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Abstract

Background: High blood pressure (BP) in childhood is frequently renal in origin and a risk 

factor for adult hypertension and cardiovascular disease. Shorter gestations are a known risk factor 

for increased BP in adults and children, due in part to a nephron deficit in children born preterm. 

As nephrogenesis is incomplete until 36 weeks gestation, prenatal lead exposure occurring during 

a susceptible period of renal development may contribute to programming for later life renal 

disease. The relationship between shorter gestation and children’s BP has not yet been explored to 
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identify i) critical windows using nonlinear piecewise models or ii) combined with other early life 

risk factors such as prenatal lead exposure.

Objectives: (1) To evaluate the nonlinear relationship between lower gestational age and 

childhood BP measured at 4–6 years of age, and (2) to investigate modification by prenatal lead 

exposure.

Methods: In a prospective longitudinal birth cohort, we assessed 565 children between 4 and 6 

years of age (mean: 4.8 years) in the PROGRESS cohort in Mexico City, Mexico. Gestational age 

at delivery was calculated using maternal report of last menstrual period (LMP) and confirmed 

with Capurro physical examination at birth. We measured pregnant women’s blood lead levels 

(BLLs) in the second trimester via inductively coupled plasmamass spectrometry and children’s 

BP using an automated device. We performed both linear and nonlinear piecewise regression 

analyses to examine associations of gestational age with children’s BP adjusting for children’s 

age, sex, height, prenatal exposure to smoke, and maternal socioeconomic status. We stratified to 

assess modification by prenatal lead exposure, and used a data-adaptive approach to identify a lead 

cutpoint.

Results: Maternal second trimester BLLs ranged from 0.7 to 17.8 μg/dL with 112 (20%) women 

above the CDC guideline level of 5 μg/dL. In adjusted linear regression models, a one week 

reduction in gestational age was associated with a 0.5 mm Hg (95%CI: 0.2, 0.8) increase in SBP 

and a 0.4 mm Hg (95%CI 0.1, 0.6) increase in DBP. Our nonlinear models suggested evidence for 

different magnitude estimates on either side of an estimated join-point at 35.9 weeks’ gestation, 

but did not reach statistical significance. However, when stratified by prenatal lead exposure, we 

identified a cutpoint lead level of concern of 2.5 μg/dL that suggested an interaction between 

gestational age and blood lead. Specifically, for BLLs ≥ 2.5 μg/dL, SBP was 1.6 (95%CI: 0.3, 

2.9) mm Hg higher per each week reduction in gestational age among children born before 37.0 

weeks; and among children born after 37.0 weeks, this relationship was attenuated yet remained 

significant [β: 0.9, 95%CI (0.2, 1.6)]. At BLLs below 2.5 μg/dL, there was no appreciable 

association between lower gestational age and SBP.

Conclusions: Our findings suggest that shorter gestation combined with higher prenatal lead 

exposure contributes to a higher risk of increased SBP at 4–6 years of age, particularly among 

infants born < 37 weeks gestation. Our results underscore the importance of preventing prenatal 

lead exposure - even levels as low as 2.5 μg/dL - especially among pregnant women at risk 

for preterm birth. Given that high BP in childhood is a risk factor for adult hypertension and 

cardiovascular disease later in life, these results may have implications that extend across the life 

span.
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1. Introduction

High blood pressure (BP) in childhood can lead to adult hypertension (Belsha et al., 1998; 

Berenson et al., 1998; Chen and Wang, 2008; Hanevold et al., 2004; Sorof et al., 2003). 

Elevated BP in childhood, in the absence of congenital heart disease, is nearly always 
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renal in origin (Boubred et al., 2013). While some studies have examined the effect of 

environmental nephrotoxic exposures during susceptible windows of renal development 

on elevated childhood BP, none has examined the effect of environmental exposure as a 

modifier of the effect of shorter gestation.

Lower gestational age is a well-established risk factor for increased systolic blood pressure 

(SBP) in early life (Johansson et al., 2005; Keijzer-Veen et al., 2010) and even among adults 

(Raju et al., 2017). For example, a meta-analysis of 10 studies of former low birth weight 

or preterm infants compared to term controls found a pooled estimate of 2.5 mm Hg (95% 

CI: 1.7, 3.3) higher SBP later in life (average age = 17.1 years) (de Jong et al., 2012). 

Infants born prior to 36 weeks’ gestation, the time by which nephrogenesis (the formation 

of new nephrons) is complete (Benz and Amann, 2010; Solhaug et al., 2004), represent a 

particularly susceptible population for altered renal function. Based on the timing of in utero 

nephron development, we hypothesize that a nonlinear model would more appropriately 

examine critical windows of renal development. By comparing associations before and 

after 36 weeks, we hypothesize that there would be a stronger association with increased 

children’s BP among shorter gestations since this is coupled with renal immaturity.

