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Abstract
The transcription factor 4 (TCF4) locus is a robust association finding with schizophrenia (SCZ), but little is known about the genes
regulated by the encoded transcription factor. Therefore, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) of
TCF4 in neural-derived (SH-SY5Y) cells to identify genome-wide TCF4 binding sites, followed by data integration with SCZ associ-
ation findings. We identified 11 322 TCF4 binding sites overlapping in two ChIP-seq experiments. These sites are significantly
enriched for the TCF4 Ebox binding motif (>85% having�1 Ebox) and implicate a gene set enriched for genes downregulated in
TCF4 small-interfering RNA (siRNA) knockdown experiments, indicating the validity of our findings. The TCF4 gene set was also
enriched among (1) gene ontology categories such as axon/neuronal development, (2) genes preferentially expressed in brain, in
particular pyramidal neurons of the somatosensory cortex and (3) genes downregulated in postmortem brain tissue from SCZ
patients (odds ratio, OR¼2.8, permutation P<4x10�5). Considering genomic alignments, TCF4 binding sites significantly over-
lapped those for neural DNA-binding proteins such as FOXP2 and the SCZ-associated EP300. TCF4 binding sites were modestly
enriched among SCZ risk loci from the Psychiatric Genomic Consortium (OR¼1.56, P¼0.03). In total, 130 TCF4 binding sites oc-
curred in 39 of the 108 regions published in 2014. Thirteen genes within the 108 loci had both a TCF4 binding site 610kb and were
differentially expressed in siRNA knockdown experiments of TCF4, suggesting direct TCF4 regulation. These findings confirm
TCF4 as an important regulator of neural genes and point toward functional interactions with potential relevance for SCZ.
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Introduction
Large-scale genome-wide assocation studies (GWAS) have con-
verged on specific risk loci for schizophrenia (SCZ) (1). One of
the most robust findings is the transcription factor 4 (TCF4) re-
gion on chromosome 18q21.2 (2). First discovered in GWAS
meta-analysis (3), the finding remained significant in a follow-
up study (4) and a large family-based replication study (5).
Most pertinently, SNPs at TCF4 were among the top findings
(P¼ 3.34 � 10�12) in the 2014 Psychiatric Genomics Consortium
(PGC) mega-analysis of SCZ (1). Congruent with the association
with SCZ, TCF4 has also been associated with SCZ endopheno-
types such as neurocognition and sensorimotor gating (6–8).

The biology of TCF4 suggests a plausible role in central ner-
vous system (CNS) disorders: (1) TCF4 encodes a transcription
factor abundantly expressed in brain that has been implicated
in neuronal development (9) and function (10,11); (2) mutations
at TCF4 cause Pitt-Hopkins Syndrome (PHS), a rare genetic disor-
der characterized by neurological deficits including mental
retardation (2, 12–14); (3) balanced chromosomal rearrange-
ments in patients with neurodevelopmental disorders have
encompassed TCF4 (15); (4) TCF4 is a target for transcriptional
regulation by microRNA 137 (gene ID: MIR137) (16), which is also
a top association finding for SCZ (1) and (5) transgenic mice that
overexpress TCF4 have cognitive and sensorimotor impair-
ments (17), which mirror deficits observed in SCZ patients.
Overall, the biological rationale linking TCF4 to the CNS and SCZ
is compelling (2), suggesting that further study of this gene
could advance our understanding of SCZ pathogenesis.

The protein encoded by TCF4 is a basic helix-loop-helix
(bHLH) transcription factor (TF) that recognizes an Ephrussi-box
(’E-box’) binding site (’CANNTG’) (2,18). However, this motif is
too small and nonspecific to accurately predict TCF4 binding
computationally. A precise map of binding sites is vital for deci-
phering the gene regulatory networks under the influence of a
TF (19). In recent years, systematic mapping of TF binding has
been enabled via chromatin immunoprecipitation coupled to
next-generation sequencing (ChIP-seq) (20). ChIP-seq works by
precipitating the desired protein–DNA complex out of cell lysate
using an antibody complementary to the protein of interest.
After removal of the protein, the liberated DNA fragments are
sequenced and mapped back to the reference genome to yield a
map of regions bound by the protein (21).

The ENCODE Consortium, which aims to map all regulatory
elements in the human genome, has used ChIP-seq extensively
to map binding profiles of many TFs in human cell lines (22).
TF binding is tissue specific, so separate experiments are
required to characterize binding in cells from each tissue of
interest. At its outset, ENCODE did not have a major CNS focus
(23). The consortium attempted to map TCF4 binding sites in
bone marrow-derived K562 cells, (https://www.encodeproject.org/
experiments/ENCSR000FCF/; date last accessed June 20, 2018).
However, these data were revoked shortly after release. Here, we
describe TCF4 ChIP-seq in a CNS-derived cell line. To probe the
relationship with SCZ, we tested the TCF4 gene network for over-
lap with SCZ risk genes from GWAS and gene expression studies.

