Skip to main content
. Author manuscript; available in PMC: 2019 Jan 30.
Published in final edited form as: Proc Int Conf Mach Learn Appl. 2019 Jan 17;2018:194–201. doi: 10.1109/ICMLA.2018.00036

TABLE IV:

Feature weighting method comparison based on MAP

BioASQ test datasets MAP for learning-to-rank algorithms
ARS MART RankBoost AdaRank CoordAscent LambdaMART RandForests
year 2016, batch 1 0.4438 0.4181 0.3731 0.3792 0.4296 0.4025 0.4175
year 2016, batch 2 0.4780 0.4625 0.3698 0.4396 0.4493 0.4497 0.4736
year 2016, batch 3 0.4534 0.4198 0.3366 0.4009 0.4274 0.4026 0.4417
year 2016, batch 4 0.4388 0.4036 0.3490 0.3813 0.4127 0.4022 0.4296
year 2016, batch 5 0.3722 0.3563 0.2869 0.3263 0.3551 0.3314 0.3729
year 2017, batch 1 0.4075 0.3843 0.2616 0.1233 0.3786 0.3517 0.3975
year 2017, batch 2 0.4363 0.4334 0.3300 0.1457 0.4299 0.4227 0.4263
year 2017, batch 3 0.4534 0.4377 0.3223 0.1536 0.4456 0.4105 0.4434
year 2017, batch 4 0.3891 0.3693 0.2598 0.1193 0.3763 0.3362 0.3791
year 2017, batch 5 0.2316 0.2068 0.1226 0.0793 0.2170 0.1887 0.2216