Moreover, we speculate that nephrotoxic exposures during perinatal life in combination with 

shorter gestation could alter kidney growth/ developmental trajectories and program adult 

diseases of renal origin. Gestation and early childhood are potential susceptibility windows 

for nephrotoxic metals, as these life stages are associated with development of glomerular 

filtration and maturation of tubular function (e.g. absorption and secretion) (Gubhaju et 

al., 2014; Luyckx et al., 2013; Sutherland et al., 2014). Relatively minor insults can offset 

the normal developmental trajectory towards a hypertensive phenotype in later life, as BP 

will increase with age. Lead is a common nephrotoxicant in adults (Chiu and Yang, 2005; 

Hellstrom et al., 2001; Loghman-Adham, 1997; Sommar et al., 2013). Specifically, in the 

US, lead accounts for 5% of the population attributable risk for hypertension in adults 

participating in National Health and Nutrition Examination Survey (NHANES) from 2009 

to 2012 (Shiue and Hristova, 2014). Previously, we have shown sex-specific associations 

between prenatal lead levels and elevated BP in children in Mexico City (Zhang et al., 

2012). Other studies have shown links between lead and children’s elevated SBP or diastolic 

blood pressure (DBP) (Gump et al., 2005; Gump et al., 2007; Hawkesworth et al., 2013; 

Sorensen et al., 1999). However no studies to-date have examined the interaction of prenatal 

lead exposure in combination with shorter gestation on childhood BP.

We sought to understand whether the association between shorter gestation and increased 

childhood BP was modified by prenatal lead exposure, selected a priori as a prevalent 

nephrotoxic metal. To assess effects on BP at 4–6 years of age in a prospective cohort 

of 565 mother-child dyads, we examined the relationship between gestational age and BP 

using linear and nonlinear piecewise models. To investigate the modification effect of lead 

exposure, we used a data driven approach to assess 1) a change point in gestational age 

associated with SBP; and 2) a cutpoint level of ‘high’ or ‘low’ lead that might exacerbate 

developmental nephrotoxic exposure. This study expands our understanding of the early 

origins of adult cardiovascular disease, a leading cause of mortality and morbidity in the US 
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(Heron, 2013), and provides suggestive evidence for the role of prenatal lead exposure in the 

developmental programming childhood BP.

2. Methods

2.1. Study design

This study was conducted using mother-child pairs participating in the longitudinal cohort 

study called Programming Research in Obesity, GRowth, Environment, and Social Stress 

(PROGRESS) based in Mexico City. Full details of enrollment for the parent cohort are 

published elsewhere (Burris et al., 2013; Renzetti et al., 2017; Sanders et al., 2015). 

Briefly, women in their second trimester were recruited between 2007 and 2011 through the 

Mexican Social Security System (Instituto Mexicano del Seguro Social), which is the second 

largest health provider in the country. Women were considered eligible for enrollment if 

they were over 18 years of age, at fewer than 20 weeks gestation, free of heart and kidney 

disease, did not use anti-epilepsy drugs or steroids, and did not consume alcohol daily 

(Burris et al., 2013). There were 948 women who delivered a live-born infant into the cohort. 

For this analysis, we included pairs who had maternal blood lead measured in the 2nd 

trimester, delivery before 42 weeks of gestation, and child BP measured at 4–6 years of age 

(n = 565 out of 609 children with followup at this stage). No children were excluded from 

the analysis based on existing renal or cardiovascular conditions. We performed a sensitivity 

analyses to ensure that including the 10 infants < 34 weeks of gestation did not affect 

our results. The IRBs of the participating institutions approved this study: Icahn School of 

Medicine human subjects management #12–00751 and Instituto Nacional de Salud Pública 

project #560.

2.2. Participant data collection

Demographics and medical data were collected as part of the parent study including 

maternal age and socioeconomic status (SES), as well as gestational age at delivery, birth 

weight, age at BP measurement, as well as height and sex. Gestational age was calculated 

in units of days starting with the maternally reported last menstrual period (LMP) to the 

date of delivery. The Capurro method (i.e. an infant physical exam) was used as a secondary 

confirmatory estimate of gestational age and in instances where the gestational age estimated 

from the LMP differed by more than three weeks from the Capurro method, the Capurro 

methodderived estimate was used (n = 19) (Sanders et al., 2015). Capurro method estimates 

were converted from weeks into days, by using week gestation × 7 days/week + 3.5 days 

(imputed days mid-week). Staff conducted in-person interviews, which included a question 

about household smoke exposure. Household environmental tobacco smoke exposure was 

dichotomized as yes/no based on the mother’s report that at least one household member 

smoked during the pregnancy. Very few participants reported smoking during pregnancy (n = 

4). The SES index during pregnancy was calculated based on 1994 Mexican Association of 

