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Abstract

Bicelles are used in many membrane protein studies because they are thought to be more bilayer-

like than micelles. We investigated the properties of “isotropic” bicelles by small-angle neutron 

scattering, small-angle X-ray scattering, fluorescence anisotropy, and molecular dynamics. All 

data suggest that bicelles with a q value below 1 deviate from the classic bicelle that contains 

lipids in the core and detergent in the rim. Thus not all isotropic bicelles are bilayer-like.
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For nearly two decades, bicelles have had a wide variety of applications, most commonly as 

bilayer mimics for structural1−14 and functional15−20 investigations of membrane-associated 

proteins. A bicelle is a bilayer micelle, a disc-shape aggregate typically formed by a mixture 

of detergents (Figure 1A) and lipids (Figure 1B). Bicelle self-assembly was first determined 

in 1984,21,22 and since then, bicelles have been characterized using many methods such as 

small-angle neutron scattering (SANS)23,24 and nuclear magnetic resonance (NMR).25−31 

The classically described (“ideal”) bicelle contains a central disk-shaped lipid bilayer 

encircled by a rim of detergents that screen the hydrophobic lipid tails from water (Figure 

1C).32,33 Thus, in the “ideal” bicelle, the lipid and detergent molecules are segregated 

spatially. Bicelles vary in size and shape depending on the ratio of lipid to detergent (known 

as the q value),34 the structure of the lipid and detergent monomers,25 total concentration of 

amphiphiles,35,36 and temperature.29,30 For solution NMR structural studies, bicelles with 

low q values (<0.7; also known as fast-tumbling “isotropic” bicelles) have demonstrated 

some utility for polytopic integral membrane proteins.24,31,37,38 Several of these studies 

suggest that the stabilization of membrane protein fold is due to the more “bilayer” nature of 

bicelles compared with micelles. That is, the segregated lipid core in bicelles is more similar 

in structure to the native membrane.

However, recent studies of binary mixtures of detergents of different alkyl chain lengths and 

head groups indicated that these compositions are fully mixed (Figure 1D).39,40 This 

observation led to a hypothesis that bicelles with q values below 1, for which the detergent 

concentration is higher than the lipid concentration, may not have segregated lipid cores, as 

previously suggested.36 Here we investigate the structure and segregation of bicelles with q 
values < 1 formed by dihexanoylphosphatidylcholine (DHPC; Figure 1A) and 

dimyristoylphosphatidylcholine (DMPC; Figure 1B), which have been studied for almost 30 

years.41−44 Several measurable structural and physical properties allow the mixing of lipids 

and detergents to be tested. As with mixed micelles, the characteristic headgroup−headgroup 

distance (L) is expected to vary with concentration in mixed bicelles and can be determined 
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via small-angle X-ray scattering (SAXS), a model-free measurement.39,40 Because the two 

components of the bicelle have different scattering length densities, SANS can determine 

their degree of mixing. The gel-to-liquid phase transition temperature (Tm), measured using 

the fluorescence anisotropy of diphenylhexatriene (DPH), is an independent measurement of 

the extent of bilayer formation. Finally, the shape, size, and lipid-detergent mixing can be 

quantified directly using molecular dynamics (MD) simulations.

For an ideal bicelle with a fully segregated core, the average headgroup-to-headgroup 

distance (L) equals twice the length of DMPC tails plus a headgroup (one-half on each side) 

(~ 43 Å; Figure 1C), but if the detergent and lipid components mix, then the parameter L 
will be less and decrease linearly with the concentration of DHPC in the core.39,40 This 

structural feature can be determined with SAXS, SANS, and MD simulations.

In the SAXS scattering profile, the second maximum (Qmax) corresponds to the distance 

between opposing electron rich head groups, L.45 Our data show that at q values from 0.5 to 

1, the model-free dimension L remains constant at 42 Å (Figure 2 and Figure S1), 

suggesting a segregated bicelle (core). However, below q = 0.5, L varies linearly with q 
values (Figure 2), indicative of mixing of lipid and detergent in the core. A linear fit 

produces a y intercept of 22 Å, the approximate L of pure DHPC.40,46

To further investigate the structure of bicelles, SANS experiments were conducted on 

bicelles with q values of 0.3 and 0.7 (see the SI for methods) with different solvent 

scattering length densities (varied percentages of D2O in H2O). Each scattering profile 

(Figure 3, Figures S2 and S3) was fit to the core−shell bicelle model (Figure S4). The 

obtained dimensions (Tables S1, S2, and S5) agree with the SAXS data (Table 1) and 

provide additional information about the shape. Higher detergent concentrations reduce the 

size and result in a more spherical shaped bicelle.

