome-wide association study data can provide potential insights into the 

functional relevance of genetic signals for SZ.

Schizophrenia (SZ) is a neurodevelopmental disorder affecting 1% of the population 

worldwide, often resulting in lifelong disability.1 Treatments are not efficacious for the most 

disabling symptoms such as deficits in working memory, attention, and social cognition.2 

Understanding the underlying biology of SZ can inform both treatment and prevention 

strategies. Heritability estimates are high (70%−81%) and some genetic variants have now 

been identified3 including multiple common variants,4,5 copy number variants,6 and rare 

mutations.7,8 The Psychiatric Genomics Consortium has identified 108 loci9; despite its size, 

this study has highlighted modest effect sizes and the importance of regulatory DNA.10 

Mechanistic studies in transgenic animals have significant limitations because animal 

models have different brain structures and cannot fully recapitulate the phenotypic 

components of SZ.11

Discordance rates between monozygotic twins are 48% to 50%, reflecting a complex genetic 

architecture and a role for nongenetic factors in the etiology of SZ.12 Environmental risk 

factors include growing up in lower socioeconomic and urban environments,13 prenatal 

infections,14 obstetric complications,15 and maternal malnutrition.16 Some of these 

environmental factors, such as obstetric complications, can interact with genetic risk factors 

to alter risk or worsen the course of SZ.17

Epigenetic processes, which can be modified by environment but also have a genetic 

component and regulate genetic signals, have been postulated as links between 

environmental exposures, genetic risk, and SZ. Epigenetics refers to heritable modifications 

of DNA or associated factors that have information content beyond the primary DNA 

sequence. DNA methylation (DNAm), a stable modification of cytosines in CpG 

dinucleotides, regulates neurobiological processes and is implicated in disorders such as Rett 

syndrome.18 DNA methylation depends on dietary sources of the essential amino acid 

methionine, and periods of famine have doubled SZ risk.19,20 The later onset of SZ, its 

episodic nature, and the induction of psychotic episodes while undergoing treatment with l-
methionine21 also suggest a role for epigenetics.

Several case-control studies using blood22–26 and postmortem brain tissues27–30 have 

revealed differential genome-wide methylation patterns, but the number of CpGs 

interrogated and sample sizes have been limited. To our knowledge, only 1 large-scale 

methylome study of SZ of equivalent size to ours has been published. It used a methylated 

DNA enrichment method (methyl-CpG binding domain protein-enriched genome 

sequencing) in a Swedish population31 but did not account for cell heterogeneity in blood, 

which can lead to false-positive results.32,33 Only 1 of the smaller studies in-corporated this 

critical step in their analysis.26
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In this study, we described a comprehensive analysis of genome-scale DNAm in a SZ case-

control consortium and its relationship to genetic variation. We profiled genome-wide 

DNAm in 1334 blood samples using the Illumina HumanMethylation450 BeadChip, 

accounting for cell type heterogeneity to identify DNAm associated with disease. High-

confidence findings were replicated in an independent set of 497 individuals. We established 

genotypic-methylation relationships and integrated these results with published genome-

wide association study data. This study supports the importance of integrating DNAm and 

quantitative trait analyses into population-based SZ genomic analysis.

Methods

Study Samples

eTable 1 in the Supplement describes the demographic characteristics of the discovery and 

replication samples. The discovery set consisted of 1334 blood-derived DNA samples (689 

SZ cases and 645 controls) from a population of probands and controls derived from the 

collaborative efforts of 3 ongoing, National Institute of Mental Health–funded, multisite 

consortia: the Consortium on the Genetics of Endophenotypes in Schizophrenia,34 the 

Project Among African-Americans to Explore Risks for Schizophrenia,35 and the Multiplex 

Multigenerational Family Study of Schizophrenia.36 In the replication stage, 497 

independent samples (247 SZ cases and 250 controls) from the Genomic Psychiatry 

Cohort37 were frequency matched with respect to smoking status, age, and sex. Written 

informed consent was obtained from all individuals, and the study was approved by the 

Johns Hopkins Medicine Office of Human Subjects Research institutional review board and 

the Consortium on the Genetics of Endophenotypes in Schizophrenia, the Project Among 

African-Americans to Explore Risks for Schizophrenia, the Multiplex Multigenerational 

Family Study of Schizophrenia, and the Genomic Psychiatry Cohort.