Intelligence Agencies Market and Opinion (AMAI) rule 13 * 6. The index classifies families 

into 6 levels based on 13 questions related to the characteristics of the household. The 6 

resultant levels were then collapsed into 3 SES categories: low, medium, and higher.
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2.3. Lead exposure assessment

Maternal venous whole blood samples were collected at the second trimester visit. Blood 

samples were drawn in trace metal free tubes and stored at 2–6 °C until analysis. Samples 

were prepared and analyzed for lead levels using the Agilent 8800 ICP Triple Quad (ICP­

QQQ) in MS/MS mode at the Lautenberg Environmental Health Sciences Laboratory at the 

Icahn School of Medicine at Mount Sinai in New York (Renzetti et al., 2017). The limit of 

detection was 0.02 μg/dL; only one sample was below the LOD and was imputed to 0.02 

divided by 2.

2.4. Blood pressure measurement

Children’s resting BP was measured using a Spacelabs Healthcare automated oscillometric 

device (Ambulatory BP 90207 monitor, WA, USA). After 3–5 min of rest, BP was measured 

using the automated Spacelabs system with a child-sized cuff, taking two measurements 

as per the standard PROGRESS protocol. SBP, DBP, and mean arterial pressure (MAP) 

are estimated directly by the instrument; although MAP can be calculated using the 

equation (SBP-DBP)/3 + DBP, we analyzed MAP estimated by the instrument via a 

proprietary method. The Spacelabs system has a number of advantages over standard 

sphygmomanometer measurement, including the elimination of observer bias and reduction 

of White Coat Hypertension (anxiety induced from visiting the doctor’s office and BP 

measurement) (Gillman and Cook, 1995; Mattu et al., 2001).

2.5. Statistical analysis

2.5.1. Linear model—To examine the associations between continuous gestational age 

and BP at 4–6 years, we first used linear regression. Models estimated the mean change 

in BP associated with weeks’ shorter gestation. We investigated SBP and DBP, primarily, 

as well as pulse pressure (PP) and mean arterial pressure (MAP) as separate outcomes. We 

chose covariates a priori including child sex, height, and age at the time of BP measurement, 

as well as maternal SES and environmental tobacco smoke exposure inside the home. 

Prenatal smoke exposure and maternal SES were categorized as described above. Both 

adjusted and unadjusted regression models were performed. The reported beta coefficients 

represent the change in BP (mm Hg) per week change in gestation. In secondary analyses, 

we calculated children’s z-scored DBP and SBP based on sex, age and height, calculated 

according to the updated American Academy of Pediatrics guidelines (Flynn et al., 2017). 

However, because the reference population derives from US children participating in 

NHANES, we presented main analyses as the non-z-scored BP outcomes adjusted for sex, 

age and height. In analyses of SBP and DBP z-score outcomes, the model adjusted only 

for maternal SES and prenatal smoke exposure to prevent over adjustment for height, age, 

and sex. We identified cases of “high” BP using updated terminology for pediatric BP as 

defined in the 2017 report by the AAP Subcommittee On Screening Management Of High 

Blood Pressure In Children and Adolescents wherein “high” BP refers to both hypertensive 

(stages 1 and 2) and elevated BP (formerly called “prehypertension”) together and we refer 

the reader to the AAP report for details (Flynn et al., 2017). Because casual BP was obtained 

in this study visit, we cautiously interpret the classification of “high” BP individuals since 

the BP collection protocol was designed prior to the revised AAP clinical guidelines.
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2.5.2. Nonlinear piecewise model—To evaluate our data for evidence of a nonlinear 

association between gestational age at birth (GA) and SBP, we selected a piecewise model 

parameterized as:

μ =
β0 + β1GA, GA < δ
γ0 + γ1GA, GA ≥ δ ,

with the continuity constraint at the join-point, δ; i.e., β0 + β1δ = γ0 + γ1δ. This model 

allows for a different slope between GA and SBP on either side of the join-point. A test 

for a difference in the slopes and the 95% confidence interval (CI) on δ was conducted. 

When the estimate for the join-point is at the boundary of the observed data, the model 

is over-parameterized and we instead fit a linear model: μ = β0 + β1GA. We anticipated 

negative slope estimates indicating shorter GA would be associated with higher SBP at 4–6 

years of age. The join-point of gestational age was identified as the value where the slope 

of the relationship between GA and SBP changes. When the slope associated with shorter 

GA (i.e., GA < δ) was more negative than that associated with typical GA (i.e., GA ≥δ), 

we cautiously interpret this as evidence of increased risk of higher BP with shorter GA at 

birth. We assessed gestational age within the range of weeks of gestation at birth in the 

PROGRESS cohort: 29.0 up to 42.0 weeks using intervals of 0.5 weeks. While both SBP 

and DBP are important risk factors for later life hypertension, nonlinear models assessing 

the relationship between GA and DBP were over parameterized, suggesting the relationship 

modeled with linear regression was more appropriate; therefore only linear models with 

DBP are presented. We performed a sensitivity analysis excluding the 10 infants < 34 weeks 

of gestation using identical methods.

