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Abstract

Document retrieval (DR) forms an important component in end-to-end question-answering (QA) 

systems where particular answers are sought for well-formed questions. DR in the QA scenario is 

also useful by itself even without a more involved natural language processing component to 

extract exact answers from the retrieved documents. This latter step may simply be done by 

humans like in traditional search engines granted the retrieved documents contain the answer. In 

this paper, we take advantage of datasets made available through the BioASQ end-to-end QA 

shared task series and build an effective biomedical DR system that relies on relevant answer 

snippets in the BioASQ training datasets. At the core of our approach is a question-answer 

sentence matching neural network that learns a measure of relevance of a sentence to an input 

question in the form of a matching score. In addition to this matching score feature, we also 

exploit two auxiliary features for scoring document relevance: the name of the journal in which a 

document is published and the presence/absence of semantic relations (subject-predicate-object 

triples) in a candidate answer sentence connecting entities mentioned in the question. We rerank 

our baseline sequential dependence model scores using these three additional features weighted 

via adaptive random research and other learning-to-rank methods. Our full system placed 2nd in 

the final batch of Phase A (DR) of task B (QA) in BioASQ 2018. Our ablation experiments 

highlight the significance of the neural matching network component in the full system.

I. INTRODUCTION

Question answering (QA) has emerged as an important field within natural language 

processing (NLP) and information retrieval (IR) communities to handle the explosion in 

curated textual and structured datasets. Modern search engines heavily use QA methods 

under the hood to deliver precise answers to different types of questions. In Google, simple 

factoid questions whose answers are usually fixed (e.g., “What is the capital of USA?”) 

directly result in a bold font phrase that captures the answer (e.g., Washington, D.C.) 

displayed just below the search box. More complex questions may result in small Web text 

snippets that often contain the answer. For the question “What causes constipation?”, Bing 

shows an HTML list from WebMD of various causes. In specialized fields such as 
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biomedicine, questions can be much more complex where the answers may not be readily 

available on Web pages but may need to be gleaned from scientific literature indexed by 

NIH search engine PubMed. To address challenges in biomedical QA, the U.S. National 

Library of Medicine (NLM) has been sponsoring a series of community shared tasks under 

the name BioASQ (http://www.bioasq.org) since 2013 [1]. For a recent BioASQ example 

question, “Which currently known mitochondrial diseases have been attributed to POLG 

mutations?”, Google and Bing do not have any straightforward responses but instead point to 

some research articles. However, what is expected as an answer in BioASQ is a list of 

diseases.

In the BioASQ QA task, the question types include yes/no (Boolean response to a 

statement), factoid (answer is a single entity), list (response is a list of entities), and 

summary, which involves a detailed narrative response. Results are evaluated at various 

levels of granularity including the relevant documents (PubMed abstracts) retrieved, various 

snippets (small blurbs of text) retrieved from selected documents, specific biomedical 

concepts that may directly answer a question, and a so-called “ideal” answer to a question 

(which is usually a precise English description of the answer). That is, although the eventual 

goal is the ideal answer(s), documents that contain answers, smaller snippets within in them 

that contain the answer, and biomedical concepts relevant to the answer are also expected as 

output and evaluated separately. The corpus available for all retrieval tasks in BioASQ tasks 

is the set of all PubMed indexed biomedical article citations (title, abstract, and additional 

metadata such as authors, journal name, and indexing terms). Hence throughout this paper, 

by document, we mean the title+abstract and any other associated metadata.

In this paper, we specifically focus on the high level document retrieval (DR) component of 

the BioASQ shared task on QA (task B). This is a natural first step because most end-to-end 

QA systems first need to identify documents that potentially contain answers. Subsequently, 

more sophisticated NLP methods are used to identify smaller snippets and next spans of 

particular phrases representing the answers within them. Also, superior performance in the 

DR task will lead to overall better end-to-end system performance, all other factors being 

equal. Hence we focus on this task in our preliminary foray into the BioASQ series. Our 

approach to DR involves a traditional IR model to get a list of documents and then rerank 

this list using neural question-answer sentence matching and some auxiliary features 

involving journal names (of documents) and an external knowledge base of relations 

extracted from biomedical articles. Specifically, we make the following contributions.