Phenotype Assessment

Eligible probands were at least 18 years of age and received SZ diagnosis according to the 

DSM-IV. Participants from the Project Among African Americans To Explore Risks for 

Schizophrenia self-identified as African American and had family members available for 

assessment. Diagnostic assessment was performed using the Diagnostic Interview for 

Genetic Studies along with medical records. The Multiplex Multigenerational Family Study 

of Schizophrenia probands were of European American descent from multigenerational 

families with at least 1 affected family member with SZ or schizoaffective disorder. The 

Consortium on the Genetics of Endophenotypes in Schizophrenia participants had at least 1 

unaffected full sibling. Self-identified race/ethnicity was later confirmed with genetic 

information derived from the Infinium HumanMethylation450 BeadChip (Illumina) (eFigure 

1 in the Supplement).

Data Processing and Statistical Modeling

Microarray Processing and Quality Control—Experimental flow is presented in 

Figure 1. All analyses were performed in R version 3.1.1 (R Statistics), and raw intensity 

files were preprocessed and quantile normalized together using the Bioconductor package 

Minfi, version 1.8.9 (Bioconductor).38 Probes on the sex chromosomes were removed along 
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with probes with annotated single-nucleotide polymorphisms (SNPs) (via the Single 

Nucleotide Polymorphism database 137 [National Center for Biotechnology Information]) in 

the CpG site (n = 16 817) or at single base extension sites (n = 7781), which left a total of 

456 513 autosomal probes for calculation of beta scale methylation ratios and association 

analysis. Of the 2891 unique samples in the discovery set (including family members), 

subsequent samples were dropped according to the following quality control measures: (1) 

median methylated and median unmethylated signal average less than 10.5 (n = 9); (2) 

separate clustering in the first principal component of genome-wide DNAm (n = 8); (3) 

discrepancy between self-reported sex and predicted sex from DNAm and genotypes (n = 

18); (4) discrepancy between self-reported race/ethnicity and predicted ancestry from 

DNAm data (n = 0); and (5) missing age, smoking, or phenotype in the database (n = 84). 

After removing family members, 1334 samples were left as the discovery arm of the case-

control study. For the replication set, the same criteria were applied (1 dropped after 

principal component analysis and 2 were incongruent for race/ethnicity prediction). The 

resulting 497 samples constituted the replication set.

Identification of SZ-Associated Differentially Methylated Positions—To identify 

differentially methylated positions (DMPs) associated with SZ, we fit a linear regression 

model using the limma Bioconductor package (Bioconductor).39 We tested the association 

between proportion methylation values (Illumina “Beta” scale) and SZ diagnosis status at 

each CpG site, adjusting for sex, age, race/ethnicity (African American vs non–African 

American), current smoking status, estimated cell proportions for the 6 cell types, and the 

first 2 principal components of the negative control probes. To adjust for multiple testing, a 

false discovery rate (FDR) cutoff of less than 0.2 was used for genome-wide significance. 

We used all of the samples and adjusted for race/ethnicity to improve the power of our study, 

but also performed 3 additional race/ethnicity- and sex-stratified analyses (African American 

and non–African American only and male only) for clarification of findings.

The eMethods in the Supplement include a detailed description of genome-wide 

measurement of DNA methylation, assessment of cell heterogeneity and potential 

confounders, replication analysis, gene ontology and pathway analyses, Illumina genome-

wide genotyping and meQTL analysis, and regression modeling formulas.

Results

Estimating and Correcting for Cell Heterogeneity Across Samples

In epigenetic studies using DNA from heterogeneous tissue, such as blood, it is critical to 

account for potential confounding by cell type. Each cell type has distinct methylation 

signatures,40 and differences in relative abundance of these cell populations between SZ 

cases and controls can create associations that are not causal. We implemented a statistical 

algorithm that estimates cell proportions based on reference DNAm signatures obtained 

from cell-specific data.32–37,41 The calculated cell proportions for CD4+ and CD8+ T cells, 

B cells, monocytes, granulocytes, and natural killer cells for the discovery and replication 

sets are presented in eFigure 2 in the Supplement. The largest statistically significant 

differences in cell proportions between cases and controls were observed in CD8+ T cells 

Montano et al. Page 6

JAMA Psychiatry. Author manuscript; available in PMC 2019 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and monocytes, with SZ showing decreased CD8+ T cells and increased monocytes (CD8+ 

T cells discovery P value = 3.80E−9, replication P value = 2.95E−5 and monocyte discovery 

P value = 3.80E−3, replication P value = 8.73E−4). Granulocyte proportions were also 

higher among SZ cases in the discovery and replication sets (discovery P value = .11 and 

replication P value = 6.76E−4). CD4+ T cells, natural killer cells, and B cells did not show 

statistically significant differences in the same direction in both discovery and replication 

sets.