2.5.3. Lead-modified nonlinear piecewise model—To evaluate whether lead 

modified the effect of gestational age and SBP, we used nonlinear piecewise models 

stratified by different BLLs. A sensitivity analysis excluding the 10 infants < 34 weeks 

of gestation used identical methods as described below. Selection of BLL for stratification 

was determined using a data-adaptive approach and not selected a priori. It was hypothesized 

that when lead was ‘high’ the relationship between gestational age and SBP would be 

represented by the piecewise model (Eq. (1)), but when lead is ‘low’ this relationship is 

different (Eq. (2)).

μ =
β0, H + β1, HGA, GA < δH
γ0, H + γ1, HGA, GA ≥ δH

(1)

μ =
β0, L + β1, LGA, GA < δL
γ0, L + γ1, LGA, GA ≥ δL

(2)

with the continuity constraint in both. When the estimated join-point parameter (δ) was at 

the boundary of the observed data, the model is over-parameterized, and we instead fit a 

linear model. To optimize our model required two stages: i) identification of lead cutpoint 

(π) and ii) identification of gestational age join-point (δ), in relation to SBP.
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Using our data-adaptive approach to find a cutpoint value of lead, the piecewise models 

were stratified by BLLs across a range of exposure in the PROGRESS cohort defined as the 

mean BLL ± one standard deviation (1.0 to 6.5 μg/dL using intervals of 0.1) (Supplemental 

material, Fig. S1). Simultaneously applying the stratified piecewise models, total sum of 

squared errors (SSE) was calculated as the sum of SSE between the two strata and plotted 

to find the best-fit model with the overall lowest total SSE and identify a cutpoint BLL. We 

required that the identified smallest total SSE met the following criteria: (1) the iterative 

estimation algorithm converged to solutions; and (2) the estimated cutpoint was within the 

observed gestational age range.

2.5.4. Sensitivity analyses—We performed three sensitivity analyses for the nonlinear 

models which included: i) excluding the 10 infants < 34 weeks of gestation using identical 

methods, ii) excluding 19 infants with Capurro-reassigned gestational age and iii) including 

adjustment for weight in addition to child sex, height, and age at the time of BP 

measurement. We conducted each sensitivity analysis using identical nonlinear piecewise 

methods as described above. Furthermore, to examine the association between lead exposure 

and SBP at 4–6 years, we used linear regression and adjusted for the same covariates as the 

nonlinear model including child sex, height, and age at the time of BP measurement.

3. Results

3.1. Characteristics of study participants

Demographics of the 565 mother-child pairs participating in this subcohort of the 

PROGRESS study at 4–6 years of age are presented in Table 1. The average maternal 

age was 28 years and ranged from 18 to 44. Half of the women were within the two lowest 

SES categories (51%), and the majority reported no tobacco smoke exposure in the home 

(70%). Gestational age ranged from 29 to 41.9 weeks; 59 children (10%) were born preterm. 

Maternal second trimester BLLs ranged from 0.7 to 17.8 μg/dL with 112 (20%) above the 

CDC guideline level of 5 μg/dL. Five of the children in this study met the criteria for high 

BP as defined by the Subcommittee on Screening Management of High BP in Children and 

Adolescents (Flynn et al., 2017).

3.2. Association between gestational age and SBP at 4 years

Linear examination of the relationship between gestational age and SBP showed that a one 

week reduction in gestational age was associated with a 0.5 mm Hg (95%CI: 0.2, 0.8) 

increase in SBP and a 0.4 mm Hg (95%CI: 0.1, 0.6) increase in DBP, adjusted for child’s 

sex, age, height, maternal SES, and prenatal exposure to smoke (Table 2). Likewise, a one 

week reduction in gestational age was associated with a 0.4 mm Hg (95%CI: 0.2, 0.7) 

increase in MAP (Table 2). The estimates were relatively unchanged when adjusted for 

covariates, and similar relationships were observed with z-scored SBP and DBP (Table 2). 

No significant relationship was identified between gestational age and PP in adjusted or 

unadjusted models.

Examination of the relationship between gestational age and SBP using nonlinear piecewise 

models suggested evidence of different effect estimate magnitudes, depending on gestational 
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age at delivery (Fig. 1) though these did not reach statistical significance. Our piecewise 

model demonstrated evidence of a join-point δ at 35.9 weeks’ (95%CI: 28.8, 43.0). Among 

children born before 35.9 weeks, SBP was 0.9 (95%CI: −0.5, 2.3) mm Hg higher per one 

week reduction in gestational age; and among children born later than 35.9 weeks, SBP was 

0.4 (95%CI: −0.06, 0.9) mm Hg higher. While we are intrigued by the estimated join-point δ 
and potential indication of a nonlinear association, we cautiously interpret these findings and 

note the wide confidence interval and that a test comparing the difference in slopes β1 and 

γ1 had a p-value > 0.05.