1. We train a neural sentence matching network to learn a matching score of the 

question sentence with each sentence in a candidate relevant document. We do 

this by exploiting the training data that includes the relevant snippets from prior 

years in the BioASQ series.

2. We devise a feature that exploits the thematic overlap of a journal in which a 

candidate document is published and the question at hand, using medical subject 

headings (MeSH terms) as proxies for thematic content.

3. We also use an external knowledge base of relations called SemMedDB [2] 

extracted by applying rule-based relation extraction algorithms to the BioASQ 
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corpus. The main intuition is that documents containing binary relations 

involving a pair of entities mentioned in the question may have a higher chance 

of being relevant.

4. With features discussed thus far in this list, by using adaptive random search and 

learning-to-rank algorithms, we rerank documents retrieved by a traditional 

sequential dependence model implemented as part of the open source Galago 

search engine [3].

5. Overall, we find that our reranking approach performs consistently better than 

the baseline retrieval system when tested on the 2016 and 2017 BioASQ test sets. 

We also participated in BioASQ 2018, and our system came in 2nd (among 26 

different entries) in the final batch as shown in Table I (based on the mean 

average precision (MAP1) measure used by the task organizers).

II. METHODOLOGICAL DETAILS

We use the BioASQ [1] QA datasets from years 2014 through 2017. When using a certain 

year’s dataset as test set, we use all preceding years’ datasets for training.

A. Baseline Document Retrieval Model

We use the sequential dependence model (SDM) [4] in the initial document retrieval process 

as implemented in the open source Galago search engine [3]. Unlike the traditional bag-of-

words models, the order of terms in a query is also taken into account in the SDM model. 

SDM is based on the Markov random field model, in which not only the unigrams but also 

the ordered and unordered bi-grams in a posed query are considered in the retrieval score 

computation. The term frequency score is

f T qi, D = logP qi θD = log
t f qi, D + μ

c f qi
C

D + μ

where qi is a query term, D is the document, θD is a language model built using D, tfqi,D is 

the term frequency of qi in D, cfqi is the collection frequency of qi, |C| is the total number of 

terms across all the documents, |D| is the document length, and μ is the Dirichlet prior for 

the smoothing effect. Likewise, the functions for the ordered and unordered bi-grams are 

defined in a similar way:

f O qi, qi + 1, D = log
t f

o qi, qi + 1, D
N + μ

c f
o qi, qi + 1, D
N

C

D + μ

1The MAP values in the table are much smaller than what they ought to be due to the special way BioASQ organizers compute AP, for 
which they always divide the p@k sum by 10 instead of the actual number of relevant documents (given the maximum number of 
relevant items they allow for a system is ten). This makes the MAP value much smaller given many questions have < 10 relevant 
documents. In our experiments in the rest of the paper, we use the standard MAP formula to give realistic scores.
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f U qi, qi + 1, D = log
t f

u qi, qi + 1, D
M + μ

c f
u qi, qi + 1, D
M

C

D + μ

where t f
O qi, qi + 1, D
N  and t f

u qi, qi + 1, D
M  indicate the frequencies of the terms qi and qi+1 

within an ordered window of N word positions and within a unordered window of M word 

positions respectively. The final scoring function is the weighted sum of the the three 

constituent functions

score(Q, D) = λT ∑
i = 1

Q
f T qi, D + λO ∑

i = 1

Q − 1
f O qi, qi + 1, D + λU ∑

i = 1

Q − 1
f U qi, qi + 1, D

where Q = q1, … , q|Q| is the query and λT, λO, and λU are weights for the unigram, ordered 

bigram, and unordered bigram components respectively. This SDM scoring function is the 

baseline throughout all our experiments where we measure the effectiveness of our matching 

score feature and other auxiliary features.