We also investigated the bicelle properties using all-atom MD simulations (see the SI for 

details) for q < 1 bicelles. The simulation results support the SANS and SAXS analysis. At 

higher q, bicelles become less spherical compared to lower q, as evident from the principal 

radii of an ellipsoid fitted to the aggregate shape (Table 1, Table S6). This trend is observed 

in the SANS models; however, the average radii from the SANS models are slightly smaller 

than the MD models. Some discrepancies are expected due to the differences in the methods 

related to ensemble properties (multiple bicelles in experiments with a certain degree of 

polydispersity vs a single bicelle in the simulation box). However, the MD dimensions are 

within the ranges obtained from the SANS fits (Tables S1, S2, and S6). The small radius is 

comparable to half the SAXS-derived L dimension. (The SAXS value is smaller by half of a 

headgroup because L is the distance measured from the middle of each headgroup.) 

Furthermore, L values derived from the simulated SAXS data (from the MD obtained bicelle 

structures) are equal to the SAXS values for q = 0.7 (42 Å) but are somewhat larger than 

those for q = 0.3 bicelles (Figure 2, Table S6). Altogether, the difference in the radii between 

q = 0.3 and 0.7 bicelles is indicative of a structural change in isotropic bicelles above and 

below q ≈ 0.5. The linear changes in L observed in SAXS experiments and the overall 

geometry determined by all three methods suggest that the bicelles with q < 0.5 do not have 

fully segregated lipid cores. We therefore investigated bicelle detergent−lipid mixing.
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The classical bicelle model predicts that the concentration of lipids and detergents in the 

core and rim will deviate from their bulk concentration. The bilayer forming lipid DMPC is 

expected to preferentially partition to the core, whereas the detergent DHPC preferentially 

partitions to the rim. We used SANS, MD, and fluorescence anisotropy to investigate the 

extent of mixing in bicelles with q values of 0.3 and 0.7.

In SANS experiments, bicelles formed by DHPC with protonated alkyl chains and DMPC 

with deuterated alkyl chains were used to distinguish a segregated versus a mixed bicelle.47 

Deviations from the DHPC or DMPC alkyl-chain scattering length density (SLD; Table S3) 

in the “rim” and “core”, respectively, indicate lipid/detergent mixing because of the SLD 

contrast between DHPC and DMPC (Table S3; see the Supporting Information for 

calculations). To verify the SLD values and the effective q values of the bicelle, the 

theoretical match points and the experimental match points were compared and are in good 

agreement (Table S4). The SLD values from the core−shell bicelle fits to the SANS data 

(Tables S1 and S2 and Figures S2 and S3) indicate that the core composition is 38−77% 

DHPC and 23−62% DMPC in q = 0.3 bicelles and the core composition is 37−49% DHPC 

and 51−63% in q = 0.7 bicelles. Although a broad range of DHPC is observed for the q = 0.3 

bicelles, fully mixed values (76%) are observed (Table 1).

In MD simulations, the segregation of lipids and detergents can be quantified by comparing 

the local concentration of DHPC around DMPC (see the SI for details). There is on average 

76% DHPC around DMPC in q = 0.3 bicelles and 49% in 0.7 bicelles. It is interesting to 

note that full segregation was not observed in either case, indicating a certain degree of 

mixing even in isotropic bicelles with q > 0.5. Thus mixed nearly spherical micelles were 

observed for q ≈ 0.3 and partially segregated ellipsoid bicelles were observed for q ≈ 0.7 

(representative structures are shown in Figure 4; the observed characteristics of q = 0.3 

bicelles are similar to previously reported simulations).36

The fluorescence anisotropy of DPH detects changes in the fluidity of lipid bilayers as a 

function of temperature, from which the main phase-transition temperature (Tm) of a lipid 

bilayer can be determined.49−51 To benchmark this technique, the Tm of pure DMPC 

vesicles was measured to be 23.1 ± 0.4 °C, consistent with other methods (Figure 5A).36 

The Tm of bicelles is expected to be identical to that of DMPC vesicles if DPH partitions 

into a region composed purely of DMPC. However, if significant mixing between DMPC 

and DHPC occurs, then a decrease in Tm compared with DMPC vesicles will be observed, 

as DHPC disrupts acyl chain packing between DMPC molecules.

