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Abstract
Cellular reprogramming and induced pluripotent stem cell (IPSC) technology
demonstrated the plasticity of adult cell fate, opening a new era of cellular
modelling and introducing a versatile therapeutic tool for regenerative medicine.
While IPSCs are already involved in clinical trials for various regenerative
purposes, critical questions concerning their medium- and long-term genetic and
epigenetic stability still need to be answered. Pluripotent stem cells have been
described in the last decades in various mammalian and human tissues (such as
bone marrow, blood and adipose tissue). We briefly describe the characteristics of
human-derived adult stem cells displaying in vitro and/or in vivo pluripotency
while highlighting that the common denominators of their isolation or occurrence
within tissue are represented by extreme cellular stress. Spontaneous cellular
reprogramming as a survival mechanism favoured by senescence and cellular
scarcity could represent an adaptative mechanism. Reprogrammed cells could
initiate tissue regeneration or tumour formation dependent on the
microenvironment characteristics. Systems biology approaches and lineage
tracing within living tissues can be used to clarify the origin of adult pluripotent
stem cells and their significance for regeneration and disease.

Key words: Human adult pluripotent stem cells; Induced pluripotent stem cells;
Reprogramming; Cellular stress
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Core tip: Several types of human adult pluripotent stem cells have been described. Their
origin and role remain largely unknown. The elucidation of possible stress-induced
pluripotency phenomena could enable regenerative as well as tumour-suppressive
therapies.
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INTRODUCTION
During the development of  multicellular organisms,  cells  evolve from the initial
undifferentiated, totipotent state of the fertilized egg and early embryo to sequentially
restricted states while gradually losing their differentiation potential. The capability of
generating more committed progenitors is referred to as the degree of “potency” that
defines the “stem” status of a cell. Adult organisms are composed of a large panel of
differentiated cell types that accomplish various functions within the body. Among
them,  a  variable  amount  of  tissue-resident  stem cells  have  been documented in
various human tissues, accounting for tissue turnover and repair after injury. Tissue
specific adult stem cells [such as mesenchymal stem cells (MSCs), neural stem cells,
and haematopoietic stem cells] exist in dormant states in adult tissues and are thought
to be lineage-restricted, meaning they only give rise to progeny of their tissue of
origin. Differentiation implies epigenetic silencing of the so-called pluripotency genes
and  transcriptional  activation  of  protein-coding  genes  with  cell-type  specific
functions.