B. Question-Answer Matching (QAMat) Model

Our QA matching (QAMat) model is an attention-based neural network based on prior 

efforts on siamese networks in NLP [5]. However, the main difference is that we use 

separate parameters for encoding the question and candidate sentences while the original 

siamese network uses the same parameters until the final distance layer. Given the linguistic 

(lexical and syntactic) layout of a question and the importances of various words in it are 

different in nature from the relevance of different tokens observed in a candidate answer 

sentence, different parameter sets for encoding them separately are necessary. Due to this, 

we see our network as “matching” sentences instead of computing similarity between them.

As outlined earlier, the BioASQ training datasets provide a list of human adjudicated text 

snippets that are relevant to each question. As such, we train the QAMat model with the 

pairs of questions and relevant sentences in the ground truth training text snippets. Thus we 

expect the model to score sentences in a document with regards to their potential for 

containing an answer to a specific question. We first outline the architecture and 

subsequently elaborate on training dataset generation.

1) Architecture: Beyond simple averaging of word embeddings in a sentence, 

researchers have attempted to build neural models that encode a phrase [6], a sentence, or a 

document [7] into a discriminative low dimensional vector representation. For QA in 

particular, a paragraph can be matched to a question sentence to find an answer phrase span 

in that paragraph [8]. We follow a similar approach where given a question sentence and a 

candidate answer sentence, the neural net estimates the probability that the answer sentence 

contains information pertinent to answer the question. We train two bidirectional long short-
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term memory networks (BiLSTMs [9]), one for encoding a question sentence and the other 

for encoding a candidate answer sentence as shown in Figure 1.

Question Sentence Encoding–: All the tokens in a question sentence Q are mapped to 

corresponding word embeddings. The word embeddings are then fed into the question 

BiLSTM to produce hidden node outputs

h1, ⋯, hn = BiLSTM e1, ⋯, en ,

where ei are embeddings of words in the question and hj are concatenations of the forward 

and backward LSTM hidden outputs for the j-th position. All hi are subsequently combined 

into a single fixed-size vector specifically in the form a weighted sum with weights

α j =
exp w ⋅ h j

∑t = 1
n exp w ⋅ ht

,

determined via self-attention and where αj quantifies the attention that needs to be put on the 

corresponding question word and w is the attention parameter vector learned as part of 

training. To this weighted sum representation of the question, we concatenate a one-hot 4-bit 

vector indicating the type of a question to encode the set {yes/no, factoid, list, summary} 
given the question type may affect the matching process.

Answer Sentence Encoding–: Similarly, we encode a candidate answer sentence 

representation using a second BiLSTM using word embeddings for the answer sentence 

tokens. The hidden outputs of the candidate answer sentence are combined using another 

attention layer just like for the question sentence. Then, the resulting two sentence 

representations are compared to each other in the next text matching component.

Semantic Matching Model–: Our matching component is based on well known metric 

learning constructs to measure relatedness or similarity between two vectors [10]. We tested 

approaches ranging from simple dot product to bilinear maps and recent neural tensor 

networks [11]. Based on experiments, we finalized the bilinear map metric g(s, q) = sT Wq 
where s and q are candidate answer sentence and question embeddings respectively as 

defined in the previous two paragraphs and W is the parameter matrix for the bilinear 

transformation. In the end, the output scores g(s, q) are passed to the logistic function. The 

network in Figure 1 is trained with the binary cross-entropy loss function to evaluate the 

prediction quality.

2) Building Datasets for the QAMat model: Each instance to train the QAMat 

model takes the form of a pair of sentences, one representing the question and the other 

representing the candidate answer sentence. An instance is positive if the second sentence in 

the pair is relevant to answering the question represented by the first sentence. We use the 

BioASQ data from previous years for training this. Specifically, all sentences of human-

curated text snippets in BioASQ data are labeled as the relevant group. To populate the 
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irrelevant group, we randomly select from the relevant documents those sentences that do 

not appear in the relevant text snippets. Since the examples are from the relevant documents, 

we expect the context to be related to the topic of the document but not directly containing 

content to glean the answer. We also sample irrelevant examples from the entire document 

collection given the chance of the random samples from over 27 million documents being 

relevant to the question is extremely low. The proportions for training are as follows:

• 50% of the sentences are relevant examples, and the other half are irrelevant 

examples.

