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INTRODUCTION

The symptoms of panic disorder (PD) include recurrent 
panic attacks with the following example symptoms, such as 
fear of losing control, feel like dying, chest tightness, short-
ness of breathing, palpitations, dizziness, abdominal discom-
forts and other physical symptoms with unknown etiology. It 
is an important anxiety illness but usually under-recognized,1 
which is associated with the impairments in life qualities and 
somatic feelings.2 PD is easily comorbid with other mental 
illnesses.3 PD is also related to diminished well-being, poor 
sense of health, decline in qualities of life, frequent utilization 
of medical services, occupational impairments, financial de-
pendency, and marital strife due to recurrent panic attacks and 
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anticipatory anxiety.2,4,5 The traditional pathophysiology of 
PD was originated from Gorman’s hypothesis of “fear net-
work model (FNM)”.6 The FNM included frontal and limbic 
areas, such as insula, thalamus, periacqueductal gray matter, 
locus cerulus, parabrachial nucleus and nucleus of solitary 
tract, medial frontal gyrus, anterior cingulate, amygdala and 
hippocampus, brainstem, hypothalamus. The frontal areas 
should modulate the exaggerated fear reactions of the limbic 
regions properly. Inadequate control of fear response will 
provoke panic attacks.6 The subliminal fear is processed via 
cortical-cortical and cortico-subcortical functional connec-
tion.7 The fear and arousal of panic symptoms are related to 
attention modulation toward threat band emotional salience 
of the threat.8 The center of traditional FNM is the amygdala, 
which is connected with medial frontal cortex and hippo-
campus for the control of fear response and fear memory. In 
addition, the projections from amygdala are linked with brain-
stem and hypothalamus for the panic symptoms related to 
the dysfunction of autonomic nervous system. The dysfunc-
tion of FNM is usually associated with early childhood life 
stressors and genetic loading. The serotonin-related medica-
tions, such as antidepressants, can relieve the panic symptoms 
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via the decrease in the exaggerated fear response between 
amygdala and brainstem or hypothalamus. In addition, psy-
chosocial interventions can enhance frontal cortex inhibitory 
ability for the amygdala and hippocampus.6 The hippocam-
pus hyperexcitability would enhance the fear memories and 
the inhibitory neurotransmitter can help the suppression and 
extinction of fear response related to fear memory.9 The tra-
ditional FNM is associated with the dysregulation of cholecys-
tokinin, serotonin, glutamate, norepinephrine, gamma-ami-
nobutyric acid systems.10,11 However, recent neuroimaging 
studies revealed that no such distinct and specific pathways 
for the medication and psychosocial interventions as Gor-
man et al. mentioned in their original hypothesis. In addition, 
recently another review of panic disorder focused on the neu-
roimaging reports, such as functional, metabolic and struc-
tural imaging studies. The review mentioned the hyperactive 
amygdala should be a state biomarker, not a trait biomarker. 
The alterations in the cortico-limbic interaction were repli-
cated with further involvements of extended areas, such as 
anterior cingulate cortex and insula.10,12 However, the inter-
individual differences of the FNM for each patient might be 
associated with inter-individual differences of panic symp-
toms and clinical responses to treatment.13 Further advanced 
FNM should include more potential extension areas. In my 
viewpoint, the sensory-related brain regions, such as tempo-
ral, occipital and parietal should be included in the advanced 
FNM for the pathophysiology of PD. Since most panic symp-
toms, such as chest tightness, shortness of breathing, dizzi-
ness, palpitations, paresthesia and abdominal pain, etc., are 
related to sensory function and response. Therefore, this re-
view would reveal the importance of extended areas for the 
advanced FNM, especially for the sensory regions. I will also 
review whether the functional connectivity of traditional FNM 
is associated with sensory-related brain regions and whether 
the connectivity of sensory-related brain regions will be mod-
ulated through thalamus and insula in the following sections. 