To our knowledge, only 1 smaller epigenome-wide association study of SZ (N = 105) has 

accounted for cell heterogeneity.26 Our findings are consistent with the magnitude and 

direction of their estimated cell proportion differences. We observed no significant 

association between anti-psychotic use and proportions of CD8+ T-cell counts (P value = .

62), monocytes (P value = .58), or granulocytes (P value = .54, eFigure 3 in the 

Supplement).

Genome-Wide Methylation Differences in Discovery and Replication Sets

Our discovery sample included 1334 unrelated individuals (689 SZ cases and 645 controls) 

from 3 large NIMH consortia: the Consortium on the Genetics of Endophenotypes in 

Schizophrenia, the Project Among African-Americans to Explore Risks for Schizophrenia, 

and the Multiplex Multigenerational Family Study of Schizophrenia (see eMethods and 

eTable 1 in the Supplement for demographic information).Of the 456 513 CpGs examined, 

945 CpGs were associated with case-control status at an FDR of less than 0.20.

We found it critical to account for cell type proportions, even after adjusting for sex, age, 

race/ethnicity, smoking, and batch effects (removing the first 2 principal components of 

negative control probes). Cell type correction markedly reduced the number of significant 

results (eFigure 4 and eFigure 5 in the Supplement). To assess residual confounding after 

adjusting for cell proportion estimates, we plotted adjusted estimates and residual values 

against cell proportions and showed that the linear models provided an adequate correction 

for these factors (eFigure 6 and eFigure 7 in the Supplement). In addition to controlling for 

smoking status, we further removed 294 CpGs directly associated with smoking.42,43 This 

eliminated 22 CpGs from the discovery results, leaving 923 SZ - associated DMPs (eTable 2 

in the Supplement).

We sought to confirm our results in a replication set of 497 independent samples (247 SZ 

cases and 250 controls). Of the 923 DMPs from the discovery set, 625 (68%) showed 

association in the same direction and 172 (19%) of these had a replication P value of less 

than. 05. Quadrant correspondence (proportion of replication CpG effect estimates in the 

same direction as the discovery estimate) was even stronger when considering more 

stringent FDR thresholds among the discovery sample, with 80% correspondence at an FDR 

of less than 0.05 (Figure 2A).

The location, effect size (magnitude of covariate-adjusted methylation change comparing SZ 

cases with controls), and statistical support for each of the 172 replicated SZ-DMPs are 

reported in eTable 3 in the Supplement. The first 15 DMPs with the lowest FDR values are 

presented in the Table. Among the genes near DMPs, those previously associated with SZ 
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include RPS6KA1,44 MAD1L1,5 KLF13,45 SULT4A1,46 NPDC1,47 AUTS2,48 PIK3R1,49 

and PNPO.50 We found genes previously reported to play a role in neuronal development 

and function (S100A2, SULT4A1, HES1, NTM, MARK4, KIFC3, NPDC1, SCAP, 

DHCR24, HS6ST1, GAS7, CARD10, DYRK2, RPS6KA4, SLC38A10, CUTA, FOXO1, 

LRFN3, and IRS1) and genes involved in both T-cell development and neuronal-cell fate 

(ZC3H12D, TCF3, MAP3K1, and IKZF4). Genes with multiple DMPs nearby included 2 

genes previously associated with SZ (DDR151 and IFITM152), a component of the 

mechanistic target of rapamycin signaling pathway that facilitates synaptic plasticity 

(RPTOR53), and a gene critical in neurogenesis (NCOR2,54 Figure 2B and2C). Genes with 

SZ-DMPs near them have the same average length as genes on the whole array, but do have 

more probes per gene.

In male-only analyses, 23 replicated SZ-DMPs were identified (eTable 4 in the Supplement), 

16 of which were among the replicated DMPs in the sex-combined analyses. Stratified 

analysis in non–African American samples revealed similar results, although with less 

statistical significance given the reduction in sample size (eTable 5 in the Supplement). The 

African American group showed a greater number of statistically significant DMPs, despite 

the lower sample size, potentially owing to uncorrected population stratification among 

samples of African descent because ethnicity adjustment in these data was categorized as 

African American vs non–African American (eTable 6 in the Supplement). Preliminary post 

hoc analysis of the influence of antipsychotic medications on DNAm revealed that atypical 

antipsychotics exerted the biggest effect. We then grouped the SZ cases into 2 subgroups: 1 

that received atypical antipsychotics, and 1 that received typical antipsychotics only or no 

treatment. Four of the 172SZ-DMPs were affected by atypical antipsychotic treatment (P 
value ≤ .05), with 1 probe inside of the gene MARCH11 and 3 near the promoters of the 

genes SATB1 and IFITM1 (eFigure 8 in the Supplement).