CELLULAR REPROGRAMMING – CHALLENGING THE
DOGMA OF LOCKED ADULT DIFFERENTIATION
The ultimate differentiated state associated with loss of cell division, which is known
as terminal differentiation, was long considered irreversible. Seminal Nobel-winning
research has gradually deconstructed this dogma. Envisaged by Nobel Prize-winner
Hans Spemann in 1935, “the fantastical experiment”[1] was performed several decades
later. Using the previously established nuclear transfer technology[2],  somatic cell
nuclei transferred to an enucleated egg cytoplasm were shown to generate a viable
adult organism. The experiment confirmed that somatic, fully differentiated adult
cells not only retain an intact full genome but can also revert to pluripotent stages
under  permissive  conditions[3].  However,  the  locked  differentiation  dogma and
definitive rolling down of the epigenetic Waddington landscape[4] was challenged
even more dramatically several decades later. In 2006, Shinya Yamanaka used forced
expression of several “pluripotency” transcription factors (Oct3/4, Klf4, Sox2 and c-
Myc,  which  was  later  called  the  OKSM  cocktail)  to  “reprogram”  differentiated
somatic  cells  (mouse  fibroblasts)  to  a  cellular  status  equivalent  to  embryonic
counterparts [embryonic stem cells (ESCs)]. The “reprogrammed” elements, termed
induced  pluripotent  stem  cells  (IPSCs)  were  similar  to  ES  cells  in  morphology,
proliferation, surface antigens, gene expression, epigenetic status of pluripotent cell-
specific genes, and telomerase activity; the IPSCs were capable of generating various
cell types in a teratoma assay and contributed to chimeric animals when injected into
mouse blastocysts[5]. The IPSC reprogramming process was further refined to generate
cells with potential for germ line transmission[6]. One year later, human fibroblast cells
were converted to IPSCs, launching a new era of reprogramming technology with
exciting implications in disease modelling and treatment[7]. The initial retroviral-based
gene transfer of the OSKM factors was modified to increase reprogramming efficiency
and decrease potential tumourigenicity. Non-integrating viruses, stabilized RNAs and
proteins,  and  episomal  plasmids  are  currently  used  to  deliver  integration-free
reprogramming genes. A large panel of adult somatic or adult stem cells of various
species and tissues of origin were shown to be reprogrammable to IPSCs. Some cell
types  such  as  neural  stem  cells  required  fewer  transcription  factors  for
reprogramming[8], while in some cases, small molecules can substitute for the forced
expression  of  one  or  several  OSKM  factors[9].  Direct  reprogramming  of  adult
differentiated cells to adult cells of different lineages (e.g., fibroblasts to neurons[10])
without conversion to intermediary pluripotent stages was further demonstrated.
Using reprogramming methods, adult somatic cells could “go back” to pluripotent
stages or directly convert to lineages with distinct developmental origins. Extreme
somatic cell plasticity was therefore shown possible under defined in vitro conditions.
A holistic systems biology approach was applied to existing large “-omic” datasets
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from pluripotent cell populations to discover genes important for pluripotency and
cell reprogramming[11].  Bioinformatics analysis of several data bases on naïve and
primed (pluripotent) ESCs revealed a network of functionally interrelated genes in
which the  OSKM factors  are  nodes  (Table  1  and Figure  1).  Contextual  ontology
enrichment  and  quantitative  gene  expression  signatures  revealed  the  mouse
pluripotency gene interaction network, the hierarchical importance of genes and
pathways, and their significance in pluripotency.

REPROGRAMMING AT WORK
IPSC-based or direct cell reprogramming further advanced to investigating the effect
of somatic cell reprogramming in vivo.

Short term in vivo activation of OKSM factors in transgenic “reprogrammable” mice
carrying a tetracycline-inducible OSKM polycistronic cassette crossed with progeria
models reduced signs of premature ageing[12]. The same method improved recovery
from  metabolic  disease  and  muscle  injury  in  older  wild-type  mice[13].  Cellular
epigenetic reprogramming after short-term cyclic in vivo activation of OKSM factors
(termed partial reprogramming) does not cause tumour formation and probably acts
by reverting epigenetic dysregulation associated with older age, offering a platform to
study the disease of ageing. In other work, long-term induction of OKSM factors in
reprogrammable mice lead to teratoma formation and IPSC induction in a  large
variety of tissues including haematopoietic lineages. Transcriptomic analysis showed
that  in  vivo-produced IPSCs are  more similar  to  ESCs compared to  their  in  vitro
counterparts; in vivo-produced IPSCs are also totipotent as they could generate all
embryonic  layers  and  trophectoderm,  a  property  that  ESCs  are  lacking [14].
Intriguingly, in vivo forced expression of OSKM factors, a process known to have low
efficiency in vitro, triggers reprogramming of few cells and induces cellular senescence
and apoptosis in many other surrounding cells in vivo.  Ageing- and tissue injury-
associated senescent cell-secreted factors (of which proinflammatory cytokine IL-6
plays a major role) improve the in vivo reprogramming process. A similar process
might take place under physiological conditions when damage-driven senescent cells
promote cell dedifferentiation during tissue repair[15]. In vivo direct reprogramming
platforms are currently under intense scrutiny and may be the next generation of
regenerative approaches for cardiac, neural, liver or pancreatic islet cells. Anti-aging
interventions may be a possible outcome of direct somatic cell manipulation[16]. It is
worth mentioning that  spontaneous reprogramming mechanisms in mammalian
organs do occur after injury. Using lineage tracing, several direct conversions were
documented in mice. Adult hepatocytes were shown to spontaneously reprogram in
vivo  in  biliary  epithelial  cells  after  toxic  liver  injury  in  a  NOTCH-dependent
mechanism[17]. Glucagon-producing alpha pancreatic cells converted to beta cells in a
mouse model of diphtheria-induced acute selective beta cell loss[18]. Due to obvious
ethical  constraints,  such mechanisms have not  yet  been documented in humans.
Controversial reports about adult pluripotent stem cells in various human tissues
prompts reconsideration of their origin and/or causative mechanisms.