• Among irrelevant examples, half are sampled from the relevant documents (but 

outside snippets that contain answers) and half are from the rest of the corpus 

(irrelevant documents).

C. MeSH Distribution across Questions and Journals

QAMat component from Section II–B is our main explicit feature directly comparing 

question and document contents. Here we discuss an auxiliary feature involving thematic 

overlap between question contents and the journal in which a candidate document is 

published. The medical subject headings (MeSH) is a well-known standardized hierarchical 

vocabulary used to tag biomedical articles (just like keywords) to facilitate future thematic 

search by researchers who use NLM’s PubMed search engine. Besides individual articles, a 

journal name is also assigned a set of MeSH terms. The MeSH terms for an article or journal 

can be treated as a thematic abstraction of the content in them. MeSH terms can also be 

extracted using NLM’s medical text indexer (MTI) tool that outputs MeSH terms for any 

piece of text. Our intuition is that if we can build a distribution of MeSH terms occurring 

across questions and journals, we can use it to design a feature that takes as input the 

question and candidate document (thus its journal) and output a score for it based on 

thematic overlap.

We build a distribution matrix M where the rows are MeSH terms from questions in the 

training data and the columns are MeSH terms of the journals of the corresponding relevant 

training documents. Here M[mi][m′j] contains the number of times in the training data we 

encountered a question with MeSH term mi with a corresponding answer document whose 

journal has the associated MeSH term m′j. More specifically, let 𝒬 is the set of questions in 

the training data. Let R(Q) be the set of relevant documents for Q ∈ 𝒬. Let t(Q) be the MeSH 

terms mentioned in Q and let t(D) be the set of MeSH terms for the journal of document D. 

We fill the table M via

∀Q ∈ 𝒬 ∀D ∈ R(Q) ∀mi ∈ t(Q) ∀m j′ ∈ t(D) M mi m j′ + = 1 ,

where ‘+= k’ refers to increment-by-k operation. We subsequently normalize each row by 

dividing each cell value with the sum of all elements in that row. With this, M[mi][m′j} now 

represents P(m′j|mi) – the probability estimate of encountering an answer document whose 

journal has MeSH term m′j given the question contains term mi. With this setup, given a 

new question Q, for a candidate document D, the score is
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μ(Q, D) = 1
t(Q) ∑

mi ∈ t(Q)
∑

m j′ ∈ t(D)
M mi, m j′ .

It is straightforward to note μ ∈ [0,1] given the normalization step in building M and the 1/
t(Q) factor in computing μ.

D. Semantic Predications in SemMedDB

SemMedDB [2] is a repository of semantic predications (subject-predicate-object triples) 

that are extracted from the biomedical scientific literature indexed by PubMed using rule-

based NLP techniques. The NLM provides an updated SemMedDB every year to include 

predications from newer articles. In each predication, the subject and object are biomedical 

entities (e.g., diseases, drugs, and procedures) represented by concepts from the unified 

medical language system (UMLS). The predicates (e.g., treats and causes) that connect the 

subject and object come from an extended semantic network [12]. For example, for a 

PubMed document sentence “We conclude that tamoxifen therapy is more effective for early 

stage breast cancer patients”, SemMedDB would contain the predication (Tamoxifen Citrate 

[C0079589], treats, Breast Carcinoma [C0678222]) where the C codes in square braces 

represent UMLS unique concept identifiers for the entities. We note that relations in 

SemMedDB have corresponding provenance information of particular sentences (in PubMed 

citations) they came from. Given the BioASQ search corpus is also PubMed citations, we 

design features that capture semantic links between concept mentions in the question. 

Specifically, from a question sentence, we use NLM’s MetaMap software to extract UMLS 

concepts C(Q) for question Q. For a candidate document D, let C(D) be all UMLS concepts 

that participated (either as subject or object) in at least one predication in D and let R(D) be 

set of all predications in D. Our first binary feature π1(Q,D) is set to 1 if and only if |{(i, j) : 
i,j ∈ C(Q) and (i,p,j) ∈ R(D)}| > 0 for some predicate p. That is, π1 fires only if there exists 

at least one SemMedDB triple in D whose subject and object are both present in Q. The 

second feature π2(Q,D) = (|C(Q) ∩ C(D)|)/|C(Q)| is a numerical feature (∈ [0,1]) that 

measures the proportion of number of concepts present in both Q and semantic predication 

based concept set C (D) to the total number of concepts in Q.