The analysis of the melting curves (Figure 5A) yielded the Tm for each q value. Comparison 

of the Tm values obtained from the anisotropy measurements to Tm values for ideally mixed 

DHPC/DMPC vesicles indicates significant differences at all q values <1.0, suggesting that 

these bicelles do not fit a fully mixed bicelle model (Figure 5B).36 These data agree with 

previously reported Tm values derived from FTIR spectroscopy of various q-value bicelles;36 

however, they do not support recent NMR data indicating similar lipid/detergent mixing in 

low- and high-q bicelles.52 As the q value increased, the Tm asymptotically approached the 

melting temperature of a pure DMPC bilayer. Only for q ≥ 1.0, a Tm close to that of a pure 

DMPC bilayer is obtained (±1 °C) in agreement with FTIR measurements. (Figure 5B).36 
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This suggests a variation in the lipid/detergent mixing at q values below 1.0, in agreement 

with the geometrical changes determined with SAXS (Figure 2), and the geometrical and 

lipid-detergent mixing observed in MD and SANS studies (Table 1 and Figure 4).

We have shown using four independent methods, SAXS, SANS, MD, and fluorescence, that 

bicelle properties vary with the lipid-to-detergent ratio. The data suggest that at q values 

below 1, lipid and detergent molecules partially mix, and the bicelle structure deviates from 

the ideal bicelle model. With increasing q values, the lipid−detergent aggregates transition 

from a spherical mixed micelle through an ellipsoidal micelle to a disc-like bicelle.

These results suggest that care should be taken in interpreting membrane protein structural 

changes in micelles and bicelles. Isotropic bicelles with q values <0.5 likely present a 

micellar environment, and bicelles with q values <1 may not fully capture bilayer properties. 

A recent NMR study inferred similar bicelle differences based on protein positioning using 

PRE experiments.38 Changes in protein structure in a low-q micelle/bicelle may be related to 

the micelle shape, size, and fluidity, or specific interactions with the lipids rather than the 

claimed “more bilayer-like” feature. It is interesting to note that segregation of lipids in low-

q bicelles may be protein-mediated if the lipid interactions are preformed.53,54

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of detergent (A), lipid (B), and cartoons of idealized bicelles (C) and mixed 

micelles (D).
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Figure 2. 
Bicelle dimensions vary with q values between 0 and 0.5. The L values are measured 

directly from the SAXS profiles (L; L = 2π/Qmax ≈ 2 (1.5 + 1.265nc) + t, where nc is the 

number of carbons in the alkyl chain and t is the headgroup thickness) for bicelles with 

varying q (6% (w/w) amphiphile). Linear fits to the data points for q ≤ 0.5 (green) and data 

points for q ≥ 0.5 (blue) are shown.
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Figure 3. 
Examples of model fits to SANS scattering profiles of bicelles with q = 0.3 (A) and q = 0.7 

(B) (6% (w/w) amphiphile). The scattering profiles of bicelles with varying percentages of 

D2O (red) and the fits using the core−shell bicelle model (black; parameters listed in Tables 

S1, S2, and S5, all fits shown in Figures S3 and S4) are shown. Scattering profiles with D2O 

concentrations ±20% the match points were not included in the fits.
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Figure 4. 
Snapshots from MD simulations of (A) q = 0.3 and (B) q = 0.7 bicelles (9% (w/w) 

amphiphile). DHPC and DMPC are rendered as sticks and colored yellow and blue, 

respectively.48 The surface is shown as transparent gray and a portion of the bicelle is 

removed to view the interior distribution of the DMPC and DHPC tails.
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Figure 5. 
(A) Temperature dependence of the anisotropy value for DPH fluorescence reconstituted 

into bicelles with varying q values (2.3% (w/w) amphiphile). The inflection point of each 

melting curve was taken as the Tm. (B) Experimentally determined and calculated Tm values 

for bicellar solutions as a function of mole fraction of DMPC. The linear black dashed line 

represents Tm values for ideal mixing (Tm = χDHPC × Tm(DHPC) + χDMPC × Tm(DMPC)). 
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The horizontal dotted line shows the Tm of pure DMPC bilayers (23.1 °C). Errors in each 

Tm measurement were approximately ±0.2 to 0.4 °C.
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Table 1.

Comparison of Experimental and MD-Derived Radii and DHPC Concentration for q = 0.7 and 0.3 Bicelles
a

radius (Å) DHPC

q 1 2 expected (%)
b observed (%) ratio

c

0.7 SAXS - 21 56 - -

SANS 32 22 45/5l
d 0.8/0.9

MD 40 27 49 0.9

0.3 SAXS - 16 76 - -

SANS 22 17 60/87
d 0.8/1.1

MD 24 19 76 1

a
Dash indicates that the parameter is not determined. See the Supporting Information for calculations.

b
If fully mixed.

c
Ratio of expected to observed DHPC.

d
Average values for the core/rim are given.
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