Pathway and Gene Ontology Analysis

Statistically significant (FDR < 0.2) functional pathway categories among SZ-DMPs 

included those related to regulation of signaling and signal transduction (eTable 7 in the 

Supplement). While gene ontology is centered on genes, network analysis focuses on their 

physical interactions. Consistent with the gene ontology results, the top 3 most relevant 

regulatory networks from our pathway analysis included (1) amino acid metabolism, energy 

production, and post-translational modification; (2) hereditary disorder, neurological disease, 

and psychological disorders (eFigure 9 in the Supplement); and (3) neurological disease, 

organismal injury and abnormalities, and embryonic development.

Relationship Between SZ-DMPs and SZ-Associated Genetic Loci

Our replicated SZ-DMPs overlapped 3 genetic regions identified in a 2014 Psychiatric 

Genomics Consortium mega-analysis9: regions 7, 11, and 37 from that publication list. 

Enrichment analysis using a Fisher exact test was not statistically significant (P = .47); 

however, the 450K array covers only 87 of the 105 autosomal PGC regions. In region 11 

(chromosome 15), 2 SZ-SNPs (rs7177338 and rs2071382) are associated with methylation 

at the SZ-DMP (cg25647583), located in an intergenic region and equidistantly located 

(approximately 500 base pairs) between FURIN and FES genes (Figure 3A-C and eTable 8 
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in the Supplement). Notably, we observed the same genetic risk association to these SNPs in 

our data (Figure 3D). We further assessed the potential for DNAm mediation of this genetic 

risk. We estimated the effect of the SNP genotype G on SZ (SZ affected by G), and the 

effect of the SNP on SZ, adjusting for methylation (M) at the CpG locus (SZ affected by G + 

M). Conditioning on M did not significantly reduce the effect of G on SZ (β coefficient 

estimate for G alone, −0.301; P = .04; β coefficient estimate for G conditioning on M, 

−0.280; P = .06; Figure 3E), suggesting that the genotype is controlling M and SZ 

independently.

Discussion

To our knowledge, our study is the largest epigenome-wide association study of SZ to date, 

using methods robust to cell-type confounding and with supporting genetic data. We 

identified and replicated 172 SZ-associated DMPs in 689 cases and 645 controls. The small 

but significant changes in DNAm are of similar effect size to other methylome studies of 

complex disorders33,55,56 and highlight the potential usefulness of using blood as a cost-

effective surrogate tissue.

The SZ-DMPs discovered in this study include genes important in neuronal function (eg, 

NCOR2, SULT4A1, and HES1), genes previously associated with SZ (eg, RPS6KA1, 

MAD1L1, and DDR1), and genes also involved in T-cell development (ZC3H12D, TCF3, 

and IKZF4). Several of the neuronal genes have been implicated in Alzheimer disease 

pathology (SORL1,57 HES1,58 MARK4,59 SCAP,60 DHCR24,61 GAS7,62 CARD10,63 

CDC37,64 CUTA,65 IRS1,66 and FOXO167), supporting a common network of dysregulation 

in SZ and Alzheimer disease.68

Schizophrenia cases exhibited statistically significant lower estimated CD8+ T cells and 

higher monocyte and granulocyte counts than the controls, and these cell proportion 

differences constitute an important confounder of blood epigenetic studies. The direction of 

bias can be positive (as is typically presumed), inflating association signals, or negative, 

reducing ability to see true associations. Cell-specific studies using sorted purified samples 

are ideal but not always practical in epidemiologic settings, and this adjustment method can 

alleviate some bias associated with this limitation.

To understand the genetic architecture underlying our results, we integrated methylome-wide 

data with genotyping information from our samples. The Psychiatric Genomics Consortium 

association results revealed SZ-SNPs controlling the methylation level of an SZ-DMP 

(cg25647583), where the risk allele was associated with lower methylation levels in SZ 

cases. Although our genotyping data set was relatively small (n = 374), we confirmed 

findings from the large psychiatric consortium meta-analysis.