ADULT PLURIPOTENT CELL- TYPES AND CONTROVERSIES

Bone marrow-derived pluripotent cells
Starting in the early 2000s, several reports about spontaneously occurring pluripotent
cell  types  emerged.  Derived  from  mice  and  human  bone  marrow  by  negative
depletion  of  CD45  (+)/glycophorin  (+)  cells,  multipotent  adult  progenitor  cells
(MAPCs)  were  reported  to  undergo  triploblastic  differentiation  under  defined
conditions in vitro. MAPCs did not form teratomas, contributed to chimaera formation
when injected into mouse blastocysts,  and contributed to cardiac regeneration in
severe  combined  immune-deficient  (SCID)  mice[19,20].  Marrow-isolated  adult
multilineage-inducible cells derived from the bone marrow of vertebral bodies under
low oxygen conditions were reported to be particularly efficient in differentiating into
neural lineages without displaying features of pluripotency[21]. Very small embryonic-
like cells (VSELs) were isolated from murine bone marrow by positive selection for
the chemokine receptor CXCR4 and were shown to display features of embryonic
cells (cell and nuclei size, chromatin characteristics, telomerase activity). The authors
hypothesized that such cells  with embryonic-like surface markers [stage-specific
embryonic  antigen  (SSEA),  OCT-4,  and  NANOG]  could  be  epiblast-derived
pluripotent cell remnants of embryonic developmental stages; these cells could be a
less controversial source for regenerative approaches[22]. The existence of VSELs was
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Grey highlights the top 10 genes based on their involvement in > 3 pluripotent-related pathways. Three of the 4 Yamanaka factors fall in this list and are
marked in bold with*. (Adapted from Mashayekhi et al[11]).

challenged a couple of year later as other groups failed to replicate their isolation from
bone marrow Remarkably,  almost  all  reports  of  bone marrow-derived cells  that
claimed to retain embryonic-like stem cell features were isolated in modified culture
conditions (such as low oxygen tension or serum deprivation). Arguments that such
cells are early MSC progenitors or culture condition-modified MSCs have not been
fully investigated to date[23]. MSCs derived from bone marrow as well as other sources
(excluding adipose tissue) were shown to foster a population of SSEA-positive cells
with enhanced expansive and clonogenic potential. Arguments that SSEA-positive
cells are a culture artefact have not been addressed yet[24].  The existence of adult
pluripotent cell populations proved hard to replicate, leading to doubt concerning the
accuracy of the reported findings and concept of naturally occurring pluripotency.
However,  the diversity of reports on enigmatic cells with morphology similar to
embryonic counterparts that were isolated under harsh conditions may signal that
this is an unelucidated phenomena.

Adipose-derived pluripotent cells
Isolated from adipose-derived stromal  vascular  fraction,  adipose-derived MSCs
(ADSCs)  were shown to differentiate  to  non-mesodermal  lineages under special
culture conditions in  vitro[25].  Notably,  the majority of  non-mesenchymal lineage
differentiation protocols involve an intermediary step including suspension culture,
spheroid formation of intermediary progenitors and sometimes serum deprivation.
Undifferentiated or in vitro pre-differentiated ADSCs were shown in several reports to
contribute to liver, Schwann cell and glial cell regeneration[26]. The advent of IPSCs
and the enthusiasm for their potential in generating patient-specific pluripotent cells
for research and therapy seemed to throw the controversy of adult pluripotency into
oblivion.  However,  two special  cell  types  continue  to  capture  research  interest:
multilineage differentiating stress-enduring cells (MUSE) and dedifferentiated fat
cells.
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Figure 1