E. Feature Weighting Methods

Finally, to rerank the top few documents returned by the SDM model, we need a way to 

combine all the five scores derived from the (1). preliminary SDM retrieval (Section II–A), 

(2). QAMat (Section II–B), (3). MeSH distribution (Section II–C), (4). SemMedDB relation 

match, and (5). SemMedDB concept proportion (Section II–D). We note that we scale 

features to [0,1] range before combining them for final document ranking. Except for the 

QAMat score, all other features score the entire document. For QAMat, we produce a score 

for each sentence in the candidate document. To arrive at the final document-level score, we 

can consider the average of all QAMat scores for all sentences in it, just the maximum value 

among sentences, or both the average and max scores. Based on our experiments, we chose 

the simpler maximum score option as involving the average score did not improve the 

validation set performances.
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1) Adaptive Random Search: The adaptive random search (ARS) method is a 

particular instance of a class of stochastic optimization methods where a weighted sum of 

feature scores is used as the final score for ranking documents. In this case, we have five 

weights α1, … , α5 such that ∑i αi = 1, so the final score is also in [0,1] since all constituent 

scores are in that range too. ARS starts with a random configuration of αis and 

incrementally updates them as it proceeds to explore the search space. It does not require 

derivatives when performing updates. Instead of using a fixed step size, ARS dynamically 

increases or decreases the step size based on the observed difference between the 

performances on a validation dataset. Karnopp [13] discusses the details of the ARS 

algorithm, which we incorporated in our system to optimize the weights for the ranking 

features.

2) Learning-to-Rank Algorithms: Learning-to-rank [14] (L2R) has emerged from the 

machine learning community as an automated way of learning functions that can rank a list 

of documents in response to an input query based on different query-specific features 

extracted from the documents. We also compare ARS against a variety of L2R algorithms as 

implemented in the RankLib library2. For the training data, we use all five feature scores and 

a binary judgment (‘relevant’ or ‘irrelevant’) for each item. Whether we use ARS or an L2R 

algorithm, the feature weighting model is built solely from the training dataset.

III. EXPERIMENTS AND RESULTS

We perform experiments on the BioASQ QA datasets (years 2014 through 2017) focusing 

on the past two years for testing scenarios to examine the efficacy of the proposed 

approaches. Before we get into our results, we outline some system configuration details for 

experiments.

• SDM component (Section II–A): For this initial document retrieval component, 

we used its implementation by the Galago search engine [3]. Indexing of the 

documents was done by the Krovetz stemmer (https://sourceforge.net/p/lemur/

wiki/KrovetzStemmer/), included in the Galago system. The window width for 

the ordered query tokens (N in Section II–A) is increased from the default setting 

of 1 to 3. The unordered width is increased from the default setting of 4 to 8 (M 
in Section II–A). Empirically, this setting improved the recall scores. We choose 

the default settings in the Galago implementation of SDM and set unigram score 

weight λT = 0.8, ordered distance score weight λO = 0.15, and unordered 

window weight λU = 0.05. Finally, the maximum number of documents to be 

retrieved using SDM is set to 30.

• QAMat component (Section II–B): For the neural matching component, we use 

pre-trained word embeddings with 300 dimensions trained on Wikipedia using 

fastText [15]. The dimensionality of the BiLSTM hidden layers is set to 256 

(determined via experiments). For regularization, we apply a dropout to the 

inputs of the LSTM layers with the dropout rate of 0.3. The attention layer 

2Open source collection of learning-to-rank implementations part of the Lemur project: http://sourceforge.net/p/lemur/wiki/RankLib/
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output is 512 dimensional given the hidden layer output is 256 dimensions in 

each direction in the BiLSTM. In order to indicate the type of the given question, 

four additional bits are appended to the question representation; hence the 

parameter matrix W of the following bilinear matching function is set to (512 × 

516). The maximum number of epochs is set to 30 with early stopping enabled, 

and batch size is fixed at 128. We train the model using Adamax optimizer with 

an initial learning rate of 0.005 and a weight decay of 0.0005. Gradient clipping 

is set to 10 to avoid the exploding gradient problem. All other network weights 

are based on default initializations in PyTorch [16].