3.3. Prenatal lead modifies the association between shorter gestation and higher SBP

Using the data-driven SSE best-fit model approach, we identified the cutpoint BLL, π, of 2.5 

μg/dL. When BLLs were < 2.5 μg/dL, evidence for nonlinearity was not present, therefore 

a linear model showed that each week reduction in gestational age was associated with a 

0.4 mm Hg (95%CI: −0.9, 0.01) decrease in SBP (Fig. 2a). We note that for BLLs below 

2.5 μg/dL this relationship was not statistically significant. However, when BLLs were ≥2.5 

μg/dL, the data showed evidence of nonlinearity with the join-point δ estimated as 37.0 

(95%CI: 32.1, 41.9) (Fig. 2b). Specifically, when BLLs were ≥2.5 μg/dL, SBP was 1.6 

(95%CI: 0.3, 2.9) mm Hg higher per each week reduction in gestational age among children 

born before 37.0 weeks of gestation; and among children born after 37.0 weeks of gestation, 

this relationship was attenuated yet remained significant [β: 0.9, 95%CI (0.2, 1.6)] (Fig. 2b). 

However, the slopes β1 and γ1 were not statistically different. The overall p-value for the 

nonlinear model was p < 0.0001; however, the goodness of fit test comparing the piecewise 

model to a linear model (with high lead) was not significant.

3.4. Sensitivity analyses

A sensitivity analysis using nonlinear piecewise models further excluding infants born prior 

to 34 completed weeks showed an estimated join-point δ at 34.9 weeks (95%CI: 33.7, 36.2). 

Among children born before than 34.9 weeks, SBP was 8.1 (95%CI: −14.2, 30.3) mm Hg 

higher per one week reduction in gestational age; and among gestations longer than 34.9, 

SBP was 0.4 (95%CI: −0.02, 0.8) mm Hg higher. While we are intrigued by the estimated 

join-point δ and potential indication of a nonlinear association, we cautiously interpret these 

findings and note the wide confidence interval and that a test comparing the difference in 

slopes β1 and γ1 had a p-value > 0.05.

A sensitivity analysis examining nonlinear piecewise models with lead modification 

restricting to infants between 34 and 42 weeks of gestation yielded the BLL cutpoint, π, 

of 2.9 μg/dL. When BLLs were < 2.9 μg/dL, shorter gestation was marginally linearly 

associated with lower SBP [β: 0.2, 95%CI (−0.3, 0.7)]. When BLLs were ≥2.9 μg/ dL, 

the join-point δ was estimated as 37.0 (95%CI: 35.7, 38.3). Among children born before 

37.0 weeks of gestation, each one week reduction in gestational age was associated with 

3.9 (95%CI: 0.8, 6.9) mm Hg higher SBP, and among children born after 37.0 weeks 

this relationship was attenuated yet remained significant [β: 0.9, 95%CI (0.1, 1.6)]. A test 

comparing the difference in slopes β1 and γ1 on either side of the join-point was p = 0.05. 

The overall model p-value was p < 0.0001. The goodness of fit test comparing the piecewise 
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model to a linear model (with high lead) was p = 0.09, suggesting potential evidence of a 

nonlinear relationship.

Two additional nonlinear sensitivity analyses that i) excluded 19 infants with reassigned 

gestational age or, ii) adjusting for weight in addition to other covariates, resulted in an 

estimate for the join-point δ near 29 weeks’, the extreme of the data range. These models did 

not meet our criteria for inclusion as specified in the methods.

In additional sensitivity analyses using linear models, we observed a null relationship 

between lead and SBP adjusted for age, sex and height (β: −1.3, 95%CI: −3.2, 0.6). 

Similarly, a null relationship between lead and gestational age (β: 0.03, 95%CI: −0.02, 

0.08) was previously reported in the PROGRESS cohort (Renzetti et al., 2017).

4. Discussion

Results from our nonlinear model suggest that lower gestational age combined with higher 

prenatal lead exposure contributes to a higher risk of elevated BPs at 4–6 years of age among 

infants born < 37 weeks of gestation. We propose that the most appropriate interpretation 

of these data is that infants below this gestational age are more susceptible to the effects 

of in utero lead exposure due to the immaturity of renal development at the time of 

transition to extrauterine life. We identified a BLL cutpoint in our analyses as 2.5 μg/dL, 

a relatively low lead level, suggesting even low-level prenatal lead exposure that may have 

implications for later life renal health with far ranging public health significance. This is 

particularly important as current practice uses 5 μg/dL as the level of concern. Our statistical 

approach demonstrates the utility of nonlinear modeling for identifying i) critical windows 

of susceptibility (e.g. the joint point δ) and ii) threshold exposure levels (e.g. cutpoint BLL 

π). These data inform issues of temporality and dose related to early life lead exposure and 

contribute to the limited existing literature on the adverse cardiorenal effects of metals in 

children (Sanders et al., 2018; Zheng et al., 2017).