 
Extended areas of FNM

The advanced FNM evidences for temporal regions
The model of fear circuitry in PD consists of lateral nucle-

us of amygdala, hippocampus, frontal cortex, insula, thala-
mus, anterior cingulate, hypothalamus and brainstem, which 
are interacted with each other to modulate the panic respons-
es.6,14,15 For the gray matter (GM), the voxel-based morphom-
etry (VBM) analysis showed an extended region, temporal 
lobe, which was not included in the traditional FNM.16-22 Sev-
eral VBM studies reported alterations in the temporal regions, 
even with opposite findings of GM volumes, such as decreased 
GM17,23 and increased GM in PD patients.22 The alterations 

of temporal lobe might be associated with the inhibitory 
function of frontal cortex. The alterations in the frontal re-
gions of PD patients have been mentioned in several VBM 
reports17,20,21,23-26 and the GM volumes were negatively corre-
lated with the severity of PD symptoms.23 The frontal regions 
might use “top-down mechanism” to process the sensory mes-
sages from temporal regions to control the subsequent panic 
attacks.27 In addition to the structural studies, there are some 
functional studies showing the crucial role of temporal lobe 
for the pathophysiology of panic disorder. Regional cerebral 
blood flow was decreased in the superior temporal gyrus and 
negatively correlated with the panic severity, anxiety level and 
illness duration.28 Nash et al.29 found decreased presynaptic 
and postsynaptic serotonin 1A receptor bindings in the orbi-
tofrontal cortex and temporal regions of PD patients. The stim-
ulations of panicogenic will also induce panic attacks through 
decreased ability of inferior frontal cortex to control the pan-
ic responses.30 

The sensory-related function has been discussed for the tem-
poral lobe in PD, which included the visuospatial dysfunc-
tion and false threat alarm in patients with PD.14,22,31-34 The 
impairments in integrating sensory information through the 
visuospatial system and attention were also reported.22 In ad-
dition, PD patients had deficits to suppress the interference 
of nonverbal stimuli and reduced verbal cognitive ability to 
express abstract thoughts.35 In the traditional FNM, the addi-
tional sensory-related structures, such as temporal lobes and 
parietal lobes, were not crucial areas.6 However, fear-related 
acute stressors would activate infero-temporal, temporo-pa-
rietal and limbic structures to exchange information between 
autonomic-neuroendocrine systems and re-orient vigilant 
attention.36 The fear conditioning would increase brain activ-
ities in the frontal, temporal and parietal lobes.37 Our antide-
pressant treatment study in PD also showed increased region-
al homogeneity of temporal lobe and decreased regional 
homogeneity of parietal lobe after remission of panic symp-
toms under antidepressant therapy.38 Fearful faces stimuli 
would also induce spatial attention and interact with emotion, 
which were associated with temporo-parietal negativity and 
the activities in occipital lobe.39 The external stressors and re-
lated panic attacks would increase brain activities in thala-
mus and occipito-temporo-parietal regions.40 The strong and 
robust activations in superior temporal lobe and several lim-
bic structures would also occur during panic attacks.41 The 
increased cerebral activities of superior temporal lobe in PD 
patients also replicated the above studies.30 However, differ-
ent points of view mentioned the opposite phenomenon, such 
as decreased regional cerebral blood flow in right superior 
temporal gyrus of PD patients. In addition, regional cerebral 
blood flows in right superior temporal gyrus were negatively 
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correlated with the duration of illness, severity of clinical anx-
iety and PD symptoms.28 However, decreased regional cere-
bral blood flow in right superior temporal gyrus of PD patients 
has been reported in another study. In addition, regional ce-
rebral blood flow in right superior temporal gyrus negatively 
correlated with the duration of illness, severity of clinical anx-
iety and PD symptoms.28 The functions of temporal lobe, such 
as the regulation of anxiety,42 selective aberrant functional 
connectivity,43 regulation of mood status,42 the involvement 
of episodic memory and self-projection43 might be also im-
paired in PD. Several reports suggested that “fronto-temporo-
insula” network might be altered in PD, which also included 
the temporal lobe.27,30,44 Antidepressant treatment would also 
be associated with the increased regional homogeneity (ReHo) 
of temporal lobe in the remitted patients with PD.38 The acti-
vations in superior temporal gyrus have been observed dur-
ing panic attacks,41 which also corresponded to hyperfusion 
of superior temporal gyrus in a positron emission tomogra-
phy study.45