A note on nomenclature

TCF4, located on chromosome 18, was previously known by the
aliases E2–2, ITF-2, PTHS and SEF-2 (http://www.ncbi.nlm.nih.
gov/gene/6925; date last accessed June 20, 2018). TCF4 and
TCF7L2 (Gene ID: 6934) are often confused because they share
the TCF4 alias (2,18). TCF7L2, located on chromosome 10, encodes

‘T-Cell Factor 4’, an effector of Wnt/b-catenin signaling (24) that
is not an accepted risk factor for SCZ. In this study, all references
to TCF4 are to the gene with co-ordinates chr18: 52889562–
53332018 (hg19) and these identifiers: HUGO name¼TCF4,
ENTREZ¼ 6925, HGNC¼ 11634, ENSEMBL¼ENSG00000196628,
and UNIPROT¼P15884.

Results
ChIP-seq and peak calling

At the start of the project, no validated ChIP antibodies were
available for TCF4. Of eight candidate anti-TCF4 antibodies
identified, three passed initial immunoblot testing according to
ENCODE guidelines, whereby a single band of the appropriate
mass (TCF4-B long isoform, 667 aa) accounting for >50% of the
total lane intensity was observed (25) (Fig. 1A). We performed
immunoprecipitation (IP) cross-reactivity studies using these
antibodies, where IP with anti-TCF4 antibodies was used as the
substrate for Western blot with a different anti-TCF4 antibody.
Figure 1B shows that anti-TCF4 antibodies K-12 and N-16 immu-
noprecipitated a protein of the appropriate mass that was
detected by monoclonal anti-TCF4 antibody 1G4, indicating that
all three antibodies were likely detecting the same protein. (The
complete blot image across the full molecular weight range is
shown in Supplementary Material, Fig. S1). We also conducted
mass spectrometry (MS)-based proteomics analysis of the IP of
all three antibodies and successfully detected TCF4 peptides in
each case (Supplementary Material, Figs S2 and S3), while we
did not detect TCF4 in immunoglobulin G (IgG) control IP experi-
ments. (Note that our proteomic output also shows common
contaminants such as keratin that are typical in MS analysis of
IP experiments. See for example Landt et al. (25), their Figure 2D.
Following these successful validation steps, we proceeded with
ChIP-seq using these antibodies.

Each ChIP experiment involved isolating TCF4-bound DNA
from approximately 1.2 � 107 SH-SY5Y cells. Average DNA yield
was within expected parameters (�10 ng per replicate), but DNA
was also recovered from ChIP using the control IgG antibodies.
This indicated that nonspecific material was captured and that
ChIP-seq using the IgG control antibody was the appropriate
background to call peaks. After sequencing and alignment to
hg19, potential polymerase chain reaction (PCR) duplicate reads
were aggressively filtered (‘rmdup’ command in Samtools) to col-
lapse all reads with the same start position to single reads. Only
two of the three antibodies (K-12 and N-16) worked well.
Figure 1C shows the summary statistics for these assays, and
cross-correlation plots are provided in Supplementary Material,
Figures S4 and S5. After filtering out ENCODE blacklisted regions,
we examined overlap between peaks called for antibodies K-12
and N-16. First, we plotted the difference in starting
position between peaks observed in K-12 ChIP-seq and the closest
peak in N-16 ChIP-seq. Supplementary Material, Figure S6 shows
that there was a clear enrichment for peaks with start sites 6 200
bp in each experiment. This is the approximate peak size (225 bp)
in the ‘narrowpeak’ output format used by the SPP peak caller.
Therefore, we specified that the peaks called in the two separate
experiments had to overlap (at least 1bp in common) to count as
‘replicated’; neighboring, nonoverlapping peaks were not consid-
ered. Applying this criterion resulted in 11 322 TCF4 binding sites
present in both experiments, using false discovery rate (FDR)
threshold <1% (21). As expected, overlap was greater for peaks
called with higher confidence. Sorting on SPP (21) signalValue,
65% of peaks in the top 100 in the K-12 experiment had a
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matching peak in the N-16 data; 50% in the top 250; 45% in the
top 500 and 29% in the top 5000. To further probe data quality, we
reran the overlap analysis, this time requiring peaks to overlap by
almost 50% (110 bp in common). We obtained 7596 peaks show-
ing the degree of overlap was typically high. Overall, these find-
ings supported the consistency of our experiments.

Supplementary Material, Figure S7 shows the distribution of
all 11 322 binding sites by chromosome. No binding sites were
obtained for the chrY because SH-SY5Y is genetically female.
The genomic distribution was nonrandom with relatively large
numbers of peaks detected on chrs 7 and 17. All 11 322 binding
sites are provided in Supplementary Material, Table S1.

As a further validation step, we tested for enrichment of spe-
cific sequence motifs at the TCF4 binding sites. TCF4 binds the
‘Ebox’ sequence motif (‘CANNTG’). Figure 2 shows the most sig-
nificantly enriched sequence motifs at the consensus 11 322
ChIP-seq peaks. The top overall motif was the binding site for

STAT1 (‘RGRAA’), while the top-ranked TCF4 Ebox (‘CAYCTG’)
was fourth. The redundancy of the central 2 bp of the Ebox
motif means that several different sequence combinations are
possible and, for example, the ‘CACCTG’ Ebox variant was
detected at E¼ 2.3e-016. Overall, 86.4% of the 11 322 binding
sites encompassed an Ebox motif.