To avoid methodological concerns introduced by stratifying on preterm vs. term status or 

adjusting for gestational age (e.g., collider bias) (Wilcox et al., 2011), we explored the 

nonlinear piecewise model as a method to more appropriately examine critical windows 

of in utero renal development. Further, we observed a null relationship between lead 

and gestational age as previously reported (β: 0.03, 95%CI: −0.02, 0.08) (Renzetti et al., 

2017). Similarly, the relationship between lead and SBP in this study demonstrated a 

null relationship with the inverse direction (β: −1.3, 95%CI: −3.2, 0.6). Our findings are 

intriguing as we identified an estimate for δ at 35.9 weeks, which closely aligned with 

our hypothesis of an expected δ near the time of complete nephron formation: 36 weeks. 

Our model demonstrates a novel statistical approach because methodologically accounting 

for gestational age as a known risk factor is difficult, and builds upon existing literature 

that shorter gestations as a risk factor for higher BP. Moreover, due to concern of prenatal 

lead exposure as a paradigm nephrotoxicant in the study population, we then explored 

the nonlinear piecewise model combined with lead stratified by ‘high’ and ‘low’ levels 

derived using a data-adaptive approach. Since a low nephron number alone may not predict 

increased BP, a kidney with fewer nephrons could be less able to withstand additional toxic 
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injury (Luyckx and Brenner, 2015; Luyckx et al., 2017). Intriguingly, our results from the 

nonlinear piecewise model with lead exposure ≥ 2.5 μg/dL support this hypothesis. These 

findings have potential far-ranging public health significance as childhood renal health 

predicts adult renal health (Gluckman et al., 2008; Huang et al., 2009; Luyckx et al., 2013).

To our knowledge, our study is the only study to-date to examine the joint effects of 

lower gestational age and lead exposure. However, three previous studies evaluated the 

linear association between prenatal lead exposure and childhood BP with inconsistent 

results. Inconsistent associations reported across populations may be due to variations in 

the timing exposure or outcome assessment. In a prospective study of 690 Bangladeshi 

children, Skroder et al. (2016) identified no significant relationship with maternal blood 

erythrocyte lead measured in the second or third trimesters (14 or 30 weeks gestation) and 

SBP at 4.5 years of age. We note that Skroder et al. observed an inverse relationship between 

maternal blood lead and child kidney volume measured by ultrasound in a subset of 117 

dyads. Zhang et al. (2012) in a prospective birth cohort of 457 mother-child pairs in Mexico, 

reported that an interquartile range (IQR) increase of prenatal lead measured in maternal 

tibia 1-month postpartum (reflecting prenatal exposures) resulted in a 2.1 mm Hg higher 

SBP (95% CI: 0.7, 3.5) and 1.6 mm Hg higher DBP (95% CI: 0.3, 2.9) among girls only 

at 10 years of age. No associations were observed in boys, or for lead measured in cord 

blood or patella. And lastly, Gump et al. (2005) showed in a retrospective study of 122 US 

children that higher cord blood lead levels were associated with significantly higher SBP 

(β = 12.16, p = 0.02) at 9.5 years of age. Prior studies that observed relationships between 

lead and BP were conducted later in childhood (9.5 years as compared to 4–6 years of age 

in our study) and assessed lead exposure via bone or cord blood rather than prenatal BLLs. 

Critical windows during pregnancy may reflect more sensitive timings during nephron 

development and subsequent studies in PROGRESS will examine relationships with BP at 

7–10 years of age. Our study contributes to the body of literature suggesting that prenatal 

lead exposure contributes to altered BP in childhood, particularly among infants born 

preterm. Future studies should consider the potential interaction effect of gestational age 

and other nephrotoxicant exposures as well. Finally, these data may indicate that lead plays a 

role in the development of hypertension in adults born prematurely.

Our study builds on existing findings by highlighting the multifactorial effects of adverse 

birth outcome and prenatal lead exposure, as possible mechanisms of developmental BP 

programming. Nephrogenesis, the precise and complex programming of nephron formation 

in the metanephric kidney, generally begins at ~5 weeks of gestation and is complete by 36 

weeks in the human infant (Benz and Amann, 2010; Solhaug et al., 2004). After birth, both 

renal blood flow and glomerular filtration, major determinants of renal function, continue to 

mature until approximately 2 years of age (Calcagno and Rubin, 1963; Veille et al., 1998). 