Several VBM studies of PD also supported the biomarker 
characteristics of temporal lobe, such as the GM alterations 
over this region.17,22,26 Increased GM volumes have been men-
tioned in superior temporal gyrus, which might be associat-
ed with the dense connection between insula and temporal 
lobe.22 However, decreased GM volumes have been observed 
in temporal lobe.23 Pure anxiety disorders also had deficits of 
GM volume in superior temporal gyrus,26 which might work 
with amygdala and insula to control the panic attacks. In ad-
dition, the alterations in the temporal lobe might influence 
the spread of sensory information to the thalamus for further 
filtering and subsequent “top-down” regulation of the frontal 
system.6 In addition, the fractional amplitude of low frequen-
cy fluctuations in the temporal lobe might be dissociated with 
those in the fronto-parietal lobe.46 These studies supported 
that the advanced FNM should include the temporal lobe. 

The advanced FNM evidences for insula
Insula might integrate multimodal sensory information due 

to dense connections with other brain regions, such as frontal 
and temporal regions. The insula might modulate the panic 
responses via this fronto-temporo-insula network.27,44,47 The 
alterations of GM in insula have been mentioned in several 
VBM studies in PD.17,22,27,48 In the traditional FNM, the insula 
received the thalamus-filtered sensory information and coop-
erated with frontal regions to control panic attacks.6

The alterations of insula GM have been mentioned in sever-
al VBM studies with opposite findings, such as decreased GM 
volumes17,27,49 and increases in GM volume.22,48 The insula is 
also a crucial area for the somatic and cognitive pathophysi-
ology of PD.50,51 The inconsistent findings also occurred in 

the functional studies of PD patients, such as increased brain 
activity48 or decreased brain activity.30 The typical fear due to 
danger threat response also decreased the coupling between 
insula and frontal cortex.52 The visceral-somatic afferent and 
efferent impairments were also associated with decreased 
gamma amino-butyric acid binding in insula of PD patients.53 
The fear of cardiovascular symptoms in PD, response of visual 
threat, anxiety sensitivity during emotional face processing, 
anticipating anxiety towards the agoraphobia situation, pre-
diction of cognitive behavioral therapy, pH sensitivity func-
tional imaging and unpredictable aversiveness for avoidance 
response were also associated with the activations of insu-
la54-61 in an extended version of fear network.12,62 The anxiety 
sensitivity was negatively correlated with white matter (WM) 
microintegrity.63 From these literature, insula might play a 
crucial role for the processing of cognitive, emotional, fearful 
and primitive response during panic attacks. It should be in-
cluded in the advanced FNM based on the numerous struc-
tural and functional imaging studies.

The advanced FNM evidences for thalamus 
The thalamus regulates emotional and cognitive functions, 

such as fear, arousal, attention modulation towards threat, 
emotional perseveration of threat, state anxiety for threat moni-
toring, shock monitoring and sensory processing.8,15,64 The thal-
amus interacts with temporal, parietal, subcortical limbic 
structures, or other parts of fear network structures to modu-
late the noradrenergic system response towards fear.36,40,64 It is 
a part of fear network and can regulate fear response towards 
threat.6,65 In addition, our previous study about RFMRI also 
found alterations of fractional amplitude of low frequency 
fluctuations in thalamus.66 Pentazatos et al.67 reported that fear-
ful face presentation would provoke functional connectivity 
between AG and hippocampus. In addition, thalamus will con-
nect with temporal lobe and insula for the pathogenesis of PD.