A. Experiments for the QAMat Feature

In Table II, we show the counts of datasets created for training the QAMat model as 

discussed in Section II-B2. We chose the datasets to be balanced given we do not want to 

compromise too much on recall and because we have other evidences (SDM, MeSH 

distribution, SemMedDB match scores) to alleviate precision trade-off concerns. For each 

question, the positive examples in the datasets were based on those found in the BioASQ 

datasets and negative examples were generated randomly from the rest of the corpus. We 

achieved test set accuracies of ≈ 87% for the QAMat component. Next, we look at a sample 

question and QAMat scores (before they are passed to the sigmoid function) for answer 

sentences.

Table III shows how the QAMat model scores the sentences of an example relevant 

document and also the ones of another random irrelevant document for the question 

“Orteronel was developed for treatment of which cancer?”. As we can see, the relevant 

document sentences that succinctly discuss treatment of cancer with orteronel have scored 

high. Other sentences in the document that contain a lot more information do not have as 

high a score as smaller sentences that pointedly talk about orteronel drug therapy for cancer. 

All the sentences in the irrelevant document attain negative scores, all of which are worse 

than the lowest score achieved by the relevant sentences.

B. L2R Vs ARS for Feature Weighting

Table IV shows the mean average precision (MAP) results when using different feature 

weighting methods. Surprisingly, ARS outperforms all other methods except for one out of 

ten batches considered. MART, Coordinate Ascent, and Random Forests more or less 

perform at the same level but trail behind ARS. We believe L2R algorithms may perform 

better in situations where features used have non-trivial correlations. In this case, it appears 

the features considered may be contributing complementary evidence.

C. Ablation Study

We perform a feature ablation study to measure the contributions of different features 

discussed in Section II. We first build a full model consisting of all features and 

subsequently drop each component, one at a time, to note the dip in performance (here 

MAP). Table V shows the results of these experiments for test sets from 2016 and 2017. The 

first rows in Table V(a) and Table V(b) have results from our full model and the last rows are 

based on the baseline SDM model (Section II–A). Rows 2–4 indicate dropped components 

Noh and Kavuluru Page 9

Proc Int Conf Mach Learn Appl. Author manuscript; available in PMC 2019 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from Sections II–B–II–D respectively. The bold scores indicate the values that had the 

biggest drop from the corresponding full featured model score in the first row. We also note 

that the blue colored scores (1st rows) indicate the best performance achieved in each test 

batch. That is, in all batches, our fully featured model obtained the best scores.

We display the optimized [0, 1] ARS weights in Table V in columns 2–6. We observe that 

QAMat score takes the highest weight by a large margin compared to other feature weights. 

Furthermore, QAMat’s weight increases in 2017 compared with its weight in 2016 

potentially due to the availability of more training data for 2017. However, the baseline 

SDM model (last rows) by itself does reasonably well but scores around 2% below our full 

model’s MAP. Moreover, our model can highlight sentences based on high QAMat scores 

that are expected to contain crucial information pertinent for answering the question. 

Coming to ablation results, from rows 2–4, we notice that dropping the QAMat component 

causes the biggest drop in MAP in most of the cases. Although the MeSH distribution and 

SemMedDB features were useful, the ablation results show that their contribution is much 

less than that of the baseline SDM scores and QAMat scores.

IV. RELATED WORK

Our main contribution here is the retrieval of relevant documents with an end goal of finding 

answers to specific questions in biomedicine. Unlike other ad hoc IR tasks, the BioASQ IR 

task is unique in the sense that it is part of a more complex set of tasks including snippet 

retrieval and QA. In this section, we briefly discuss other efforts related to this paper.