We attempted to replicate previously published methylome-wide SZ association results. One 

study reported 450K platform findings among 2 small Japanese study samples (n = 105 

discovery and n = 48 replication).26 Although this study adjusted for cell proportions, the 

samples were not adequately randomized by diagnosis on the arrays, creating batch effects. 

Attempting to remove this bias using aggressive batch effect correction methods would 
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render the studies non-comparable. We also attempted to replicate the 2014 large (n = 1497) 

case-control study of SZ samples from Sweden,31 but the samples were assayed using 

methyl-CpG binding domain protein-enriched genome sequencing, a different technology 

from the one we used in this study, containing largely non-overlapping CpGs. Only 1 of their 

15 replicated methylation blocks overlapped probes available on the 450K array. For their 

top gene, FAM63B, the closest 450K CpG (cg21149266) lies 126 bp away from their closest 

validated position (chr15: 59146756). We observed no statistically significant difference 

between SZ cases and controls at this position in our discovery set (P value = .12)but 

detected a difference in the same reported direction in our replication se t(P value = .002) 

(eFigure 10 in the Supplement).

In this emerging area of SZ epigenetics, there is bound to be an initial period of valid and 

interesting differences of opinion and gaps in our knowledge. Moreover, in the case of SZ, 

the brain is inaccessible, making blood studies valuable. While the effect sizes are small, that 

is also the case with genetic variation.69 Other issues will require clarification including the 

relative causal and risk weight of factors associated with SZ (diet, medications, and stress) 

and how these factors increase risk or whether they are epiphenomena. The more causal 

interpretation is supported by the well-known, biologically based brain developmental 

effects of environmental factors such as the Dutch Hunger Winter and influenza on the 

developing brains of embryos. A single study cannot answer all of these challenging 

questions. We will be looking at the relationship of the blood results reported in this study 

and related brain and neurocognitive data in subsequent studies. Future a priori planned 

Schizophrenia Psychiatric Genome-Wide Association Study and sequencing of these 

Consortia cohorts and integration with epigenetic analysis in these same participants will 

add to the value of both approaches. This study will hopefully be a foundational element 

raising as many questions as it resolves in an exciting but novel area of SZ research.

Conclusions

We identified novel differential methylation loci between SZ and control individuals from a 

large, diverse population, using a widely used and cost-effective, high-throughput 

technology. Using a robust analysis pipeline, with cell proportion correction and sequential 

replication in independent data sets, we provided candidate loci that contribute to the 

knowledge of SZ and possibly other psychoses. These findings lay a firm groundwork for 

the implementation of genome-wide methylation approaches to the understanding of 

neuropsychiatric disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

Question

Is DNA differentially methylated in schizophrenia?

Findings

This epigenome-wide association study examined differentially methylated positions 

across the genome in blood-derived DNA samples in a discovery and a replication set. 

One hundred seventy-two positions showed statistically significant differences in 

methylation between schizophrenia and control participants in both samples, and a subset 

of these are located in a region of DNA that is implicated in genome-wide association 

studies of schizophrenia.

Meaning

DNA is differentially methylated in key regions of genomic DNA in schizophrenia.
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Figure 1. Analysis Workflow
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Figure 2. Changes in DNA Methylation are Concordant Between Discovery and Replication Data 
Sets
A, Regression coefficients of the DNA methylation differences at the top-ranked 150 

differentially methylated positions in the discovery set are significantly correlated with the 

coefficients found in the replication set (r = 0.63; P value <.001). B, DNA methylation for an 

individual CpG in the intron of NCOR2, in the discovery (top) and replication (bottom) data 

sets, and corresponding P values for neighboring CpGs.
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Figure 3. Genotype-Dependent Differentially Methylated Positions in Psychiatric Genomics 
Consortium Schizophrenia-Associated Locus
A, Psychiatric Genomics Consortium Genome-Wide Association Study locus (region 11) 

with an overlapping schizophrenia (SZ)-associated CpG. Dashed lines indicate single-

nucleotide polymorphism–CpG cisregulation between the 2 SZ–single-nucleotide 

polymorphisms and locus cg25647583. B, Methylation differences between SZ cases and 

controls at locus cg25647583. C, Association between DNA methylation and genotype. In 

the Psychiatric Genomics Consortium Genome-Wide Association Study , the A allele is the 

risk allele (odds ratio = 1.0662). D, Association between genotype and SZ phenotype. The 

risk allele has increased frequency in our SZ cases. E, β coefficient estimate of the 

dependence of genotype on SZ phenotype, before and after adjusting for methylation. Error 

bars represent the 95% CIs for the estimate of β.
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