Infants born with low birthweight or born preterm have interruptions in normal development 

and significantly reduced kidney volume and final nephron number compared to normal 

weight or full term babies (Kandasamy et al., 2013; Luyckx et al., 2013). Mechanistic 

studies in mice implicate the mammalian target of rapamycin (Mtor) signaling pathway 

and the inhibitory protein Hamartin play a role in the duration of nephrogenesis and risk 

of subsequent kidney disease (Volovelsky et al., 2018). Indeed, the Barker hypothesis 

sprung from the observation that lower birthweight infants were more likely to develop 
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later life hypertension (Barker et al., 1989). While several mechanisms of developmentally 

programmed hypertension and renal disease have been proposed (Baum, 2010; Block et al., 

2015; Schreuder and Nauta, 2007), a consensus document by the Low Birth Weight and 

Nephron Number working group highlighted “the need to act early to prevent CKD and 

other related noncommunicable diseases later in life by reducing low birth weight, small 

for gestational age, prematurity, and low nephron numbers at birth through coordinated 

interventions” (Low Birth and Nephron Number Working, 2017).

There are a number of potential mechanisms that might explain our results. While 

speculative, metals including lead are well known to induce oxidative stress through 

a number of pathways. One mechanism by which preterm infants may be particularly 

susceptible to the effects of lead on the later development of higher BP may be the added 

impact of lead induced oxidative stress and the reactive oxygen species that arise from 

birth on the developing kidney. Indeed, several recent studies and reviews of lead toxicity 

proposed that the many health effects of lead on different tissues could be explained by 

oxidative stress, and that free radical damage could be a unifying mechanism to explain 

these pleiotropic effects (Corsetti et al., 2017; Mitra et al., 2017; Rehman et al., 2018). 

Future research should not exclude other mechanisms of action, but given the well-known 

relationship between lead and oxidative stress, this particular mechanism merits future study. 

Furthermore, when infants are born, at any gestational age, the partial pressure of oxygen 

rises from in utero levels of 40–50 mm Hg just prior to birth to 60–90 mm Hg within 

hours (Fanaroff et al., 2006). This increase, especially when combined with any additional 

supplemental oxygen, which is more commonly administered to preterm infants, can result 

in an excess of reactive oxygen species (Auten and Davis, 2009). In rats, lead exposure 

can reduce the ability to excrete reactive oxygen species (Vaziri et al., 1999) suggesting 

that the combined extra-uterine exposure to oxygen and higher lead concentrations in the 

setting of incomplete renal development may lead to direct tissue damage and subsequent 

susceptibility to hypertension. While epidemiological studies cannot determine mechanism, 

future investigations may aim to address redox and non-redox mechanisms underlying the 

observations.

Our study has several strengths. First, PROGRESS is a prospective study, with carefully 

collected covariate data, birth outcomes, and simultaneous exposures. Lead exposure was 

assessed years prior to BP and cannot be biased with respect to BP. We enrolled women 

during pregnancy and followed mother-child dyads to 4–6 years of age. Given our cohort 

design, we adjusted for potential confounding variables and analyzed gestational age as a 

continuous outcome. In linear models, we analyzed SBP and DBP as the primary outcomes 

collected using automated state of the art equipment. While residual confounding may 

limit our study, in general the effect estimates were markedly unchanged after covariate 

adjustment indicating little confounding. Moreover, similar results were observed with BP 

measures adjusted for key covariates (height, age, and sex) as observed with z-scored DBP 

and SBP outcomes that account for height, age, and sex using the new American Academy 

of Pediatrics guidelines (Flynn et al., 2017). We note that while the observed effect estimates 

(ranging from 0.4 to 1.6 mm Hg increased BP per each week shorter gestation) were not 

clinically relevant, even small changes in early life BP have been shown to impact an 

individual’s trajectory for later life hypertension (de Jong et al., 2012). Furthermore, the 
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Prevention Paradox suggests that shifting the blood pressure of a whole population, even 

slightly, can affect the incidence or prevalence of a common disease such as hypertension 

(Rose, 2001).

This study had several limitations. We assessed BP at one time point, although the 

assessment was blind to prenatal BLLs. Cross-sectional examination of childhood lead 

as well as longitudinal follow-up is ongoing and future studies (including assessment of 

renal function and risk factors including sodium intake) will assess whether the effects 

of lead exposure on BP persist into adolescence or ultimately lead to hypertension. The 

PROGRESS cohort is a racially/ethnically homogeneous population, which may limit 

external generalizability. Although we observed five cases of high BP in this study (< 1%) 

in children aged 4–6 years, the estimated prevalence of childhood hypertension in Mexico 

is roughly 10% in adolescents (Cervantes et al., 2000; Juarez-Rojas et al., 2008), about 

3-fold higher than the estimates of 3–4% in the US among children age 8–17 (George et 

al., 2014), albeit these estimates do not reflect the recently updated definition for childhood 

hypertension. It is possible that while our results suggest some children may be on the 

trajectory to high BP, assessment at 4–6 years of age is still very early for the development 

of clinical hypertension. Moreover, casual BP was obtained in this study and averaged from 

two oscillometric measures; we recommend future studies apply a minimum of 3 measures. 