Genes associated with TCF4 binding sites and their
tissue-specific expression

Of the 11 322 binding sites, 8923 were within 10 kb of a RefSeq
gene. To obtain insight into functional role of TCF4, we used
Genomic Regions Enrichment of Annotations Tool (GREAT) (26)
to conduct enrichment tests for Gene Ontology (GO) categories
and MSigDB pathways. GREAT first assigns genomic loci to regu-
latory domains associated with genes, and only 34 TCF4 binding
sites could not be assigned to any gene (Supplementary Material,
Fig. S8). The fact that over 2000 binding sites were not within 10
kb of a gene, yet only 34 could not be assigned to a gene suggests
that a number of binding sites are at enhancers or long-range
cis-regulatory elements. The results from GREAT are shown in
Table 1. Significant results in the GO cellular component cate-
gory had a strong neuronal theme, while insulin signaling and
axon/neuronal development were notable pathway findings.

The full set of 11 322 TCF4 binding sites implicated 6528
unique genes 610 kb of the gene body (Supplementary Material,
Table S2), which is approximately one-quarter of all genes in
refGene, including noncoding RNAs and genes with provisional
nomenclature designations. We used FUMA (27) to test for en-
richment in tissue-specific differentially expressed gene sets
(Supplementary Material, Fig. S9). The TCF4 gene set was most
enriched in genes upregulated in the brain and pituitary and
genes downregulated in the heart and blood vessels. To further
probe the expression patterns of the TCF4 gene set, we
looked at single cell RNA-seq data for specific CNS cell types.
We observed that the TCF4 gene set was significantly overex-
pressed in pyramidal neurons from the somatosensory cortex
(P¼ 5.2 � 10�5; Fig. 3).

A

B

C

Figure 1. ChIP-seq outline and quality control. (A) Western blotting in SH-SY5Y

cell lysate using three different anti-TCF4 antibodies (1G4, K-12 and N-16) identi-

fies a single clear band for TCF4 (long isoform B, UniProt P15884, 667 aa).

(B) Crossover IP for TCF4. In this experiment, anti-TCF4 antibodies K-12 and

N-16, plus control IgG, were used to immunoprecipitate proteins that were sub-

sequently probed in a Western blot using anti-TCF4 antibody 1G4. Using differ-

ent anti-TCF4 antibodies in the IP and Western blotting increases confidence

that TCF4, rather than a non-specific protein, is detected. The presence of the

TCF4 band in the bound (IP) fraction, and not in the bound IgG (control) fraction,

indicates that the K-12 and N-16 antibodies successfully immunoprecipitated

TCF4. The full blot image is provided in Supplementary Material, Figure S1.

(C) ChIP-seq output summary. The number of uniquely aligning reads for each

ChIP-seq experiment are shown. The normalized strand cross-correlation coeffi-

cient (NSC) and relative strand cross-correlation coefficient (RSC) values indicate

enrichment in ChIP (D), with higher values indicating more enrichment. NSC

values <1.1 are relatively low and the minimum possible value is 1 (no enrich-

ment). The minimum possible RSC value is 0 (no signal), highly enriched experi-

ments have values >1, and values much less than 1 may indicate low quality

(see genome.ucsc.edu/ENCODE/qualityMetrics.html). The values for our experi-

ments indicate good enrichment.

Figure 2. Sequence motif enrichment at TCF4 binding sites. Output from DREME

shows the most enriched motifs around the TCF4 ChIP peaks. Motif sequences

are shown with conventional nucleotide redundancy codes. E-values are output

from DREME/MEME-ChIP and indicate the P value multiplied by the number of

instances tested as a correction for multiple testing.
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Differential regulation of TCF4 genes in siRNA
knockdown experiments and postmortem data

We integrated our ChIP-seq data with relevant data sets to refine our
findings and identify SCZ risk genes under TCF4 control. We first
tested for overlap between the TCF4 gene set and gene expression
data from a TCF4 knockdown experiment using small-interfering
RNA (siRNA), also conducted in SH-SY5Y cells (28). We expected that
genes differentially expressed following TCF4 knockdown should be
enriched for those with TCF4 binding sites from ChIP-seq. A signifi-
cant enrichment was observed, and this was driven by genes down-
regulated following TCF4 knockdown (Table 2). No significant
enrichment was observed in the upregulated genes. We also tested
the TCF4 gene set for enrichment in a second TCF4 siRNA knock-
down experiment, this time in cortical neuron progenitor cells (29)
(Table 2). Once again downregulated genes, but not upregulated
genes, were significantly enriched. This consistency was encourag-
ing. All genes overlapping between ChIP-seq and siRNA studies are
provided in Supplementary Material, Tables S4 and S5.