Figure 1  Flux diagram of the top 10 ranked genes related to pluripotency (interaction data obtained from GNCPro, SABiosciences). Interactions:
downregulation (green arrow), upregulation (red arrow), predicted transcription factor regulation (magenta arrow), predicted protein interaction (blue line), regulation
(black arrow), other types of regulation (grey line). See the electronic version for colour figures. Boxes outlined in black represent the target genes, and light grey
boxes their immediate neighbours. Adapted from Mashayekhi et al[11].

MUSE cells
MUSE cells were initially identified by applying stressful culture conditions to several
cell populations such as MSCs[27,28];  they have been further obtained from adipose
tissue by positive immune-separation for the mesenchymal marker CD105 and SSEA-
3[29]. MUSE cells are capable of triploblastic differentiation without tumour formation
after  in  vivo  injection  into  SCID  mice;  these  were  considered  safer  sources  for
pluripotent cells than ESCs or IPSCs[30]. With several distinctive properties in vitro and
in vivo, MUSE cells display low telomerase activity and a normal karyotype. MUSE
cells form distinctive clusters in vivo (the so-called M clusters) that resemble ES or
IPSCs behaviours in similar conditions. These cells express pluripotent markers, such
as NANOG, Oct3/4, Par-4, and Sox2, and are capable of spontaneous or induced
expression of mesodermal, endodermal or ectodermal markers[31]. The low levels of
cell  proliferation  and  oncogenesis  gene  expression  might  account  for  their  low
proliferation and absence of  tumourigenic activity,  while the expression of  gene
clusters related to death and survival that are shared with non-mammalian species
might  represent  a  highly-conserved mechanism of  cell  survival  during  extreme
conditions[32]. Several preclinical studies have reported their migratory potential due
to  expression  of  chemokines  involved  in  cell  homing  and  their  capability  to
participate in liver, kidney, and neural regeneration in relevant animal models (for
review  see  30).  Muse  cells  also  have  immunomodulatory  properties  in
lipopolysaccharide-stimulated macrophages and antigen-challenged T-cell assays
through downregulating the secretion of pro-inflammatory cytokines (interferon-γ
and tumour  necrosis  factor-α);  this  effect  is  probably  acquired  by  transforming
growth factor-β1 expression that decreases the immune-regulatory activity through T-
box transcription factors in T cells[33]. Interestingly, MUSE cells have been identified in
very low numbers in the blood stream of early stage patients with acute stroke where
they probably mobilized from bone marrow; MUSE cells have also been detected in
situ and in post-mortem bone marrow samples harvested from subjects with severe
conditions  such  as  stroke  and myocardial  infarction[34].  Research  to  harness  the
therapeutic potential of such cells for regenerative applications is ongoing; however,
their anatomical location in niches has not yet been identified. It is unclear whether
induced or naturally occurring stressful conditions are sorting or generating MUSE
cells through adaptative and potentially “reprogramming” mechanisms attempting
regeneration after major insults.

Adipose tissue was one of the first sources reported for generating MUSE cells and
another reportedly pluripotent adult human cell source is dedifferentiated adipose-
derived cells (DFATs). Mature adipocytes isolated from adult human adipose tissue
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that are subjected to an in vitro dedifferentiation strategy (ceiling culture) revert to a
more  primitive  phenotype  and gain  proliferative  and differentiative  abilities[35].
Indeed, DFATs were found to have triploblastic differentiation potential in vitro and
do not generate teratomas when injected in immuno-deficient mice[36]. As opposed to
ADSCs that are obtained by enzymatic digestion of adipose tissue and selection of
plastic-adherent fibroblastoid elements, DFATs are homogenous populations. DFATS
display surface markers for CD13, CD29, CD44, CD90, CD105, CD9, CD166 and CD54,
and do not express CD14, CD31, CD34, CD45, CD66b, CD106, CD117, CD133, CD146,
CD271, CD309, HLA-DR and alpha-smooth muscle cell actin; a fraction of DFATs also
express SSEA-3[37]. Inter-donor and interspecies variability in the makeup of surface
antigens  has  been  reported.  Combined  with  a  Poly-D,  L-lactic-co-glycolic  acid
scaffold, rat DFAT cells were able to regenerate periodontal tissue[38], opening exciting
avenues for oral and maxillofacial tissue regeneration[39,40].