The advanced FNM evidences for parietal lobe
Serotonin-related functional alterations have been found 

in the parieto-superior temporal regions of PD patients.68 An-
other kind of anxiety disorder, social anxiety disorder, had 
alterations in the neural activities69 and diffuse impacts on wide 
resting-state network and selective changes of intrinsic func-
tional connectivity of parietal lobe.43 The regional cerebral 
blood flow asymmetry index in temporal and parietal lobes 
was associated with panic severity.70 Anxiety-provoking situ-
ation also had the phenomenon of decreased cerebral blood 
flow in parietal lobe.71 The reductions in regional cerebral 
blood flows were also observed in the posterior parietal-supe-
rior temporal areas of PD patients.68 The anxiety severity was 
inversely correlated with the metabolisms in temporal and 
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parietal regions in mood disorder.72 
The GM volume of parietal lobe is associated with anxiety 

and mood, affective regulation, empathic response, meditation 
and clamness.42 Several VBM reports in PD showed reductions 
in GM volumes of parietal and temporal lobes.17,73 The de-
creased cortical thickness in the parietal lobe was also men-
tioned in PD.74 The cortical gyrification was also decreased in 
the parietal and temporal lobes.75 

The parietal-related visuospatial dysfunction might be the 
component issue for the pathophysiology of PD.76 The activi-
ties of parietal lobule and other advanced FNM regions might 
predict the treatment response to cognitive behavioral thera-
py,77 which is replicated in another study.78 In addition, the 
antidepressant treatment in remitted patients with PD was 
associated with the changes of ReHo in the parietal lobe.38 
The study between panic symptom and pH functional imag-
ing study also showed the significant relationship with the 
parietal lobe, insula and temporal lobe.60 PD patients also had 
decreased inter-hemispheric coordination between bilateral 
parietal lobes.79 The elevated activities of right parietal lobe 
occurred while anxious patients performed the task.80

The precuneus, a part of default mode network, has been 
reported to be altered in PD,66,81,82 which might have impair-
ments of emotion, somatosensory and self-referential process-
ing functions.83 In addition, the functional connectivity be-
tween anterior cingulate and precuneus was increased in PD, 
which was associated with the concentration of gamma-ami-
nobutyric acid.84 An aberrant limbic network between amyg-
dala and precuneus was also found in PD, which might have 
dysregulation of emotional and somatosensory processing.83 
If the disturbances happened in this network, the emotional 
and somatosensory processing might be misleading and pro-
voke panic attacks. The alterations in the functional connec-
tivity between dorsal anterior cingulate cortex and precuneus 
might link anxiety with deficits in self-awareness.85 In addi-
tion, the precuneus-related functions included the attention 
monitoring, response inhibition, motivation-independent neu-
ral process,86 somatosensory processing, emotional process-
ing, visual imagery recall and self-reflection process,87-89 which 
would be impaired in PD. The decreased parietal activation 
during avoidance response to affective stimuli was also ob-
served in PD.90 From the above literature, the parietal lobe 
should be included in the advanced FNM due to its related 
sensory function and cognitive function, which corresponds 
to another review article.12

The advanced FNM evidences for occipital lobe 
Sensory regions of brain, such as occipital or temporal lobe, 

will transmit the sensory information to FNM for recogniz-
ing and processing fear signals of face and body.91 The fear 

processing, sensory and inhibitory function might be associ-
ated with regional instability of the occipital lobe in PD.81 The 
anxious response, sensory-related fear, dysfunctions of self 
regulation might occur in the occipital lobe of anxiety pa-
tients.92 The anticipatory anxiety, a crucial trait of PD, might 
increase while higher level of neuroticism. Anticipatory fear 
was believed to be induced by abnormal brain activities of 
occipital lobe.93 In addition, the occipital lobe was associated 
with face recognition, sensitivity to fearful stimuli, emotion 
processing and levels of trait anxiety.94,95 The worry also seemed 
to decrease regional blood flow in occipital lobe, which con-
firmed the role of occipital lobe in the worry model for PD.96 
The occipital lobe was related to sensory processing of audi-
tory-spatial and visuospatial information.97,98 The environmen-
tal changes, such as visual or sensory changes, would elicit 
the responses in the middle occipital gyrus. Sensory changes 
might precipitate panic attacks, which might suggest that oc-
cipital lobe should be a part of FNM.99 