We next tested whether the TCF4 gene set was enriched
among genes differentially expressed in postmortem brain tis-
sue from SCZ patients. Here we used findings from Fromer et al.
(30) who conducted bulk RNA-seq of dorsolateral prefrontal
cortex (DLPFC) from 258 SCZ cases and 279 controls. Once again,
downregulated genes were significantly enriched with almost

half possessing a TCF4 binding site, compared to just 12.5% of
the upregulated genes. This highly significant enrichment
in downregulated genes was surprising because these are down-
regulated in SCZ not as a direct result of TCF4 knockdown. We
hypothesized that downregulation of TCF4 causes the downre-
gulation of genes in SCZ, analogous to the situation in the siRNA
experiments. However, TCF4 expression was significantly upregu-

lated in the SCZ patients (fold enrichment ¼ 1.16, Fromer et al.,
their Supplementary data file 3 (30)). Further analysis of these
gene sets showed that few genes were shared in common. That
is, only seven genes with TCF4 binding sites from ChIP-seq were
downregulated in the SH-SY5Y siRNA study (28) and downregu-
lated in the SCZ expression study (30). These were ANKMY1,
FAM78A, IGF2, MXRA8, NT5M, PELI3 and TNS3. Notably, IGF2 had
the largest fold-change reduction of all genes in the Fromer et al.

study. A further two genes with TCF4 binding sites, DBNL and
PNPLA7, showed downregulation in the neural progenitor cell
siRNA study (29) and the SCZ gene expression study.

Overlap of TCF4 binding sites with other TFs and SCZ
risk loci

We next considered overlap of TCF4 binding sites with
University of California Santa Cruz (UCSC) genome browser

Table 1. Functional annotation and pathway analysis of TCF4 genomic binding sites using GREAT

Term name Binom
rank

Binom raw
P value

FDR Q-Val Fold
enrichment

Observed
region hits

Region set
coverage

GO Molecular Function
14–3-3 protein binding 16 1.71E-31 3.95E-29 4.75 88 0.008
Protein kinase A catalytic subunit binding 92 1.18E-14 4.73E-13 2.82 75 0.007
Ankyrin binding 120 1.68E-12 5.17E-11 2.78 64 0.006

GO Cellular Component
Cell cortex part 24 2.39E-33 1.26E-31 2.40 243 0.021
Axon terminus 29 3.20E-27 1.39E-25 2.31 212 0.019
Neuron projection terminus 39 7.87E-22 2.55E-20 2.05 218 0.019
Cortical cytoskeleton 71 6.04E-13 1.08E-11 2.09 117 0.010

GO Biological Process
Tooth mineralization 69 2.07E-35 3.13E-33 5.27 90 0.008
Insulin receptor signaling pathway 79 4.36E-34 5.76E-32 2.05 349 0.031
Enamel mineralization 111 9.82E-30 9.23E-28 4.98 79 0.007
Regulation of cell size 171 2.90E-24 1.77E-22 2.00 260 0.023
Spinal cord dorsal/ventral patterning 180 2.74E-23 1.59E-21 2.97 115 0.010
CD4-positive or CD8-positive, alpha-beta T cell

lineage commitment
196 3.14E-22 1.67E-20 5.36 54 0.005

Spinal cord patterning 212 4.64E-21 2.29E-19 2.76 116 0.010
Regulation of axon extension 225 1.69E-20 7.85E-19 2.16 182 0.016
Negative regulation of osteoblast differentiation 233 6.95E-20 3.12E-18 2.43 137 0.012
Ventral spinal cord interneuron specification 406 1.13E-14 2.92E-13 2.84 74 0.007

MSigDB Canonical Pathways
Insulin signaling pathway 4 9.43E-30 3.11E-27 2.04 309 0.027
Sonic Hedgehog (Shh) Pathway 6 7.70E-28 1.69E-25 3.74 101 0.009
Genes involved in Class B/2 (Secretin family receptors) 9 6.90E-23 1.01E-20 2.16 203 0.018
Vibrio cholerae infection 24 1.56E-17 8.56E-16 2.36 126 0.011
LKB1 signaling events 29 2.51E-16 1.14E-14 2.44 109 0.010
Regulation of RhoA activity 61 6.48E-11 1.40E-09 2.00 107 0.009
p38 signaling mediated by MAPKAP kinases 88 3.11E-09 4.67E-08 2.58 51 0.005
Ras activation uopn Ca2þ infux through NMDA receptor 93 5.53E-09 7.85E-08 2.33 60 0.005
fl-arrestin-dependent Recruitment of Src Kinases in GPCR

Signaling
96 7.81E-09 1.07E-07 2.89 40 0.004

CREB phosphorylation through the activation of CaMKII 98 1.09E-08 1.47E-07 2.37 56 0.005

3249|Human Molecular Genetics, 2018, Vol. 27, No. 18

Deleted Text: -
Deleted Text: small 
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy222#supplementary-data
Deleted Text: if 
Deleted Text: -
Deleted Text: (2016) 
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: <italic>.</italic>
Deleted Text: -
Deleted Text: -
Deleted Text: of 


features. TCF4 binding sites were highly enriched (odds ratio,
OR¼ 7.08) in CpG islands, classified according to the Weizmann
Institute CpG evolution model (31) and in transcription start
sites (OR¼ 3.19) from the SwitchGear Genomics library (www.
switchgeargenomics.com; date last accessed June 20, 2018)
(Table 2). We also looked at overlap with binding profiles for
other TFs from ENCODE. Notable overlapping factors were
FOXP2, a neural transcription factor involved in speech develop-
ment (32), and p300, a chromatin remodeler encoded by the
EP300 gene that is associated with SCZ (1).