Dedifferentiation as a source of adult pluripotent cells
Mature  adipocytes  are  not  the  only  cells  capable  of  dedifferentiation.  Mature
chondrocytes isolated from the well organized and highly structured cartilage ECM
dedifferentiate while in monolayer culture. When expanded in MSC growth medium
with or without fibroblast growth factor (FGF), costal chondrocytes express features
of MSCs but retain their chondrogenic potential when injected in vivo for cartilage
defects[41]. Cartilage progenitor cells with clonogenic and migratory potential reside in
osteoarthritic cartilage but not in normal mature cartilage[42]. However, further reports
identified surprisingly high levels  of  the stem cells  markers Notch-1,  Stro-1 and
VCAM-1  in  normal  cartilage  and  in  a  stage-  and  zone-dependent  manner  in
osteoarthritic  (OA) cartilage[43].  Despite  their  controversial  nature,  these  studies
revealed the previously ignored dynamic activity of adult cellular cartilage elements
that could be metabolic- and/or mechano-stimulation-dependent[44]. Hypothetically,
cells with surface markers of pluripotency in adult cartilage could originate from
dedifferentiated  chondrocytes  induced  by  metabolic  and/or  mechanical  stress.
Disturbances in these parameters might lead to abnormal cell clustering and ECM
disorganization that synergizes to produce the progressive cartilage breakdown of
OA. The fibrous remodelling of joint surfaces seen in advanced OA stages might
represent an abnormal differentiation of such dedifferentiated adult chondrocytes.

Other cell types were shown to successfully dedifferentiate in vitro into multipotent
or  pluripotent  progenitors.  Adult  human  thyrocytes  regained  multipotency,
proliferated and differentiated to neurogenic  and adipogenic  lineages in  vitro[45].
Terminally differentiated keratinocytes were converted to their progenitor cells under
FGF induction[46], while pancreatic islet cells morphed into duct-like progenitor cells
under epidermal growth factor exposure[47]. It is noteworthy to mention that these
reports involve in vitro cell populations. Isolation protocols require breakdown of
ECM structures, a process commonly achieved by maintaining cells in monolayer
cultures. Intriguingly, reports about in vivo formation of DFAT cells after induced
local mechanical stress in mice might suggest that this process occurs as a natural
adaptative mechanism to local stressful conditions[48]. Dedifferentiation, a common
mechanism  in  plants  and  a  limited  number  of  vertebrates  that  is  used  for
regeneration, involves switching off genes responsible for cell-specific functions, re-
entering the cell cycle and proliferating, and switching on “pluripotency”-related
genes. This might be a conserved phenomenon in mammalian organisms including
humans. Several factors such as hypoxia, prolonged stress and injury are known to
induce  dedifferentiated  cells  after  in  vitro  manipulation  or  in  vivo.  Factors  that
naturally induce such phenomena in vivo and the fate of the regenerative processes
they launch need further investigation. Reports about dedifferentiation processes
occurring in human malignant tumours, such as liposarcomas dedifferentiating to
osteosarcomatous components[49] or soft tissue sarcomas to liposarcomas[50], reflect
several rare situations of pathological dedifferentiation processes. Physiological lung
myofibroblast dedifferentiation after tissue injury and inflammation accounts for
adaptative apoptosis and bronchiolar re-epithelialization. During ageing, impaired
dedifferentiation  accounts  for  continued myofibroblast  accumulation,  excessive
matrix deposition and subsequent interstitial lung fibrosis[51].