PD is associated disturbances of sensory processing and 
integration.100 The limbic system might receive abnormal sen-
sory signals from occipital lobe, which would provoke panic 
symptoms in the brainstem. The dorsal attention system, which 
includes the middle occipital gyrus, controls top-down proce-
dure for selective attention and sensory modulation.43 The 
connectivity between occipital lobe and other regions would 
be impaired due to excessive anxiety and fear.101,102 PD pa-
tients had abnormal activities in occipital lobes, basal gangli-
on and thalamus while receiving negative emotion stimu-
lus.103 In addition, the 5HT-1A receptor binding potential of 
occipital lobe was negatively correlated with anxiety levels.104

In addition to middle occipital gyrus, the visual association 
cortex (a part of occipital lobe) might be another important 
part of the FNM. The attention, perception, visual identifica-
tion, recognition memory, visuospatial ability and interocep-
tive sensory information processing105-107 of visual association 
cortex might be impaired in PD.22 The shock-related fear 
might impair the memory consolidation in bilateral lingual 
gyrus,108 which was associated with significant rapid eye 
movement sleep and impaired consolidation of fear extinc-
tion.108 The link between amygdala and visual association cor-
tex was responsible for processing fearful faces and spatial-
related information.109 The results were also in line with altered 
spatial-related attention due to impaired connection between 
amygdala and visual area in PD.109 Visual association cortex 
was also associated with the regulation of visual imagery and 
autonomic function,110 sympathetic activity and the process-
ing of autonomic function,111,112 the perceptions of bodily ex-
pressions, threatening of fear signals,113 and anticipatory anx-
iety,93 which might be impaired in PD. The fear, perception 
arousal, autonomic dysregulations, and anticipatory anxiety 
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are core symptoms and presentations of PD. Therefore, visual 
association cortex might be a component of FNM of PD.

We ever reported significant GM deficits in occipital lobe of 
PD patients who were comorbid with major depressive disor-
der.20 Our another report of ReHo in PD also showed altera-
tions in occipital lobe might be a part of FNM.81 In addition, 
the impaired fractional amplitude of low frequency fluctua-
tions have been observed in the middle occipital gyrus of PD 
patients.66 The lingual gyrus was connected with amygdala to 
form the FNM for the spatial attention ability and fear-pro-
cessing in PD.109 In the advanced FNM, occipital lobe might 
work with medial structures (such as thalamus and amygda-
la), frontal regions and other sensory region (such as superior 
temporal lobe) to process the fear identification and adapta-
tion.114 The occipital lobe probably send the sensory informa-
tion through the sensory afferents to the thalamus, amygdala 
and hippocampus, which are core structures of fear circuitry 
of PD.6 

The hyperoxic ventilation challenge elevated the activities 
in occipital lobe. The addition of carbon dioxide abolished 
the abnormal response of occipital lobe.115 In addition, panic 
attacks from the stress of social interaction might be associat-
ed with alterations in the occipital lobe for neural processing 
of social cognition, social rejection sensitivity and low confi-
dence fear.116,117 The lingual gyrus also regulates the anxiety, 
vigilance and cardiovascular functions.118 The visual process-
ing, orientation-specific function of occipital lobe,119 the vi-
suospatial ability, somatosensory stimulation and perception 
of sensory stimulus120 suggested that the impairments in sen-
sory integration might predispose to panic attacks. In addi-
tion, antidepressant treatment enhanced the brain activities 
in occipital lobe and relieved the panic attacks.121 