Our final data integration analysis was with the 108 PGC2
SCZ risk loci published in 2014 (1). For this analysis, we used
genomic locus-based enrichment rather than gene sets. This is
important because many SCZ-associated genes are large and
may be more likely to overlap genomic annotations by chance
than a randomly selected gene set (33). Therefore, annotations
can be confounded with gene size, leading to erroneous conclu-
sions of enrichment. Testing for TCF4 binding site enrichment
in the associated genomic regions, and not considering occur-
rence in genes, obviates this potential bias. Overall, 39 of the
108 PGC SCZ loci contained one or more TCF4 binding sites,
with 130 sites in total falling within their boundaries.
Permutation testing of enrichment using all known human reg-
ulatory regions as the background set revealed a nonsignificant
overlap (P¼ 0.082). Narrowing the background set to relevant
regulatory regions for the cell type used in the ChIP-seq

experiments revealed a nominally significant enrichment
(P¼ 0.035) (Table 1). We also analyzed the overlap between TCF4
binding sites and PGC SCZ risk loci using LD score regression
(34, 35). We found an 8-fold SCZ h2 enrichment at the TCF4
sites, but this did not reach statistical significance (P¼ 0.1), pos-
sibly because of the small size of the binding sites (225bp).
Accordingly, we expanded the size of the region around each
peak to 1 and 2 kb, but this actually diminished the enrichment,
suggesting that what signal there may be is right at the binding
position (see Supplementary Material, Fig. S10). PGC SCZ genes
with TCF4 binding sites 610 kb that were also differentially
expressed in either of the siRNA experiments described above
were APH1A, C1orf54, CENPM, CHRNA5, DFNA5, GFOD2,
GRAMD1B, LRP1, MPP6, PDCD11, SEZ6L2, TLE1 and XRCC3. Of
these, both LRP1 and XRCC3 had three binding sites in our ChIP-
seq data, PDCD11 had two, while the remainder had one each.

The TCF4-B long isoform is upregulated in multipotent
neuronal precursors

Pathways and genes implicated in our findings suggested that
TCF4-regulated genes are involved in neuronal growth and/or
differentiation. To determine whether there are developmental
differences in expression of the TCF4 isoform we captured in
ChIP-seq, we differentiated Lund human mesencephalic cells
(LUHMES) neural precursor cells using an established protocol

Figure 3. Enrichment of TCF4 gene set expression in specific brain cell types as determined by single cell RNA-seq (51). We tested if expression of genes in the TCF4

gene set were significantly higher than for genes not in the gene set for each cell type. The bold line at �2.7 on the x-axis is the Bonferroni-adjusted –log10(P value) for

multiple testing (a¼0.05/24). “Pyramidal SS” ¼ pyramidal neurons of the somatosensory cortex. “Pyramidal CA1” ¼ pyramidal neurons of the CA1 region of the

hippocampus.
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that yields post-mitotic dopaminergic neurons in 5 days (36,37)
(Fig. 4). LUHMES are a conditionally immortalized subclone of
the human mesencephalic-derived cell line MESC2.10 (38).
We used Western blotting with the N-16 antibody to probe for
TCF4 in cell lysates and compared SH-SY5Y, undifferentiated
LUHMES and differentiated LUHMES cells. Figure 4 shows a re-
duction in the TCF4 signal in the differentiated cells.
Quantitative analysis of three duplicate experiments indicated
that the TCF4 isoform recognized by N-16 was expressed in the
differentiated cells at <10% of the levels in the undifferentiated,
rapidly growing cells. This suggests that the specific isoform
detected in our study is more abundantly expressed in multipo-
tent neural progenitor cells than in fully differentiated neurons,
at least of this dopaminergic type. This conclusion is supported

by Figure 3, whereby the genes implicated by TCF4 ChIP-seq
show nominally significant evidence for enrichment of expres-
sion in dopaminergic neuroblasts (P¼ 0.037) but no enrichment
at all in adult dopaminergic neurons (P¼ 0.99).

Discussion
We obtained data on TCF4 binding from ChIP-seq, which allowed
us to probe the TCF4 gene network for association with SCZ risk
genes. We validated our antibodies according to ENCODE stand-
ards. Following ChIP-seq, we further validated our findings by
showing that our TCF4 binding sites were enriched for the known
TCF4 Ebox binding motif. We also showed that genes with
TCF4 binding sites were enriched among genes differentially

Table 2. Integration of TCF4 binding profile with functional and SCZ data sets

Gene-based enrichment via permutation analysis

TCF4 knockdown experiments Set size Overlap Odds ratio Fisher P value Permutation P value

SH-SY5Y siRNA knockdown (all) 921 267 1.30 0.0003 0.0005
Upregulated 396 100 1.06 0.3159 n/a
Downregulated 525 167 1.48 3.28E-05 0.0001
Cortical precursor siRNA knockdown (all) 502 138 1.20 0.0434 0.0438
Upregulated 240 47 0.76 0.9603 n/a
Downregulated 262 91 1.68 6.78E-05 <4.11E-05a