The observed lead levels are generally higher among Mexican than US populations, making 

this an ideal cohort in which to test our hypotheses. There are still many pockets of lead 

poisoning in both Mexico and the U.S. and while levels are decreasing there are still 

thousands of adults with BLLs higher than 2.5 μg/dL (Tsoi et al., 2016). We reiterate that 

our nonlinear results between gestational age and SBP should be interpreted with caution 

due to limited data at lower gestational ages and the findings should be replicated. The 

prevalence of preterm birth in this cohort was 10% (59 cases), which while comparable 

to national estimates, limited sample size contributing to some models. Our intriguing 

findings suggesting a lead-modification effect of increased BP for children born prior to 

37 weeks should be replicated in other larger cohorts. We acknowledge that sensitivity 

analyses adjusting for weight, and excluding the 19 Capurro-reassigned gestations resulted 

in unstable models. This is a limitation of our dataset and these results require replication in 

additional cohorts.

5. Conclusion

We found that higher maternal BLLs in pregnancy modified the association between lower 

gestational age and increased BP in children, whereby children with combined prematurity 

and maternal BLL in pregnancy ≥2.5 μg/dL had higher BP at age 4–6, than children who did 

not have both characteristics. This study contributes to our understanding of the early origins 

of adult renal or cardiovascular disease, and suggests the role of prenatal lead exposure 

in the multi-factorial sequela of programmed childhood BP. If replicated in other cohorts 

and studies, the findings provide further support that prenatal lead exposure, particularly for 

children born preterm, is a preventable risk factor for altered early life BP with widespread 

implications for future health and disease. Future studies will assess renal function and 

molecular changes and indicate whether the observed association with BP persists into 

adolescence and adulthood. Our results underscore the importance of preventing prenatal 
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lead exposure, preterm birth, and higher BP in childhood to reduce risk of hypertension and 

cardiovascular disease later in life.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Associations of gestational age and child SBP at 4–6 years using nonlinear piecewise 

regression (n = 565). Plotted SBP values are residuals accounting for child’s age, sex, and 

height. Red circles are predicted values. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
The association between lower gestational age and child SBP, when stratified by second 

trimester blood lead cutpoint π as a) BLLs < 2.5 and b) BLLs ≥ 2.5 μg/dL. Plotted 

SBP values are residuals accounting for child’s age, sex, and height. The blue line is a 

linear regression; red circles are predicted values from the nonlinear piecewise model. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Table 1

Demographics for 565 mother-child dyads participating in the PROGRESS study at 4–6 years.

Demographic n (%)

SES

 Low 289 (51.2)

 Medium 217 (38.4)

 High 59 (10.4)

Tobacco smoke exposure in home

 No 394 (70.2)

 Yes 167 (29.7)

Sex

 Male 283 (50.1)

 Female 282 (49.9)

Mean ± std (range)

Maternal age (years) 27.6 ± 5.6 (18.0–44.0)

Gestational age (weeks) 38.7 ± 1.7 (29.1–41.9)

Birth weight (kg) 3.1 ± 0.4 (1.1–4.2)

Child age at BP measurement (years) 4.8 ± 0.6 (4.0–6.7)

Child BMI (kg/m2) 15.7 ± 1.7 (11.4–26.4)

Child BP at 4–6 years (mm Hg)

 SBP 86.2 ± 7.4 (66.5–120.0)

 DBP 52.6 ± 5.8 (35.5–76.0)

Blood lead levels (μg/dL)

 2nd trimester pregnancy 3.7 ± 2.7 (0.7–17.8)
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Table 2

The relationship between shorter gestation and BP using adjusted and unadjusted linear regression models 

(n=565).

Effect estimate
a p–Value Effect estimate

b p–Value

β (95% CI) β (95% CI)

SBP 0.45 (0.10, 0.81) 0.01 0.48 (0.15, 0.80) 0.004

DBP 0.34 (0.06, 0.63) 0.02 0.37 (0.10, 0.64) 0.007

PP 0.11 (−0.17, 0.39) 0.45 0.10 (−0.17, 0.37) 0.46

MAP 0.41 (0.12, 0.69) 0.005 0.44 (0.17, 0.70) 0.002

SBP z–score
c 0.05 (0.02, 0.08) 0.003 0.04 (0.01, 0.07) 0.005

DBP z–score
c 0.04 (0.01, 0.06) 0.003 0.03 (0.01, 0.06) 0.008

a
Unadjusted model.

b
Adjusted for child’s age, height, and sex and maternal SES and tobacco smoke in the home.

c
BP Z–score model adjusted only for SES and tobacco smoke.
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