The cuneus, another part of visual association cortex, might 
also connect with core structures of FNM via sending senso-
ry information to the amygdala, hippocampus and thalamus. 
The bottom-up control of visuospatial selective attention, 
which was called stimulus-driven attention, also occurred in 
the cuneus.122 The occipital lobe seemed to be interconnected 
with default mode network and limbic regions for the con-
trol of vigilance, attention, motivationand arousal.123 The oc-
cipital lobe was also linked with four cortical networks, such 
as default mode network, dorsal attention, visual and somato-
sensory network.124 The cholecystokinin-4 related model of 
panic attacks found that brain activations of cuneus were as-
sociated with fear scores through the connection with amyg-
dala.41 Abused women showed abnormal activities of right 
cuneus and right visual processing regions during response 
inhibition task.125 As we know, PD is also usually related to 
childhood abuse126 and cuneus might be a crucial part of ad-
vanced FNM. In addition, cuneus was responsible for visuo-

spatial attention of threat,127 voice identifications, faces pro-
cessing and proneness to anxiety reactions.128,129 In addition, 
the connectome study of PD showed decreased edge strength 
of functional connectivity from the right lingual gyrus.130 The 
residual alterations in the fractional amplitude of low frequen-
cy fluctuations might also occur in the occipital lobe even af-
ter antidepressant therapy with remitted status.131 The occipi-
tal lobe-related fasciculus was also altered in the active phase 
and remitted status of PD patients.132-134 The inappropriapte at-
tention and sensitivity to the sensory stimulus, such as chest 
tightness and heart fast beating, might bring the panic attacks. 
The orienting-avoidance function of cuneus towards threat-
ening events in anxious subjects might be related to avoidance 
behaviors of panic attacks. The incorrect somatic messages 
from occipital lobe might provoke the abnormal responses 
from core structures and send the abnormal responses to the 
brainstem and other regions to cause the panic attacks. There-
fore the occipital lobe should be enrolled as a crucial compo-
nent of advanced FNM.

Supporting evidences from white matter study
The current WM study focused on the microintegrity of 

fasciculus. The sensory-related WM fasciculus, such as fron-
to-occipital fasciculus (FOF) and uncinate fasciculus (UF), 
have been mentioned in the studies of anxiety. The FOF is a 
WM tract interacting with language-related WM fasciculus 
to connect the occipital lobe and frontal system through the 
parietal lobe.135 The frontal lobe is also the component of tra-
ditional FNM.6 The frontal lobe can control amygdala-related 
fear response, which is related to UF’s connection between 
frontal lobe and amygdala. In addition, anxiety might be linked 
with the alterations in the microintegrity of UF, which sug-
gested deficient connectivity of UF between orbitofrontal cor-
tex, amygdala and temporal lobe.136-139 

The limbic areas might connect with other brain region for 
the processing of fear response, which would be uncontrolla-
ble while panic attacks.6 The fear, arousal and attention to-
ward threat would be modulated by the above fear-related re-
gions. The experiences of panic attacks might also be linked 
with the emotional salience of the threat.8 The FOF might be 
important to input occipital and parietal-related sensory in-
formation and send frontal-related inhibitory control, which 
might be crucial for the pathophysiology of PD. The imaging 
genetics study showed that brain-derived neutrophic factor 
genotype would be associated with WM development of FOF, 
which was related to cognitive and intellectual function.140 The 
serotonin-related antidepressant would increase neurotroph-
ic factor release in frontal regions, which might support the 
role of FOF in the WM pathophysiology of PD. In our study, 
we found antidepressant therapy increased the microintegri-
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ty of right UF and left FOF. In addition, the remitted patients 
with PD might compensate residual WM alterations of right 
UF through enhancing WM micro-structural integrity of left 
FOF.132,141 The antidepressant therapy might increase micro-
integrity through increasing neurotrophic factor release and 
relief of oxidative stress142 in right UF and left FOF. The anti-
depressant might influence the microstructure of WM tracts 
via the astrocyte-related factors, such as increasing glucose 
utilizations, expressions of astrocyte-derived neutrophic fac-
tors and lactate release,143 elevated cerebral blood flow and 
facilitating neurotransmission in neural circuits.144 The mi-
crointegrity of frontolimbic WM tracts was also associated with 
serotonin genotype polymorphism.145 The neurotrophic fac-
tor would have effects on brain fiber integrity.146 It also gives 
us a hint that antidepressant might increase serotonin release, 
which might modulate WM micro-structural integrity in the 
left FOF and right UF. These WM structural reports confirmed 
the role of occipital and temporal lobe in the advanced FNM.