SCZ gene expression
Fromer et. al (2016) (all) 623 190 1.38 0.0002 0.0001
Upregulated 296 37 0.45 1 n/a
Downregulated 326 153 2.77 2.20E-16 <4.11E-05a

Genomic locus enrichment tests using LOLA

UCSC annotations Bed file Overlap Odds ratio P value

Evo CpG islands evoCpg.bed 3706 7.08 �0
CpG islands cpgIslandExt.bed 960 2.76 2.30E-151
Switch DB TSSs switchDbTss.bed 584 3.19 2.46E-118
LaminBq laminB1.bed 4404 1.49 1.46E-94
Simple repeats simpleRepeat.bed 836 1.99 3.46E-68

Top 15 overlapping DNA binding protein profiles from ENCODE

Experiment Antibody Overlap Odds ratio P value

ChIP SK-N-SH NRSF 587 5.75 2.90E-231
ChIP GM12878 Pol2 637 2.26 5.54E-71
ChIP MCF-7 CTCF 561 2.26 3.53E-63
ChIP H1-hESC CTCF 437 2.40 3.38E-56
ChIP K562 Max 580 2.09 3.11E-54
ChIP HEK293 ZNF263 508 2.18 4.30E-53
ChIP HepG2 Pol2 425 2.36 8.00E-53
ChIP PFSK-1 FOXP2 305 2.73 2.83E-50
ChIP K562 ZBTB7A 357 2.48 2.88E-49
ChIP GM12891 CTCF 422 2.26 5.42E-48
ChIP A549 CTCF 505 2.02 3.23E-44
ChIP SK-N-SH p300 494 2.03 6.72E-44
ChIP K562 Egr-1 403 2.18 7.15E-43
ChIP K562 MAZ 450 2.04 8.06E-41
ChIP SH-SY5Y GATA-2 413 2.09 9.19E-40

Psychiatric Genomics Consortium risk loci overlap

Data file Background Overlap Odds ratio Fisher P value Permutation P value

scz2.anneal.108 ActiveDHSb 158 1.38 8.88E-05 0.0816
SK-N-SH DHSb 55 1.56 0.0017 0.035

a4.11E-05 is the minimum P value obtainable when permuting over 24, 358 genes (includes non-coding RNAs and provisional IDs).
bDNaseI Hypersensitivity Sites.
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expressed in TCF4 siRNA knockdown experiments. Taken to-
gether, these results strongly support the validity of the data.

A limitation of our ChIP-seq experiments was that only two
of three antibodies yielded usable data. It is accepted that anti-
bodies that pass initial characterization may still fail to yield
good ChIP-seq data (25), yet the immunoblot for the antibody
that failed (1G4) is arguably the cleanest (Fig. 1b). However, anti-
body 1G4 is monoclonal, whereas K-12 and N-16 that are poly-
clonal. While monoclonal antibodies have advantages in
specificity and reproducibility, they are more prone to fail in
ChIP-seq because the single epitope recognized in the protein
may be obscured by the bound DNA. Another limitation is that
we only have ChIP-seq data on the long TCF4 isoform (TCF4-B).
The TCF4 locus can give rise to several distinct isoforms via alter-
native splicing (18). Some isoforms are exclusively nuclear while
others rely on heterodimerization partners. Further work will be
needed to understand the specific gene networks under their
control.

The TCF4-B long isoform that we studied here possesses two
transcriptional activation domains that can operate synergisti-
cally to activate transcription to a greater extent than many
other isoforms of TCF4 (18). This transcriptional upregulation
produced by TCF4-B can be seen in this study. Genes implicated
by our TCF4 ChIP-seq were significantly enriched among those
downregulated in TCF4 siRNA studies (Table 2), remembering
that in RNAi knockdown the inhibition of a transcription factor
will lead to a reduction in expression of genes that it activates.
However, it is important to recognize that TCF4 can induce acti-
vation or repression of transcription depending on the protein
complex bound to it, and there is evidence that its repressive
effects may be important in the CNS (11). Indeed, we observed
several genes implicated by TCF4 ChIP-seq that were upregu-
lated in the RNAi studies (with upregulation here implying TCF4
repression under normal conditions), but the number was fewer
than genes showing the opposite effect (Table 2).

Several genes that we identified as having TCF4 binding
sites have been functionally linked with TCF4 in prior studies.
For example, TCF4 has also been shown to affect neural excitabil-
ity via regulation of potassium channel KCNQ1 (11). In our data,
this gene had 19 unique TCF4 binding sites, the 16th largest num-
ber for any gene. Conversely, given the problems with “TCF4” no-
menclature, delineating what is not seen in our data may be of
value. Several articles describe the interaction between “TCF4”,
b-catenin and p300 (39). This relates to T Cell Factor 4, encoded
by TCF7L2. Beta-catenin is encoded by CTNNB1, and we did not

detect a TCF4 binding site at this gene. Furthermore, although
the binding profiles of p300 (encoded by EP300) and TCF4 strongly
overlap (Table 2), TCF4 does not appear to regulate EP300, at least
in our data. The co-occurrence of their binding sites does, how-
ever, imply that they may be involved in the regulation of a par-
tially overlapping set of genes in CNS cells. EP300 is a PGC2 SCZ
risk locus (1) and was associated with emotional processing in
functional neuroimaging experiments (40). Further analysis into
the overlapping pathways regulated by these two SCZ-associated
DNA binding proteins may be relevant.