STAP CONTROVERSY
In early 2014, a paper described a “unique cellular reprogramming phenomenon” of
exposing adult differentiated cells to low pH. CD45-positive spleen lymphocytes from
1-week-old C57BL/6 mice carrying an Oct4-gfp transgene and adult cells derived
from the brain, skin, muscle, fat, bone marrow, lung and liver that were transiently
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exposed to low pH were reported to acquire pluripotency in vitro. A portion of such
cells, which the authors termed stimulus-triggered acquisition of pluripotency (STAP)
stem cells, were shown to express pluripotency markers, differentiate to triploblastic
lineages  under  specified  conditions,  and  contribute  to  chimaeras  and  germline
transmission when injected into mouse blastocysts. Compared to mouse ESCs, STAP
cells displayed limited self-renewal capability in ES-specific media and did not form
colonies in dissociated culture[52]. The authors hypostatised that “unknown cellular
mechanisms” triggered by sublethal stress unlocked the cells from their differentiated
state  and  allowed  re-expression  of  pluripotency-related  genes,  reflecting  early
embryonic  stages.  Such  phenomena  do  not  likely  occur  in  vivo-at  least  not  in
mammalian organisms-as presumed mechanisms block progression from the initial
OCT-4 activation to further reprogramming. Several months later, the paper was
retracted due to “errors classified as misconduct” by the institutional investigation
committee[53]. The negative impact of the retraction was further combined with news
about possible “honour suicide” of one of the senior authors. However, while the
“multiple errors” could indeed impact the study reproducibility and the credibility of
the reported data, they could not rule out the existence of the STAP phenomenon.
Interestingly,  a recent paper reported a method of preconditioning adult  human
umbilical cord blood-derived stem cells to increase survival after transplantation.
Exposure to oxidative stress and serum deprivation increased cell resistance in vitro,
possible pointing to an adaptative mechanism for cell survival[54].

MSCS AND THE “STEM CELL STATE”
The “classical model of hierarchical MSC differentiation depicts a MSC at the top of
the potency ladder and subsequent progenies with reduced differentiation potential;
this model was challenged by a report showing that murine bone marrow-derived
MSCs clonally lost and regained differentiation ability. Fluctuating differentiation
potential was even demonstrated at the single-cell level and was closely dependent on
culture conditions. Oxygen tension and sparse culture density imposed by clonal
expansion altered gene expression and the epigenetic profile that accounts for cell
potency. Wnt activation in sparse cultured cells was directly visualized using a green
fluorescent  protein-tcf/lef  reporter,  while  DNA  microarray  analysis  revealed
enrichment of histone methylation in EMT/MET-, MSC-, and Wnt-related genes; this
process was found to be oxygen- and tension-dependent[55]. Isolation of cells away
from  the  ECM  and  exposure  to  stressful  culture  conditions  might  influence
mesenchymal  cell  potency.  The  authors  discussed  the  potential  stress-induced
reversibility  of  cell  fate  in  mammalian  mesenchymal  cells  in  vivo  as  a  sort  of
adaptative mechanisms[56].

ADULT PLURIPOTENCY AND AGING
A decline in the reprogramming efficiency of cells derived from older donors in both
mice  and  humans  has  been  reported.  However,  IPSs  with  complete  set  of
pluripotency markers as well as differentiation capabilities could be derived from
older donors[57,58].  Several  epigenetic  barriers  as  well  as  the increased number of
senescent  cells,  could  quantitatively  limit  the  reprograming  process  in  older
organisms,  process  that  once  initiated remains  possible  and qualitative.  “Aging
pathways” (IGF-1 pathway, mTOR,) or “longevity: related ones (AMPK or sirtuins)
have been found to influence reprogramming and IPS generation (for review see 57).
It is not clear, to date, how these functional and metabolic pathways are involved in
potential spontaneous adult cell reprogramming. It is noteworthy to mention that all
the  above  mentioned  pathways  are  highly  conserved  modalities  to  sense
multidirectional stress (such as energy status, DNA damage, protein damage, and
hypoxia) and to orchestrate adaptative cellular responses[59]. Their connection and
interference with potential spontaneous induced pluripotency needs to be further
studied. Activation of Integrated stress response has been proposed as a mechanism
for  increased  longevity  in  yeasts[60]  and  recently  was  found to  facilitate  human
hematopoetic stem cells survival ans well as to mark leukemia stem cells[61] Cellular
stress increasingly appears as a turning point between stemness and malignization in
adult as well as aging organisms.