 
Supporting evidences from 
connectome study

The functional connectome study of PD can also support 
the concept of advanced FNM. Recently our report showed 
that the alterations in the network including sensory and mo-
tor regions, which were connected with parahippocampus 
central hub.130 The alterations of parahippocamopus has been 
mentioned in PD, such as the elevated cerebral blood flow, 
reduced GM volume and increased benzodiazepine receptor 
bindings.19,30,147 Our VBM study found that PD comorbid 
with depression would parahippocampal GM reductions,20 
which corresponded to the meta-analysis results.148 Two an-
tidepressant studies in PD also demonstrated that antidepres-
sant treatment would increase glucose metabolism in limbic 
regions, which also included the parahippocampus.149,150 Our 
results in left parahippocampus and its central hub role in func-
tional connectome probably represented a large-scale neuro-
physiological alteration in PD. The altered connectivity be-
tween parahippocampus and dorsal cingulate cortex probably 
suggested the central role of limbic system. Our functional 
connectome results also corresponded to the lower activities151 
and treatment response-related influences of neuronal stabil-
ity in dorsal cingulate cortex152 of PD patients. 

Our functional connectome study of PD also showed that 
the sensory regions, such as occipital lobe (calcarine gyrus and 
lingual gyrus) and parietal lobe (supramarginal gyrus, SMG), 
might be altered and influenced by the limbic system.130 The 
hyperperfusion of cerebral blood flow in parietal and temporal 
lobes have been reported in PD.45 In addition, the brain activi-
ties in parietal and temporal lobes were related to the psy-

chopathology severity of PD,153 which were in line with our 
results of decreased connectivity strength between left para-
hippocampus gyrus and SMG. The PD patients had decreased 
activities in occipital lobe and other visual areas while expos-
ing to the face task.154 The calcarine gyrus is an area of visuo-
sensory function and the terminus of nervous impulses gen-
erated in the retina and the following visual response.155 The 
lower activities in the LING of PD patients were also discov-
ered while face task.156 The spatial scene memory and allocen-
tric coding might be disturbed in PD.157 The alterations within 
the limbic-sensory network might suggest that impaired 
control and feedback abilities, which be linked with the panic 
response while experiencing environmental stressors. 

Conclusion

According to the above literature, we proposed the advanced 

Figure 1. The advanced FNM for PD. The temporal, occipital and 
parietal lobes would input the sensory information to the thalamus 
for filtering the information. Then the filtered information would be 
integrated at the insula and then sent to the frontal regions for 
cognitive processing and limbic system for primitive response. 
The extended regions of FNM include the insula, thalamus, tem-
poral, occipital and parietal lobes. FNM: fear network model, PD: 
panic disorder. 
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FNM as an emerging model of fronto-limbic dysregulation 
with insula and sensory regions in the temporo-occipito-pari-
etal lobe might be revealed according to the results of recent 
neuroimaging studies. The sensory regions, such as tempo-
ral, occipital and parietal lobes would input the sensory in-
formation to the thalamus for filtering the information. Then 
the filtered information would be integrated at the insula and 
then sent to the frontal regions for cognitive processing and 
limbic system for primitive response, which would be imbal-
anced in PD (Figure 1). The future delineation of advanced 
FNM model can be beneficial from more extensive and ad-
vanced studies focusing on imaging genetics, machine learn-
ing and pattern recognition to confirm the role of advanced 
FNM in the pathophysiology of PD.
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