Insulin-like growth factor 2 (IGF2) showed evidence for
TCF4 binding in our ChIP-seq experiments and showed reduced
expression following TCF4 siRNA-mediated knockdown.
Furthermore, IGF2 was the most downregulated gene in postmor-
tem SCZ brain in the study by Fromer et al. (30). IGF2 may regulate
neural plasticity to modulate behavior and memory (41).
Furthermore, deficits in hippocampal neurogenesis in a mouse
model of 22q11.2 deletion-associated SCZ can be rescued by IGF2
(42). A significant amount of work has been conducted on the role
of IGF2 in the brain, yet few studies address the role of IGF2 in SCZ
etiology. One issue is that IGF2 was not detected among PGC SCZ
risk loci (1). This may indicate that downregulation of IGF2 in SCZ
is a consequence of risk variants at other loci or environmental
factors rather than as a result of risk variants at the IGF2 locus it-
self. It is also the case that the CommonMind Consortium sample
used by Fromer et al. (30) is relatively underpowered to detect
genetically driven changes to gene expression in cases versus con-
trols, so it is unclear to what extent the differentially expressed
genes in this study are driven by genetics versus secondary
factors.

Several PGC SCZ risk genes contained TCF4 binding sites, and
thirteen of these also showed differential expression in TCF4
siRNA experiments. The risk loci identified by the PGC may span
several hundred kb and contain many genes. It is often not ap-
parent which genes in these regions should be selected for fur-
ther study. For example, there are 14 unique genes in the third
most significant region identified by the PGC (chr10: 104423800–
105165583, P-value ¼ 6.12E-19) (1). Among these, PDCD11 is likely
regulated by TCF4, exhibiting both TCF4 binding sites and differ-
ential expression in a TCF4 siRNA study. It is also expressed in
brain (43) but is poorly characterized. Its likely regulation by TCF4
may suggest further characterization of this gene is merited.

Many of the PGC SCZ risk genes regulated by TCF4 are
involved in neuronal differentiation and development. For
example, APH1A encodes a subunit of gamma secretase, is

A B C

Figure 4. Differentiation of LUHMES neuronal precursor cells (A) to mature neurons (B) in culture. DAPI stain (blue) was used to identify cell bodies, while neuronal pro-

jections were stained using anti-b tubulin antibody (green). The third panel shows Western blotting using anti-TCF4 antibody N-16 and lysates from SH-SY5Y (SH),

undifferentiated (A) and differentiated (B) LUHMES compared to GAPDH loading control. The Western blots (C) show that TCF4 is downregulated in the differentiated

LUHMES neurons.
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crucial for Notch signaling in embryogenesis and is predomi-
nantly expressed in non-neuronal and neuronal precursor cells
(44). LRP1 has diverse roles in the CNS and is a regulator of
neural progenitor cell function (45), while TLE1 functions as a
transcriptional repressor to regulate neuronal differentiation
(46). Furthermore, we observed that the specific TCF4 isoform
captured in our ChIP-seq experiments is upregulated in rapidly
growing, undifferentiated neural precursors relative to differen-
tiated neurons of a dopaminergic type. Therefore, it is plausible
that TCF4 affects SCZ risk by affecting neural development.

We conclude that we have identified potential regulatory inter-
actions between a SCZ-associated TF and several SCZ risk loci that
implicate processes involved in neuronal development and func-
tion. As an “omic” study, our findings represent hypotheses to be
tested in future neurobiological studies. We hope that the mapping
of these interactions will stimulate further research into TCF4.

Materials and Methods
Antibody selection

At the start of this study, no ChIP-grade antibodies were avail-
able for TCF4, so we selected candidate antibodies from com-
mercial vendors. Due to the confusion in nomenclature with
T-Cell Factor 4, we discovered several mislabeled antibodies.
Therefore, we limited ourselves to antibodies with published
epitope sequences that could be confirmed as TCF4 via protein
BLAST (NCBI). Eight antibodies were selected, of which three
passed initial QC and were used for ChIP-seq: polyclonal anti-
TCF4 antibodies K-12 (sc-48947) and N-16 (sc-48949) from Santa
Cruz Biotechnology (Dallas, Texas, USA) and monoclonal anti-
TCF4 antibody 1G4 (Novus, Littleton, Colorado, USA).

Cell culture

SH-SY5Y cells (ATCC, Manassas, Virginia) were cultured accord-
ing to supplier’s standard protocols. Cell line authentication via
simple tandem repeat genotyping was conducted by the
University of Arizona Genomics Core Facility. LUHMES cells
were cultured and differentiated according to a published proto-
col (36). Additional details and immunocytochemistry methods
are in the Supplementary Material, Methods.