Biomedical information retrieval has benefited from multiple shared tasks including TREC 

genomics [17], clinical decision support [18], and precision medicine [19] tracks, the CLEF 

user-centered health information retrieval task [20], and the BioASQ retrieval and QA task 

[1]. The use of neural approaches for IR is on the rise in general [21], also for question-

answer matching [22] and biomedical QA [23], [24]. However, classical non-neural IR 

approaches especially those that employ pseudo-relevance feedback and extensions of SDM 

model are topping the BioASQ IR task during recent years [25]. Our immediate goal is to 

combine the best of both worlds to build a superior IR system as elaborated in future 

research directions in Section V.

Our sentence matching component is mainly derived from recent research in machine 

reading comprehension (MRC). Over the past few years, researchers made significant 

progress with end-to-end MRC models by utilizing various input embeddings and attention 

mechanisms. Seo et al. [26] combined character embeddings along with pre-trained word 

embeddings with an attention flow mechanism to model the context for a query. In the 

transformer architecture proposed by Vaswani et al. [27], the multi-head attention 

mechanism allows the model to jointly attend to information from different representation 

subspaces at different positions. These relatively more complex architectures may be useful 

in our matching task too.
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V. CONCLUSION

In this paper, we demonstrated the effectiveness of the three different relevance measures for 

a biomedical document retrieval task where the query takes the form of a question. The first 

involves computing matching scores via dense neural representations of both the question 

sentence and candidate answer sentences. The second one utilizes thematic overlap between 

a document and the question based on distributional information of MeSH terms in 

questions and journals of corresponding answer documents. The third prioritizes documents 

that contain relations between concepts found in the question. We showed that our proposed 

features help improve the retrieval quality consistently, and the official results in the 2018 

BioASQ task (Table I) confirm this finding. Next we discuss some future research 

directions.

• Based on the SDM model in Section II–A, we limit the number of documents to 

retrieve for reranking to 30. Although it is important to limit the size of the 

candidate document set to be reranked, additional experiments where pseudo-

relevance feedback is employed on top of SDM might be beneficial. That is, 

based on the top scoring (using the QAMat model) sentences in the top 30 

documents, we may be able to expand the query to obtain more highly relevant 

documents with a second SDM fetch operation. The expansion can be in the 

form of new query terms or entities that ought to be included in the query.

• We used the type of question (yes/no, factoid, list, or summary) as part of the 

question representation matching process in Section II–B. However, the 4-bit 

vector that represents the question type is added after the attention mechanism is 

applied to form a weighted vector for the question. It would be interesting to see 

how the scoring would change if the question type information is used as part of 

the attention mechanism. This can be accomplished by choosing a different 

attention parameter vector for each question type. Although this would be more 

time consuming, it might help the attention mechanism to focus more on words 

that might matter based on the question type.

• Also, for factoid and list question types, we may be able to ascertain the semantic 

type of the entities that constitute the answer. For the example for the question in 

Table III, through NLP methods involving dependency parsing, we might be able 

to determine that the answer entity is a disease (cancer, specifically). We can 

then parametrize the attention mechanism for the answer sentence and also the 

matching process based on this additional piece of information about the answer 

type. For instance, a candidate sentence that has more entities of the answer type 

detected in the question ought to be scored higher than other sentences that do 

not contain answer type entities.
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Fig. 1: 
Question-Answering Text Matching (QAMat) Model Architecture
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TABLE I:

The official BioASQ results of the top 5 different systems (2018, task 6b phaseA batch 5)

System Mean Precision Recall F1 MAP GMAP

aueb-nlp-4 0.1145 0.3790 0.1590 0.0695 0.0012

ours 0.1085 0.3539 0.1513 0.0680 0.0009

sys2 0.1055 0.3331 0.1458 0.0633 0.0008

ustb_prir4 0.1105 0.3441 0.1532 0.0622 0.0009

testtext 0.1115 0.3540 0.1550 0.0618 0.0009
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TABLE II:

Training dataset counts for QAMat training

dataset relevant irrelevant

train (2014–2015) 23,466 23,466

test (2016) 16,706 16,706

(a) datasets for testing on year 2016

dataset relevant irrelevant

train (2014–2016) 33,075 33,075

test (2017) 9,582 9,582

(b) datasets for testing on year 2017
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