SUMMARY AND SOME QUESTIONS
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Reprogramming and the advent of Nobel–awarded IPSC technology has shifted our
understanding of cell  plasticity.  Although previously thought to be “terminally”
differentiated, adult cells have been shown to “climb back up” the potency hill to
regain multiple differentiation potentials, similar to cells from early developmental
stages. The revolutionary technology opened a promising era of cell manipulation for
modelling  and  therapeutic  use.  IPSCs  have  gained  momentum and are  quickly
moving towards clinical use for regeneration[57]. Several methods have been proposed
to tackle genetic instability forced-reprogrammed cells; however, it their application
and utility in designing IPSC-based therapies is not clear[58]. The medium- and long-
term fates of therapeutic IPSCs and their progeny after implantation are still unclear,
as  are  the  influences  on  the  safety  and  efficacy  of  regenerative  therapies.  The
potentially safer alternatives of adult pluripotent stem cells (MUSE, DFAT) have not
achieved similar impacts in research interest or clinical translation. Perhaps this is due
to their  variability,  limited reproducibility of  production conditions,  and poorly
explained mechanisms that account for their presence or appearance within adult
tissues. It is not clear if adult pluripotent cells already exist in various tissues (such as
bone marrow or adipose), or if they are a mere isolation or culture artefact. It remains
unknown whether adult pluripotent cells are rare remnants of developmental stages
in dormant states  within tissues or  spontaneously reprogrammed elements.  The
possibility  that  severe  stress,  cell  loss  or  even  ageing  can  induce  human  adult
pluripotent cells both in vitro and in vivo  cannot be ruled out and should warrant
further investigation (Figure 2). Can adult “terminally differentiated” cells switch
their fate and return to earlier developmental stages in human tissues and during
isolation  procedures  under  extreme  conditions?  If  so,  what  is  the  threshold  of
“cellular stability?” Can protocols for steering cellular “destabilization” towards
regeneration rather than malignancy be designed with computer modelling? What are
the  nature  and  gradient  of  “stressors”  that  potentially  induce  spontaneous
reprogramming? What is the role of organism and cellular senescence in promoting or
quenching such phenomena? What is the role of immune-mediated inflammation and
the senescence-associated inflammatory background in promoting, controlling and
halting  in  vivo  reprogramming?  What  potential  roles  do  spontaneously
reprogrammed cells have in tissue regeneration and tumour formation? A closer and
fundamental investigation of in vivo  spontaneous-reprogramming phenomena in
mammalian cells and humanized animal models could help answer these questions
and  impact  both  regenerative  medicine  and  cancer  research.  Systems  biology
approaches could be used to discover key switches in biological pathways involved in
adult pluripotency and may potentially derive targets for their identification within
human tissues.
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Figure 2

Figure 2  The possibility that severe stress, cell loss or even ageing can induce human adult pluripotent cells both in vitro and in vivo cannot be ruled out
and should warrant further investigation. A: A normal human dermal fibroblast (NHDF) cell line after 48 h of intentional CO2 absence in the incubator. The cells
modified their morphologic characteristics and adopted the culture appearance of pluripotent cells; B: Modified NHDF cells 28 d after stress; C: Non-exposed NHDF
cells; D: Modified NHDF cells 73 d after stress.
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