Antibody validation

We followed ENCODE guidelines for antibody validation (25).
In addition to Western blotting of SH-SY5Y cell lysates, we used
IP of TCF4 protein followed by Western blotting or protein mass
spectrometry to characterize the proteins captured in IP (see
Supplementary Material, Methods). Further validation after
ChIP-seq used motif enrichment testing of binding site sequen-
ces (500 bp, centered on ChIP-seq peaks) with using DREME with
default settings as implemented in MEME-ChIP (47).

ChIP-seq

Each ChIP assay used approximately 1.2 � 107 SH-SY5Y cells and
was performed with the SOLiD ChIP-Seq Kit (Life Technologies,
Foster City, California) according to manufacturer’s specifica-
tions, with some adjustments (Supplementary Material,
Methods). ChIP-Seq libraries were validated using the
BioAnalyzer high-sensitivity chip assay (Agilent, Santa Clara,
California) prior to multiplexed high-throughput sequencing on
the SOLiD 5500 platform. Fifty-bp single end reads were

generated, with a target read number of 25 million tags per sam-
ple. In addition to ChIP samples using anti-TCF4 antibodies, their
respective IgG controls and input DNA controls were sequenced.

ChIP-seq data analysis

Reads were aligned to the human genome (build hg19) using
BioScope 1.2 (Life Technologies). Multi-mapping reads were dis-
carded, and only stringent single alignments retained. Sample
files were output as .bam files using BioScope. PCR duplicates
were removed by dropping multiple reads with identical start
positions using the Samtools (48) rmdup function and alignment
files were written in tagAlign.gz format using Samtools and
Bedtools (49). To call peaks and assess experiment quality, we
used SPP (21) distributed with phantompeakqualtools (50). Peaks
for each ChIP-seq experiment (Fig. 1c) were called against a com-
posite IgG control comprising three replicates. This merging of
control replicates was necessary to obtain sufficient material for
an adequately complex control library. A false discovery rate
(FDR) threshold of 1%, as implemented in SPP (21), was used to
call peaks. Peaks mapping to ENCODE blacklisted regions (ftp://
encodeftp.cse.ucsc.edu/users/akundaje/rawdata/blacklists/hg19/
wgEncodeHg19ConsensusSignalArtifactRegions.bed.gz; date last
accessed June 20, 2018) were removed. All raw and processed
ChIP-seq data for this project are available through the Gene
Expression Omnibus (GEO, www.ncbi.nlm.nih.gov/geo; date last
accessed June 20, 2018) with accession number GSE112704.

Data integration

Bioinformatics analysis was conducted in R (www.r-project.org;
date last accessed June 20, 2018). Gene lists were obtained from
refGene via UCSC Genome Browser download (August 10, 2017),
followed by elimination of transcripts with ambiguous mapping
and pruning entries by maximum boundary to yield a single
non-redundant locus per gene. Gene pathway analysis used
GREAT(26) version 3.0.0, assigning proximal regulatory domains
610 kb. Tissue-specific expression of the top TCF4 genes was
evaluated using the “Gene2Func” mode in FUMA (27).

For cell-specific expression analysis, we obtained single cell
RNA-seq data from five brain regions in mice (9970 single cells)
that were previously clustered into 24 different cell types (51).
Normalization factors were computed for each of the 9970
single cells using the scran R package (52,53) using the 50% of
the genes with mean expression higher than the median.
The normalization factors were computed after clustering cells
using the scran quickcluster() function to account for cell type
heterogeneity. We then performed 24 differential expression
analyses using BPSC (54) testing each cell type against the 23
other cell types using the normalization factor as a covariate.
For each differential expression analysis, the t-statistics were
then transformed to a standard normal distribution. Finally, for
each cell type, we used linear regression to test if the standard
normalized t-statistics for genes in the TCF4 gene set were sig-
nificantly higher than for genes not in the gene set.

Enrichment testing of TCF4 binding sites in significant genes
from siRNA knockdown expression studies (28,29) was carried
out by mapping genes 610 kb, followed by one-sided Fisher ex-
act tests. Permutation testing of significant findings used the
shiftR package (https://github.com/andreyshabalin/shiftR; date
last accessed June 20, 2018), as outlined previously (55). Test of
overlap between TCF4 peaks and genomic annotations used the
LOLA Bioconductor package (56), with all mappings obtained
from the LOLACore annotation set (databio.org/regiondb; date
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last accessed June 20, 2018). The background set for this analysis
was the default DNase hypersensitive sites (DHS) in multiple
tissues (“activeDHS” set), which captures known human regula-
tory regions (56,57). Testing for overlap with PGC SCZ
findings was also based on genomic locus, rather than gene.
SCZ-associated loci were obtained by download of the
“scz2.anneal.108” file from the PGC (https://www.med.unc.edu/
pgc/results-and-downloads; date last accessed June 20, 2018).
Background sets for this analysis were either “activeDHS” as
above or DNase hypersensitive sites specifically for SK-N-SH
cells (“wgEncodeOpenChromDnaseSknshPk” track, Duke DHS
from ENCODE). No DHS data for SH-SY5Y were available, but
SH-SY5Y are a subline of SK-N-SH isolated from the same donor
(58). After matching to background set, enrichment testing used
Fisher exact tests followed by permutation as above.

Supplementary Material
Supplementary Material is available at HMG online.
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